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 Abstract 

Biological control is widely successful for controlling pests, but effective biocontrol agents are now 

more difficult to obtain due to more restrictive international trade laws. Coupled with increasing 

demand, the efficacy of existing and new biocontrol agents needs to be improved with genetic and 

genomic approaches. Although they have been underutilised in the past, applying genetic and 
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genomic techniques is becoming more feasible from both technological and economic perspectives. 

We review current methods and provide a framework for using them, incorporating evolutionary and 

ecological principles. First, it is necessary to identify which biocontrol trait to select and in what 

direction. Next, the genes or markers linked to these traits need be determined to better target their 

selection, followed by how to implement this information into a breeding program. Choosing a trait 

can be assisted by modelling to account for the proper agro-ecological context, and by knowing 

which traits have sufficiently high heritability values. We provide guidelines for designing genomic 

strategies in biocontrol programs, which depends on the organism, budget, and desired objective. 

Genomic approaches start with genome sequencing and assembly. We provide a guide for deciding 

the most successful sequencing strategy for biocontrol agents. Gene discovery involves quantitative 

trait loci (QTL) analyses, transcriptomic and proteomic studies, and gene editing. Improving 

biocontrol practices include marker-assisted selection, genomic selection and microbiome 

manipulation of biocontrol agents, and monitoring for genetic variation during rearing and post-

release. We conclude by identifying the most promising applications of genetic and genomic 

methods to improve biological control efficacy. 

Keywords: artificial selection, biological control, genetics, genome assembly, genomics, insect 

breeding, microbiome, modelling 
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I. Introduction 

Biological control, or the use of natural enemies to control a pest, is arguably the best solution for 

phasing out the large scale use of synthetic pesticides (Thomas & Willis, 1998; Bale, van Lenteren, & 

Bigler, 2008). It has been broadly applied for hundreds of years and to great success in both 

greenhouse and open field systems worldwide (van den Bosch, 1971; Stiling & Cornelissen, 2005). 

Most of the research into the fundamentals of biological control has been from an ecological 

perspective, focusing on aspects such as optimal foraging and risk monitoring (Wajnberg, Bernstein, 

& Alphen, 2008; Heimpel & Mills, 2017). Clearly, not all initiated programs resulted in the desired 

level of pest management, and as such there is considerable room for improvement (Wajnberg, 

2004). The reasons for biocontrol programs not always reaching their full potential are manifold and 

range from releasing the wrong control agents, agents being non-adapted to local environmental 

conditions, undesired interactions with the native fauna, and evolutionary changes in the pest 

species upon invasion. 

In the past, the default method for improving biocontrol performance was to find a more 

efficient wild species or strain to be the biocontrol agent (Hassan & Guo, 1991; Hassan, 1994; 

Nomikou et al., 2001; Hoelmer & Kirk, 2005). However, the Nagoya protocol for Access and Benefit 

Sharing of Genetics Resources has severely limited international exchange of biological materials, so 

the practice of successively sourcing more effective biocontrol agents from the field is severely 

restricted (Cock et al., 2010; Deplazes-Zemp et al., 2018; Mason et al., 2018). Moreover, certain 

geographical regions have strict regulations on which agents can be used, e.g., only local strains 

originating from the region itself (Loomans, 2007; Hunt, Loomans, & Kuhlmann, 2011). Concurrently, 

demand for more effective biocontrol agents is rising, driven by an increased demand for organic 

products and growth of the organic food production market, valued at 62.9 billion USD as of 2013 

(Willer & Lernoud, 2019; Baker, Green, & Loker, 2020). For example, the global biological control 

market was worth 1.7 billion USD in 2015, with sales growing 3x faster than pesticides (van Lenteren 

et al., 2018). Additionally, policy developments have aimed to reduce of synthetic pesticide use (van 

Lenteren et al., 2018) such as a EU-wide neonicotinoid ban (Gross, 2013; Stokstad, 2018) and 

continuous legal curtailment of organophosphate use in the US and worldwide (Hertz-Picciotto et al., 

2018). The rise of the organic market in conjunction with a reduction of pesticide use results in a 

need for environmentally safer pest control, which is reflected in the rapid growth and increased 

market value of the biocontrol industry (de Clercq, Mason, & Babendreier, 2011; Dunham, 2015; van 

Lenteren et al., 2018). It is now more urgent than ever to understand how to effectively and 

efficiently improve non-native biocontrol agents already in use and to develop novel native 

biocontrol agents. We review recent developments in the field of biological control that indicate that 

genetics-based solutions are key (Figure 1). 
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For decades, it has been advocated to use genetic means to improve the efficacy of 

biocontrol programs (White, Debach, & Garber, 1970; Hoy, 1986; Hopper et al., 1993; Narang, 

Bartlett, & Faust, 1993; Nunney, 2003; Routray et al., 2017, Kruitwagen, Beukeboom, & Wertheim, 

2018; Lirakis & Magalhaes, 2019). Significant genetic variation has been demonstrated in several key 

life-history and behavioural traits of potential biocontrol agents (Hoy, 1985; Rousch, 1990; Hopper et 

al., 1993; Wajnberg, 2004, Ferguson et al., inpreparation a). However, despite its proven application 

in, for example, crop and livestock breeding, there have been few attempts made to improve 

biocontrol agents through genetic means. We currently witness a revival of the idea to apply genetics 

to improve biocontrol programs, in terms of exploiting intra- and interspecific variation (Lommen, de 

Jong, & Pannebakker, 2017; Kruitwagen et al., 2018), performing experimental evolution (Lirakis & 

Magalhaes, 2019), adapting the microbiome for improving rearing methods (Ras et al., 2017), and 

population monitoring of released agents (Roderick & Navajas, 2003; Stouthamer & Nunney, 2014; 

Coelho et al., 2016). Notably, these methods all employ classic genetics principles within a species’ 

existing gene pool, distinguishing them from Genetically Modified Organisms (GMOs) that have DNA 

from foreign organisms introduced into their genomes. That means that unlike GMOs, the methods 

discussed here are all compatible with the organic mission common in biocontrol practice. Next to 

genetic applications, we need an evolutionary perspective on the sustainability and risks of 

biocontrol programs, for example to enable predictions of future adaptations of pests and agents 

(Hufbauer & Roderick, 2005; Szűcs et al., 2019). Finally, application of genetics and evolution in 

biocontrol programs cannot be evaluated without considering the role of the environmental and 

ecological processes (Thrall et al., 2011). We outline an integrated approach of genetics and 

evolution in an ecological context as a promising way forward to improve biocontrol practices. 

We first identify which organismal traits are important for biological control and should 

therefore be targeted for improvement (so-called “biocontrol traits”). Next, we present the current 

state and future prospects of using genetic and genomic methods towards that aim. We consider 

these methods from evolutionary and ecological contexts, i.e. how these methods can realistically 

operate in long-term breeding programs and in the field (Figure 2). Because of their prevalence and 

economic importance (van Lenteren et al., 2018), we focus on programs using arthropod biocontrol 

agents, although these universal genetics principles overlap with other agents (e.g. nematodes, fungi, 

bacteria). While the most common form of biological control is augmentative (the recurrent release 

of a biocontrol agent population not expected to establish permanently, or to supplement an existing 

population), these methods discussed here can also be applied to classical biological control (release 

of a new agent with the intention of establishing a self-sustaining population and level of pest control 

in the area of the pest) and conservation biological control (conserving natural habitat to increase 

populations of natural enemies). As genomics are key to many of these methods, we provide a key 
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on how to obtain genome-based data in specific biocontrol contexts (Figure 3). We conclude by 

reviewing present uses and forecasting applications of the most promising genetic and genomic 

methods in the future (Figure 4).  

 

II. What are biocontrol traits? 

One of the prime reasons preventing the uptake of genetic improvement of biocontrol agents is the 

difficulty in deciding which traits to optimize. Candidate traits can be roughly subdivided into those 

related to pest suppression ability, adaptation to abiotic factors, reducing ecological risk, and 

improving mass production or storage (see Kruitwagen et al., 2018) for a comprehensive overview). 

For some traits, such as pest kill rate, the direction of improvement may be apparent, as killing more 

pests is a primary determinant of biocontrol success (Stiling & Cornelissen, 2005). However, for other 

traits, the direction to take is less obvious. For example, most biocontrol agents attack hosts/prey 

that are clumped in patches in the environment. From a biocontrol perspective, would it be more 

effective for the agent to clear patches completely before moving on, or to disperse rapidly to 

protect a larger total crop area (Wajnberg, Roitberg, & Boivin, 2016; Plouvier & Wajnberg, 2018)? 

The optimal strategy depends on the specific ecological circumstances faced by the biocontrol agent 

and the economic harm inflicted by pest species at low density, i.e. the specific agro-ecological 

situation that the biocontrol practitioner must manage. Optimality models based on behavioural 

ecology can provide important insight into the critical characteristics of natural enemies for 

successful biological control (Mills & Kean, 2010; Wajnberg et al., 2016; Lommen et al., 2017). 

Recently, Plouvier & Wajnberg developed a general modelling framework that identifies the key 

biocontrol agent life-history traits from an economical perspective of the biocontrol practitioner 

(Plouvier & Wajnberg, 2018). Under simulated conditions, two different optimized life-history 

strategies for the agents were found that resulted in higher potential economic returns, differing in 

plant-leaving decision and host handling time of the biocontrol agent, but also in their respective 

fecundity, longevity, and dispersal ability. Such a general modelling framework can be parameterised 

for different biocontrol species and different ecological situations to help identify the key traits to 

target for genetic improvement. 

A key requirement for biocontrol traits to be targeted for selection is the presence of 

significant heritability (the proportion of the total phenotypic variation between individuals that is 

due to additive genetic variation), which allows trait values to be shifted towards optimal values by 

means of (artificial) selection. The amount of standing genetic variation depends on the type of trait 

and its genetic architecture. Traits closely associated to fitness that are important for biocontrol, 

such as life-history and behavioural traits (Mousseau & Roff, 1987; Wajnberg, 2004; Lommen et al., 

2017; Kruitwagen et al., 2018; Xia et al., 2019), typically have lower heritabilities than physiological 
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and morphological traits (Mousseau & Roff, 1987). The amount of genetic variation for biocontrol 

traits is currently poorly investigated and insufficiently known, although progress is being made to 

measure the heritability of traits related to biocontrol (for a review of the current research, see 

Ferguson et al., in preparation a). Selection for low heritability traits towards optimal values is 

possible, but the efficiency of this process depends on a trait’s genetic architecture (such as number 

of genes involved, dominance, epistasis, pleiotropy). It is therefore of key importance to uncover the 

genetic architecture of biocontrol traits if we aim to efficiently improve them. 

 

III. What genetic information do we need? 

1. Genome assembly. Assembling a genome for a biocontrol agent of interest vastly expands the 

possibilities for generating new knowledge on the genetic architecture of biocontrol traits. A 

reference genome facilitates studies that focus on gene expression analyses, targeted gene editing, 

and marker-informed selection. Although producing a high quality genome (high coverage, few gaps) 

is often portrayed as an essential goal (Bentley, 2006; Faino & Thomma, 2014), a high-level resolved 

genome may often not be required. Instead, sequences may be collected, assembled, and annotated 

to the level required for a specific project, and the genome can subsequently be improved further to 

the level desired by other parties (Papanicolaou et al., 2017). In other words, in more applied 

circumstances, such as biological control, the aim may be a “good-enough” genome rather than a 

high quality genome. Also, some applications can already be realised with an incomplete genome, 

including the quick generation of molecular markers such as microsatellites (Grbić et al., 2011; Abe & 

Pannebakker, 2017; Kamimura et al., 2019) for low-cost analysis of genetic variation (Baker, Loxdale, 

& Edwards, 2003; Paspati et al., 2019) and linkage map construction (Niehuis et al., 2010; 

Beukeboom et al., 2010) in biocontrol agents. Genome assembly goes through various stages: 

sequencing from an inbred stock or a single individual, aligning the sequences into an assembly, and 

annotating the assembly with protein-coding information (Ekblom & Wolf, 2014). Although still 

requiring a considerable amount of labor and funding, recent advances in technology have lowered 

the cost of sequencing a genome considerably (Wetterstrand, 2019). In the context of biological 

control, successfully producing a workable genome within one’s budget and objectives requires 

careful strategy. For example, in many cases, the biocontrol agent is too small for DNA extraction 

from a single individual to be usable for assembling a genome (Richards & Murali, 2015). Pooling 

many genetically identical individuals is a solution, but how to obtain such a sample varies by species. 

This is easier and has been done, for instance, with isofemale lines of haplodiploid parasitoids 

(Werren et al., 2010; Geib et al., 2017) and clonal mites (Hoy et al., 2016), but can be more 

challenging for species that are more difficult to inbreed (e.g. ladybird beetles (Facon et al., 2011). 

Figure 3 presents a key for deciding which sequencing strategy to use for various cases in biological 
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control, accounting for the current state of technologies and the biology of the species (with 

examples (Ferguson et al.,in preparation b, in preparation c; Kraaijeveld et al., 2019; Paspati et al., 

2019). 

 

2. Gene discovery. Mapping genes has a long tradition in breeding and research, particularly using 

quantitative trait loci studies (QTL) (e.g., maize height (Burr et al., 1988); soybean seed morphology 

(Mansur et al., 1993); pig fatness and growth (Andersson et al., 1994); Nasonia parasitoid wasp sex 

ratio (Pannebakker et al., 2011)). A QTL study uses crosses of individuals with different extreme 

phenotypes and links their segregation in offspring to molecular marker data to identify the genetic 

basis of complex traits (Lynch & Walsh, 1998; Beukeboom & Zwaan, 2007). High-throughput 

sequencing and genome wide association studies (GWAS) have enabled higher resolution mapping 

screens (Schlötterer et al., 2014) i.e. identification of loci with different allele frequencies between 

two study populations with different phenotypes of the target trait (Bastide et al., 2013). 

 For QTL mapping and GWAS, the statistical power to identify causative variants increases 

with the number of individuals analyzed. In addition, in a QTL approach, power increases with the 

number of generations invested, but mapping precision is typically lower than GWAS. The genotyping 

costs can be reduced by relying on sequencing pools of individuals with extreme phenotypes (Pool-

GWAS (Schlötterer et al., 2014)). This approach was used to create a genome wide map for body 

pigmentation in Drosophila melanogaster (Bastide et al., 2013) and can theoretically be applied for 

any target trait in any arthropod. Although individuals for these studies can be sourced from 

commercial biocontrol populations, these tend to be inbred and represent only a fraction of the 

genetic variation harbored by natural populations (Rasmussen et al., 2018; Paspati et al., 2019). For 

exploratory studies, collecting sufficiently variable individuals with clear segregation of phenotype, 

and thus correspondingly distinct genotypes for candidate loci, may be more easily sampled from 

wild populations. Alternatively, as it may be legally or logistically difficult to sample multiple natural 

populations across a large geographic range, accessible commercial strains that are already in use 

and have contrasting phenotypes may be used instead. For instance, long-established Trichogramma 

cacoeciae strains originating from France and Tunisia have higher fecundity under different 

temperatures (Pizzol et al., 2010), and would be good candidates for investigating loci linked to 

climate adaptation. 

Another approach to delineating the genomic architecture of biocontrol traits is studying 

gene expression. Sequencing transcriptomes and proteomes, which are complete RNA and protein 

expression profiles of an organism respectively, has become increasingly easy and affordable. The 

advantage of gene expression studies is that they delve into context-dependent phenotypes. For 

example, gene expression differences of the sexes are highly relevant for parasitoid wasps (Wang, 
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Werren, & Clark, 2015), because only the female has pest killing ability. It is reasonable to infer that 

females have sex-specific genotype-phenotype maps in regard to, e.g. chemosensory functions for 

host interactions, venom production, and egg production. Yet, in these haplodiploid systems, haploid 

males and diploid females can have the same genome (isogenic diploid state for females and the 

haploid state for males). Spatiotemporal expression pattern differences of protein and transcript 

quantity, methylation, RNA splicing, and post-translational modification may be responsible for sex-

specific phenotypes, and can be used to find trait-linked loci even when genetic sequences are 

identical between males and females (Wang et al., 2015). Such studies have been used to delineate 

the architecture of, for example, sex determination (Verhulst, Beukeboom, & Zande, 2010), 

oviposition (Pannebakker et al., 2013; Cook et al., 2015), and venom composition (De Graaf et al., 

2010) in N. vitripennis, and antennal perception of different olfactory cues, i.e. male mate searching 

versus female host searching in Cotesia vestalis (Nishimura et al., 2012) and Chouioia cunea (Zhao et 

al., 2016).Analysis of transcriptomic and proteomic data obtained at different environmental or 

culturing conditions is also a powerful tool, as it can both identify and quantify patterns of gene 

expression (Wang et al., 2009). For example, transcriptome analyses of biocontrol agents such as the 

ladybird Cryptolaemus montrouzieri or the parasitic wasps Cotesia typhae nov. sp and Lysiphlebus 

fabarum have adapted to alternative prey/hosts by modifying the regulation of genes mainly related 

to development, digestion, detoxification and virulence (Li et al., 2016; Dennis et al., 2017; Benoist et 

al., 2017). In addition, the mechanisms underlying resistance to certain pesticides in the predatory 

mite Neoseiulus barkeri and the ladybird beetle Propylaea japonica were identified by analysing 

RNAseq data (Tang et al., 2014; Cong et al., 2016). Also, transcriptome sequencing of an 

entomopathogenic nematode has revealed multiple expanded gene families that may be involved in 

parasitism (Dillman et al., 2015). Transcriptomics may also pave the way to understand symbiont-

mediated resistance to parasitism (Oliver, Moran, & Hunter, 2005), and help to reverse this effect or 

to make parasitoids more virulent. Additionally, proteomic analysis of aphid parasitoids Aphidius 

colemani that were either exposed to fluctuating high and low temperatures or to constant cold 

provided insight on genes and proteins involved in surviving temperature extremes, such as those 

involved in energy metabolism (Colinet et al., 2007). A final interesting application of transcriptomics 

for biocontrol is to identify the genetic architecture of memory and learning, as parasitoids can be 

trained to recognize host species (Huigens et al., 2009). Recently, genes in the Ras and PI3 kinase 

pathways were found responsible for interspecific differences in Nasonia memory retention (Hoedjes 

et al., 2014, 2015). Gene expression studies can thus contribute to understand adaptation 

mechanisms of biocontrol agents to a new environment, prey/host defences or novel hosts. Yet 

careful control of expression data collection, such as consistent life stage or common garden 

conditions, is important, as phenotypic plasticity can add noise to analyses. Ultimately, 
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understanding gene expression patterns is essential to allow the preservation of a robust phenotype, 

or how likely a phenotype is to persist in various agro-ecological environments (Félix & Barkoulas, 

2015). 

3. Genome editing for exploratory research. Advances in genomics approaches and knowledge have 

made it possible to modify certain regions in the genome of an organism to study how such 

modifications reflect in its phenotype. New phenotypic variants can be generated by knocking-down 

or knocking-out genes. Knocking-down refers to temporary gene expression inhibition through RNA 

interference (Pratt & MacRae, 2009). Knocking-out refers to permanent alternation through the 

germ line, and the most advanced of these knock-out approaches is Clustered Regulatory Interspaced 

Short Palindromic Repeats (CRISPR) (Hsu, Lander, & Zhang, 2014). Knocking-down or knocking-out 

candidate life-history trait genes can lead to insight in functions that can be used to optimize 

selection or breeding of biocontrol agents. For example, it can be used to examine the role of genes 

in a trait through linkage with the null phenotypes, and those genes can be specifically targeted for 

selection. At this point in time, gene-editing technology may be exploratory and for fundamental 

research use, but should not be used in novel biocontrol release programs. Although no external 

DNA is introduced with knock-down or knock-out, some countries consider gene-editing techniques 

to be in the same legal category as GMOs (EU; Callaway, 2018) whereas others do not (Australia, 

Mallapaty, 2019; US, Kim & Kim, 2016; Waltz, 2016). They are therefore subject to much of the same 

regulations that vary broadly in restrictiveness, e.g. allowable usage in the US versus a complete ban 

in the EU (reviewed in Alphey & Bonsall, 2018). Moreover, the compatibility of gene-editing with the 

current “non-GMO” appeal (and therefore marketability) of biological control is questionable.  

 

4. Microbiomes. Recently, there is much interest in the role of the microbiome in organismal 

functioning. In the context of biological control, it is known that microbes can be responsible for 

chemical signals that attract parasitoids to their host, and that bacteria can have a defensive role 

against parasitoids, such as in aphids (Oliver, Moran, & Hunter, 2006; Schmid et al., 2012; Rothacher, 

Ferrer-Suay, & Vorburger, 2016; Jamin & Vorburger, 2019; Koskinioti et al., 2019; Dicke, Cusumano, 

& Poelman, 2020). Nowadays, universal DNA markers can be applied to characterize the microbiome, 

i.e. to identify all bacterial symbionts to at least family or genus level, and their proportionate 

presence (Ras et al., 2017). This can be used to infer the relative abundance and relative importance 

of each symbiont in contributing to biocontrol traits. However, despite the enormous attention for 

the role of microbiomes, we still know very little about whether and how microbes contribute to 

arthropod life-history traits and biocontrol traits in particular (Janson et al., 2008; Brinker et al., 

2019; Gurung, Wertheim, & Falcao Salles, 2019). In addition, the factors that determine the 

microbiome composition are often not well known. Such information is important to judge how 
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consistent the microbiome is transgenerationally, and if it can be manipulated through the rearing 

environment. 

 

IV. How can genetics be used to improve biological control? 

1. Artificial Selection. The traditional approach to improving biocontrol agents has been through 

artificial selection. Artificial selection exploits inter-individual genetic variation of life-history or 

behavioural traits. For example, agent species have been selected to improve tolerance to climatic 

conditions to expand their geographic range of use (White et al., 1970), pesticide resistance (allowing 

their compatibility with pesticide spraying) (Roush & Hoy, 1981a; Spollen & Hoy, 1992), and 

development time (to speed up production ; Rodriguez-Saona & Miller, 1995). Rather than 

performing individual crosses with individuals of desired traits, experimental evolution exposes 

populations to specific environmental conditions for several generations and determines the effect 

on the trait of interest. Although generally successful (Lirakis & Magalhaes, 2019), selective breeding 

results have not been used in commercial biocontrol practice to an extent that might be expected, 

and artificial selection remains underutilised (Wajnberg, 2004; Lommen et al., 2017; Kruitwagen et 

al., 2018). There are several reasons for this. A first obvious one is lack of sufficient genetic variation 

because that too few individuals have been collected from nature and used as source population for 

artificial selection, but little is known about such unsuccessful attempts in the literature. A second 

possibility is that once selected, the genetic makeup of the selected population will change, e.g., 

through genetic drift (Roush & Daly, 1990; Stouthamer, Luck, & Werren, 1992; Hopper et al., 1993; 

Wajnberg, 2004). The conclusion has been that to avoid these issues arising from “selection 

relaxation,” biocontrol agents must be continuously re-selected, which can be economically 

prohibitive. There is, however, little empirical evidence for this, and a recent study on Drosophila 

indicates that laboratory populations may not change that much in life-history parameters compared 

to their natural counterparts (Michalak et al., 2019). 

Trade-offs between life-history traits are also a factor in biocontrol evolution. Life-history 

theory poses that an organism has limited resources to allocate to each trait. To select for the 

enhancement of one or more traits, as is the goal in biocontrol breeding, pleiotropic and 

disadvantageous changes can occur in other traits, and the overall effect on the biocontrol function 

of the organism can be unpredictable (Stearns, 1989; Roff, 2007). For example, it has been noted that 

traits corresponding to high yield and ease of use under laboratory and industrial conditions are 

favourable, but adaptation to captivity may come at the expense of an agent’s efficacy in the field 

(Mackauer, 1976; Hopper et al., 1993; Sørensen, Addison, & Terblanche, 2012; Sánchez-Rosario et 

al., 2017). It is also logistically difficult to phenotype complex traits for small organisms as is needed 

for traditional breeding. 
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However, solutions to many of these problems are at hand. There is evidence, for example, 

that selection relaxation may not be as problematic as previously believed. Theoretically, if the 

selection regiment is strong enough, the trait goes to fixation in a population, and is no longer 

subject to drift (Falconer & Mackay, 1996). This may be reflected in selection persistence being 

documented in insect lines even after many generations of no active maintenance on the trait (e.g. 

(White et al., 1970; Croft & Meyer, 1973; Roush & Hoy, 1980; see Lirakis & Magalhaes, 2019). It is 

also standard industrial practice to conduct quality control of biocontrol agent products (van 

Lenteren, 2003), which effectively screens against lines that have lost desirable traits. 

Key to these solutions is understanding the genetic architecture of the trait under selection, 

which theoretically allows the combination of individual phenotype selection with molecular genetics 

through applying marker-assisted selection (Lande & Thompson, 1990). When, for instance, we know 

the loci and alleles associated with a desired or undesired target trait, we can breed a more efficient 

biocontrol agent by selecting for the former and avoiding the latter. Not all trade-offs may be 

detrimental for biological control. For example early reproduction may come at a cost of longevity 

(Williams, 1996), but a long life may not be important to a captive population’s net productivity if it is 

frequently supplemented with new, fecund individuals. Knowing the genetic underpinning of trade-

offs between traits would further assist in understanding and preventing unwanted trade-offs. 

An unfavorable life-history trade-off of a trait may take several forms, for instance at a 

detriment to another trait or another stage in the biocontrol program (e.g. a trait selected for mass-

rearing improvement leads to reduced field performance). In such cases, genetics can again 

potentially provide the solution if the genomic architecture underlying these trade-offs is known 

(Figure 4B). For example, antagonistic pleiotropy (genes operating on multiple traits but in opposing 

directions) is known for fecundity versus longevity in the melon fly, Zeugodacus cucurbitae 

(Miyatake, 1997) and higher larval survival versus lower adult body weight in D. melanogaster 

(Bochdanovits & de Jong, 2004); additional studies can uncover these in biocontrol agent species. If 

there are variable pathways corresponding to different trade-offs, it should be possible to choose to 

select through one with the fewest unfavorable trade-offs, exploiting the ubiquitous presence of 

genetic redundancy. 

Learning behaviour is another biocontrol trait that responds to selection. Parasitoids can be 

directly selected to better recognize pest species (Dukas, 2000; Rahmani et al., 2009; Schausberger et 

al., 2010; van den Berg et al., 2011; Hoedjes et al., 2014, 2015; Kraaijeveld et al., 2018; Kruidhof et 

al., 2019), or indirectly to more efficiently recognise recruitment signals from plants following 

herbivore attack (tritrophic interactions) (van der Putten et al., 2001; Turlings & Wäckers, 2004). 

Juvenile predatory Phytoseiulus persimilis can be trained to accept specific prey species and retain 

this habit throughout its lifetime (Rahmani et al., 2009), as can numerous parasitoid wasps (reviewed 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 November 2019                   doi:10.20944/preprints201911.0300.v1

https://doi.org/10.20944/preprints201911.0300.v1


13 
 

in Kruidhof et al., 2019). Delineating the genetic architecture of memory and learning can thus assist 

in developing applications in breeding. 

Knowledge of the genetic architecture of traits can assist with artificial selection through 

deliberate targeting of linked genes. This is particularly helpful for traits that are laborious or 

challenging to phenotype repeatedly. For example, for many arthropods, assaying lifetime 

reproductive output would require counting thousands of offspring and would require waiting until 

the animal dies. In the meantime, work has already been invested in caring for the next generation 

whether or not their progenitors prove to have high lifetime fecundity. Instead, rather than the trait 

itself, selection can target a linked molecular marker, which is called marker-assisted selection 

(MAS)(Lande & Thompson, 1990). Identification of candidate genes and QTL through the 

aforementioned gene discovery methods are key to developing direct markers for genes that control 

the trait of interest, or markers that are in linkage disequilibrium with the trait and are proximate to 

the coding gene. Although much work remains to uncover the genetic bases of traits, there are 

already good results documented for arthropods linking genes and QTL to foraging (Page et al., 

2000), grooming (Oxley, Spivak, & Oldroyd, 2010), and Varroa mite resistance in honey bees (Behrens 

et al., 2011), fertility in the parasitoid Leptopilina clavipes (Pannebakker et al., 2004), and sex ratio 

(Pannebakker et al., 2011), memory retention and olfaction (Hoedjes et al., 2014, 2015), host 

specificity (Desjardins et al., 2010), and pupal diapause (Paolucci et al., 2016) in N. vitripennis. 

 

2. Genomic selection. For complex traits with highly polygenic bases or genes with complicated 

epigenetic effects, direct and linkage equilibrium MAS may not be possible. In such cases, it is 

possible to use markers that are linked to a total breeding value instead of any specific phenotype 

(reviewed in (Dekkers, 2004)). Genomic selection employs this concept to potentially circumvent the 

need for proving marker causality. The statistical method of genomic selection uses information from 

genome-wide DNA-markers such as single nucleotide polymorphisms to select for complex traits 

(Meuwissen, Hayes, & Goddard, 2001) (Figure 4C). It is particularly helpful when artificial selection 

(marker assisted or not) is hampered by low heritability either through strong environmental noise 

and/or low levels of additive genetic variance. The genomic selection method considers markers 

distributed throughout the whole genome and estimates an effect of each marker, irrespective of the 

statistical significance of this effect. The total estimated genetic effect of an individual is the sum of 

the effects of all its markers as the genomic estimated breeding value (GEBV). By including effects of 

all markers, this method avoids missing a substantial portion of the genetic variance contributed by 

loci of minor effects, in contrast to methods that aim to identify the causal genes underlying traits. 

Although genomic selection still requires the collection of both genotypes and phenotypes, this work 
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only needs to be done for the initial reference population (and then at infrequent iterations as the 

predictive power of the reference population is gradually reduced over generations). 

An advantage of genomic selection over traditional selection methods is that a higher accuracy of 

GEBVs can be achieved for traits of low heritability, and for traits that cannot be recorded on the 

selected candidate itself, but can be predicted through its genotype (Meuwissen et al., 2001). Over 

the last decade, genomic selection has proven its potential in animal breeding, i.e., dairy cattle 

(Hayes et al., 2009; Luan et al., 2009; VanRaden et al., 2009) and pigs (Lopes, 2016), but it has not yet 

been applied to biocontrol agents. Genomic selection methods may be particularly useful because 

GEBV can be estimated directly from the genotype, without the need for accurate pedigrees that are 

lacking for most biocontrol agents. One current challenge to genomic selection is the cost of large-

scale SNP panels, but these are already undergoing a rapid drop in difficulty and expense. Also, 

collection of a sufficient amount of DNA may require sacrificing the selected candidate, but breeding 

of close relatives, such as offspring or full siblings, may offer a solution. 

 

3. Population genetics. The availability of genetic markers allows for population genetic analyses, 

either at a coarse scale such as in the case of microsatellite panels, or at fine scale such as dense SNP 

panels based on assembled genomes. A powerful application of population genetics in biocontrol is 

monitoring of agents released into the field (Figure 4A), allowing for the assessment of their impact 

on existing natural enemies and monitoring their performance. Traditional neutral markers have 

been successfully used for performance monitoring of released strains (Hufbauer, 2004; Kazmer, 

Luck, & Mar, 2007; Guzmán-Larralde et al., 2014). However, high density population genomic 

methods, such as GBS, allow for more detailed tracking of the introgression of the genetic material 

into previously released populations (Stouthamer & Nunney, 2014). Despite the importance of 

tracking the fate of released strains and their associated alleles, there has been little effort invested 

in genotype-based post-release monitoring in the field, possibly because of its logistic difficulty 

(Blossey & Skinner, 1999; Coombs & McEvoy, 1999). Typically, this approach involves bringing 

preserved individuals back to the laboratory for DNA extraction, PCR amplification, and sequencing. 

A recent novel approach allows real-time identification of a biocontrol agent in the field by loop-

mediated isothermal amplification (LAMP) (Lee, 2017). This is a low-cost alternative to PCR that can 

be conducted in a single test tube and at a single temperature. In a biocontrol context, this method 

has been tested with the Asian chestnut gall wasp parasitoid Tormyus sinensis (Colombari & Battisti, 

2016). It can efficiently be employed for measuring parasitisation rate in the field, especially as it can 

be used for juvenile stages when species identification is most difficult. The measurement of 

parasitisation rates in the field is not only useful for measuring the performance of the biocontrol 

agent, it also can help to assess non-target effects of released biocontrol agents (Gariepy et al., 2015; 
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Stahl et al., 2019d). Genetic markers for post-release assessment is one of the most straightforward 

means for studying an agent’s ecology in the field, but more advanced ecological interactions can 

also be examined for ways to optimize success. 

Another important use of population genetics in biocontrol is the assessment of genetic 

variation. Loss of genetic variation is expected to occur in all captive populations, through inbreeding, 

selection, and random genetic drift, even when mass-reared at high numbers (Mackauer, 1976). 

Although this does not always result in fitness or performance loss, experiments have shown severe 

effects of inbreeding depression and domestication on the reproductive performance of large captive 

populations of Drosophila (Woodworth et al., 2002) and a biocontrol population of a Chinese strain 

of the parasitoid Bindoxys communis (Gariepy, Boivin, & Brodeur, 2014). Specific care should be 

taken when culturing parasitoid wasps. As haplodiploid species, parasitoids are generally expected to 

suffer less from inbreeding depression for fitness traits, but in some species a loss of genetic 

variation for sex-determination loci results in the loss of reproductively competent males, and can 

lead to extinction of captive populations (Stouthamer et al., 1992; Zayed & Packer, 2005; Hein, 

Poethke, & Dorn, 2009; Retamal et al., 2016; Zaviezo et al., 2018; Leung, van de Zande, & 

Beukeboom, 2019). These potentially large effects on the fitness and performance make the 

monitoring of genetic variation a key part of mass-culturing biocontrol agents. For those species with 

an assembled genome, whole-genome Genotype-By-Sequencing (GBS) techniques (Baird et al., 2008) 

allow for fine-scale population analyses by providing accurate allele frequency estimates to track 

evolution at a genomic scale and identify genomic regions under selection in contrasting ecological 

situations (Davey & Blaxter, 2010). This can also lead the way to unravelling the genetic architecture 

of relevant biocontrol traits. 

 

4. Microbiome manipulation. Microbiomes may constitute an important target for modifying 

biocontrol agent performance. The composition of the microbial community of an organism can be 

altered through rearing conditions (e.g. a probiotic diet), via a breeding regime or by genetic 

manipulation (Grau, Vilcinskas, & Joop, 2017; Ras et al., 2017). For example, D. melanogaster fed a 

probiotic bacterium were less susceptible to infections of pathogenic bacteria (Blum et al., 2013). 

Sterile male performance was enhanced and Pseudomonas pathogen levels were reduced when 

Ceratitis capitata (the Mediterranean fruit fly) was fed bacterial supplements (Ami, Yuval, & 

Jurkevitch, 2010). Although these studies focused on flies used in sterile insect technique (mass 

releasing sterile males to outcompete wild individuals), the same principles can be applied to 

biocontrol agents. Probiotic diets can potentially improve the performance of mass-reared 

parasitoids directly, as can feeding on factitious hosts with a specific microbiome indirectly (Ras et 

al., 2017; Koskinioti et al., submitted). It is also possible for host specimens to transmit their 
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microbes to released biocontrol agents and influence their physiology and ecology (Schuler et al., 

2013). In such cases, microbial screening with genetic markers would be useful for investigating 

microbiome shifts that are responsible for phenotype alterations. It is also known that microbes can 

be responsible for chemical signals that attract parasitoids to their host. This implies that biocontrol 

agents can potentially be trained using these host microbiomes to be more efficient at finding hosts. 

In the case of defensive microbes in pest species, exposure to such microbes during development 

may confer immunity in the next generation (Ras et al., 2017). These applications are, however, still 

theoretical and will require microbiome determination of specific biocontrol agent-pest pairs, 

identification of relevant symbionts, and development of methods to optimize their use. 

A specific class of potentially useful symbionts are those that manipulate their hosts’ 

reproduction, such as Wolbachia (Dedeine et al., 2001; Vavre, Fouillet, & Fluery, 2003; Werren, 

Baldo, & Clark, 2008). Wolbachia can cause cytoplasmic incompatibility, which acts as a reproductive 

barrier among species or strains (Bourtzis et al., 1996; Fouillet et al., 2000; Gotoh, Noda, & Hong, 

2003; Werren et al., 2008). However, it is possible to cure arthropods of Wolbachia with antibiotics, 

permitting interspecies hybridisation or inter-strain reproduction (Breeuwer & Werren, 1995) and 

perhaps more radically, intentional re-infection with chosen Wolbachia strains (Grenier et al., 1998; 

Watanabe, Kageyama, & Miura, 2013). This can, for example, be exploited to create strains that 

cannot interbreed with native congeners, reducing ecological risk. Wolbachia is also implicated in 

thelytokous reproduction (female parthenogenesis) in numerous insect species, such as the 

Drosophila parasitoids Asobara and Leptopilina (Breeuwer & Werren, 1995; Dedeine et al., 2001; 

Schidlo et al., 2002; Kremer et al., 2009), aphid parasitoids (Starý, 1999), and Trichogramma species 

(Stouthamer, Luck, & Hamilton, 1990; Stouthamer & Kazmer, 1994). Thelytoky is particularly 

significant for parasitoids in biocontrol because only females have host-killing ability. In addition, 

parthenogenesis induction by Wolbachia can be used as a tool for advanced genotypic selection, 

which exploits the gamete duplication mechanism that underlies the parthenogenesis induction of 

Wolbachia and allows for fast selection of beneficial gene combinations in parasitoids for biocontrol 

(Russell & Stouthamer, 2011). In species that do not carry Wolbachia, intentional infection 

(Yamashita & Takahashi, 2018) can potentially be used to alter reproduction and life-history traits. 

Such transfection applications require careful testing, as Wolbachia phenotypes are not always the 

same between species (Veneti et al., 2012). Also, Wolbachia can reduce the relative number of other 

potentially beneficial symbiotic bacteria (Audsley, Ye, & McGraw, 2017; Ye et al., 2017) and 

conversely, other microbiota can outcompete Wolbachia (Kondo, Shimada, & Fukatsu, 2005; Goto, 

Anbutsu, & Fukatsu, 2006; Hughes, Rivero, & Rasgon, 2014; Rossi et al., 2015). These competition 

dynamics within microbiomes (Brinker et al., 2019; Gurung et al., 2019) are an important 
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consideration when releasing manipulated strains into the field, as is the fact that new microbes 

introduced via hosts may become permanent fixtures in their ecosystem. 

V. Conclusion 

(1) It is a misconception that genetic solutions to biocontrol problems have been too complex to 

attempt, explaining the perceived “lack of progress” in the past several decades (Poppy & Powell, 

2004; Lommen et al., 2017; Kruitwagen et al., 2018) . Rather, the simpler approach of sourcing 

superior strains from nature has been more common.  

(2) Improvement of biological control is highly needed, both in terms of better performance of 

existing agents as well as for expansion of the number and targets of new agents. Despite their 

general applicability, animal breeding techniques have not been exploited to their full potential in 

the biocontrol field. There are a number of reasons for this that, in contrast to e.g. livestock 

breeding, can be attributed to how biocontrol agents need to perform in a complex ecological 

environment. This makes it hard to decide which traits to optimize, but we are progressively gaining 

more knowledge on this, for instance by applying modelling frameworks (Plouvier & Wajnberg, 

2018).  

(3) In the new era of stricter trade laws and higher commercial demand, a new horizon of genetics in 

biocontrol practice is emerging (Figure 1). Several novel approaches are at hand, yet, each 

application requires proper contextualisation for a realistic projection of success. 

(4) Areas where research and development are still needed can be staged (Figure 4). Marker-based 

methods (such as field-tracking and strain identification) are already being implemented (Figure 4A). 

Others are not yet in use but are imminently possible, such as integrating knowledge of genetic 

architecture to develop more effective breeding programs (Figure 4B). Still, others, such as genomic 

selection are currently largely in the theoretical realm. This may be due to novel technologies being 

too prohibitively labor intensive or expensive, or still requiring troubleshooting. 

(5) The rapid development of genomic sequencing techniques and the resulting cost reductions 

(Wetterstrand, 2019) will find its way to biocontrol as it did to other biological disciplines such as 

microbiology, medicine, ecology and conservation (Handelsman, 2004; Hudson, 2008; Tautz, 

Ellegren, & Weigel, 2010; Ashley, 2016; Hohenlohe et al., 2018; Supple & Shapiro, 2018). 

Furthermore, even in the more advanced applications, it is likely that a first success will lead to rapid 

embracement by the scientific community and industry, parallel to e.g. the development of the PCR 

technique and the human genome project. For example, a proof-of-principle study on genomic 

selection for a biocontrol agent would prove its feasibility even if cost and efficiency still need further 

optimisation (Xia et al., 2019) (Figure 4C). 

 (6) Novel methodology to uncover the genetic architecture of life-history traits, in combination with 

increasing investment in research and development by biocontrol companies, will rapidly expand the 
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knowledge base of the biocontrol field. Gene-editing techniques are a useful research tool for 

delineating this genetic architecture, but as the current biocontrol market depends on a reputation 

of using more traditional genetics methods, now is not the time to use gene-edited organisms in the 

field.  

(7) Genetic variation lies at the basis of the potential of any organismal trait to evolve and hence our 

ability to improve traits. We have described the current genetic methodologies to uncover the 

genetic basis of important biocontrol traits. This knowledge can be used to design artificial selection 

programs, either by traditional selective breeding (White et al.,1970; Ram & Sharma, 1977; 

Voroshilov, 1979; Roush & Hoy, 1981b; Hoy, 1986; Rosenheim & Hoy, 1988; Spollen & Hoy, 1992; 

Zhang et al., 2018), or more sophisticated genomic selection (Xia et al., 2019) or experimental 

evolution approaches (Lirakis & Magalhaes, 2019). Notably, fundamental insight has been obtained 

from laboratory investigations of the genetic model species D. melanogaster and N. vitripennis, and 

there are good reasons to believe that similar approaches can efficiently be applied to biocontrol 

agents. In fact, some species, notably haplodiploid parasitoid wasps, may confer additional 

advantages for efficient mass rearing, such as the possibility to alter progeny sex ratios and select for 

host searching learning behaviour. 

(8) Another important requirement is the further integration of fundamental and applied research in 

biological control. The authors of this article have been collaborating within Breeding Invertebrates 

for Next Generation BioControl (BINGO)(BINGO-ITN, 2019). This is a 4-year EU-funded Marie 

Skłodovska-Curie Innovative Training Network (ITN) (BINGO-ITN, 2019) to “advance the current state 

of knowledge on the use of genetic variation in biocontrol practice with the simultaneous 

development of a new breed of young researchers that have an extensive suite of interdisciplinary 

skills that allows them to rise to the challenges of improving the efficiency of biological pest control 

through selective breeding of natural enemies in a broad range of agricultural systems and 

environmental conditions”. This has led to measurable scientific progress (Ras et al., 2017; Lirakis, 

Dolezal, & Schlötterer, 2018; Stahl et al., 2019c, 2019d; Stahl, Babendreier, & Haye, 2019b; Stahl et 

al., 2019a; Stahl, Babendreier, & Haye, 2018; Plouvier & Wajnberg, 2018; Balanza , Mendoza , & 

Bielza , 2019; Koskinioti et al., 2019; Xia et al., 2019; Leung et al., 2019; Lirakis & Magalhaes, 2019; 

Paspati et al., 2019; Le Hesran et al., 2019; Ferguson et al., in preparation b, in preparation c) as well 

as to an increasing awareness of the potential of biocontrol agent breeding among scientists, the 

biocontrol industry, growers, and the general public. We hope that this review will further stimulate 

the application of genetic and evolutionary methodology in next generation biological control. [7802 

words] 
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Figures 

Figure 1. Overview of potential of genetic methods to address biocontrol challenges. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 November 2019                   doi:10.20944/preprints201911.0300.v1

https://doi.org/10.20944/preprints201911.0300.v1


31 
 

 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 November 2019                   doi:10.20944/preprints201911.0300.v1

https://doi.org/10.20944/preprints201911.0300.v1


32 
 

Figure 2. Guide to the use of genetic methods in research and development, sorted according to 

research question. 
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Figure 3. Sequencing strategy key for obtaining genomes of biocontrol agents.  
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Figure 4. Examples of the application of genetic techniques in biocontrol, in increasing order of 

complexity. A) Genotyping for field monitoring of released biocontrol agents. B) Design optimal 

rearing strategy based on genetic architecture of traits of interest. C) Genomic selection to improve 

polygenic or hard-to-phenotype traits. 
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