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Abstract 

Cancer is one of the significant threats to human life. Although various latest technologies are currently available to 
treat cancer, it still accounts for millions of death each year worldwide. Thus, creating a need for more developed and 
novel technologies to combat this deadly condition. Nanoparticles‑based cancer therapeutics have offered a promis‑
ing approach to treat cancer effectively while minimizing adverse events. Among various nanoparticles, nanogold 
(AuNPs) are biocompatible and have proved their efficiency in treating cancer because they can reach tumors via 
enhanced permeability and retention effect. The size and shape of the AuNPs are responsible for their diverse thera‑
peutic behavior. Thus, to modulate their therapeutic values, the AuNPs can be synthesized in various shapes, such as 
spheres, cages, flowers, shells, prisms, rods, clusters, etc. Also, attaching AuNPs with single or multiple targeting agents 
can facilitate the active targeting of AuNPs to the tumor tissue. The AuNPs have been much explored for photother‑
mal therapy (PTT) to treat cancer. In addition to PTT, AuNPs‑based nanoplatforms have been investigated for combi‑
national multimodal therapies in the last few years, including photodynamic therapy, chemotherapy, radiotherapy, 
immunotherapy, etc., to ablate cancer cells. Thus, the present review focuses on the recent advancements in the 
functionalization of AuNPs‑based nanoconstructs for cancer imaging and therapy using combinatorial multimodal 
approaches to treat various cancers.
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Introduction
The worldwide statistics of cancer-associated mortali-
ties and morbidities continue to increase despite the 
advances in surgery, chemotherapy (CTX), immunother-
apy, and radiotherapy (RT) [1, 2]. The increase in cancer-
related deaths is possibly due to the therapy-associated 
side effects owing to the lack of specificity and selectivity. 
In addition, the complexity and recurrence of the tumor 
are also possible reasons for the high mortality rate in 
cancer patients [3]. Nowadays, hyperthermia-mediated 
cancer therapies, such as microwave radiation, ultra-
sound, photothermal therapy (PTT), and photodynamic 
therapy (PDT), are gaining significant interest. However, 
similar to other conventional cancer therapies, these 
cancer therapies are also not tumor-targeted, and thus 
they may cause adverse effects. Thus, there is a need to 
develop novel therapeutic strategies with reduced side 
effects and enhanced clinical significance.

Nanomedicines have made significant contributions 
to cancer therapy, prevention, and diagnosis in the 
last few decades. Various new nanomaterials, such as 
polymers, liposomes, quantum dots, dendrimers, and 
inorganic nanoparticles, have been explored for can-
cer diagnosis and treatment [4, 5]. The multifunctional 
nanosystems that combine diagnosis and treatment 
are known as theranostics nanoparticles. Thus, nano-
biotechnology has shown a multitude of potential in 
cancer theranostics that might meet the medical chal-
lenges offered by conventional cancer treatments [6]. 
Among these nanomaterials, inorganic nanoparticles 
are extensively explored for cancer diagnosis and treat-
ment [7–9]. Since conceptualizing nanomaterials for 
cancer diagnosis and therapy, the studies on nanogold 
(AuNPs)-based cancer treatment have extensively pro-
gressed. This is possible because AuNPs are easy to syn-
thesize, cost-effective, have a large surface-to-volume 
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ratio, penetrate the biological tissues, and have inher-
ent biocompatibility [10]. In addition, the AuNPs are 
less toxic and can enter tumor cells via enhanced per-
meability and retention (EPR) effect [11].

In the last few decades, the AuNPs were surface-func-
tionalized by various molecules, such as peptides, folate, 
ligands, and antibodies, for targeted delivery to the local 
tumor site [12]. In addition, AuNPs were attached to 
chemotherapeutic drugs and drug-loaded stimuli-sensi-
tive polymeric nanoparticles for stimuli-responsive drug 
release [13]. Thus, targeted delivery of AuNPs to the 
tumor site, stimuli-responsive drug release, biocompat-
ibility, improved stability, and solubility of drugs loaded 
on AuNPs are suitable candidates for cancer theranostics 
with reduced morbidity and mortality risks. Thus, sug-
gesting combining multiple therapies at a single platform 
to achieve significant antitumor responses compared 
to monotherapies. For instance, inducing hyperther-
mia in cancer could increase the sensitivity of cancer 
cells towards chemotherapeutic drugs and radiations, 

indicating a synergistic therapeutic approach [14]. Com-
bining imaging or diagnostic agents with multiple thera-
pies also collaborates with win/win outcomes.

The PubMed alone covers more than 1000 articles in 
less than five years (2018-early 2022) on this subject (Key-
words: gold nanoparticles, cancer treatment, function-
alization). These studies are of tremendous importance 
as they demonstrate remarkable efforts on AuNPs-based 
multimodal cancer theranostics. Since these articles are 
important to discuss the recent advancements, the pre-
sent review systematically summarizes the representa-
tive findings on the functionalization and designing of 
AuNPs for multimodal cancer theranostics published in 
the last 4–5 years (Scheme 1). This review also includes 
a summary of the factors affecting the therapeutic role 
of AuNPs and the mechanistic role of AuNPs in vari-
ous types of therapies. Further, we also discuss the clini-
cal studies performed for AuNPs-based cancer ablation 
therapies.

Scheme 1 Illustrates the use of functionalized AuNPs for combinational multimodal theranostics
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Factors affecting AuNPs based cancer therapy
It has been widely investigated that the biological and 
optical properties of AuNPs are strongly dependent on 
the size, shape, and charge of AuNPs-based nanocon-
structs [15]. Thus, the biological properties of AuNPs 
can be regulated by tuning the size and shape of AuNPs. 
The accumulation of AuNPs at the tumor site and cell 
internalization depends mainly on their size. Large-
sized AuNPs (i.e., > 200  nm) have poor tumor tissue 
penetration and poor cell interaction abilities. Moreo-
ver, they are removed from the body system by the liver 
and spleen. On the contrary, small-sized AuNPs (i.e., 
< 10 nm) have enhanced tumor tissue penetration but are 
rapidly cleared from the system by the kidneys and may 
cause hemolysis [16]. Thus, the optimum AuNPs size 
for increased circulation time and maximum tumor cell 
internalization is between 10 and 100  nm (optimum is 
around 20 nm) [14, 17].

In addition to the size, the surface charge is also a deter-
minant factor for the cellular internalization of AuNPs. 
It has been observed that positively charged AuNPs are 
internalized more (around 5–10 times higher) by the cells 
than neutral or negatively charged AuNPs [18]. This is 
plausible because the negative cellular membrane might 
have a high affinity for positively charged AuNPs, result-
ing in higher adhesion and cellular uptake by generating 
transient holes in the membrane [19].

AuNPs are the plasmonic nanoparticles with remark-
able optical properties because of their ability to absorb 
and scatter light. The AuNPs interact with light at a 
specific wavelength resulting in the oscillation of con-
ductive surface electrons, known as localized surface 
plasmon resonance (LSPR). The LSPR defines the inten-
sities of light absorption and scattering. Size and shape 
are the two determining factors that are correlated with 
the frequency of the absorption band of the AuNPs [20]. 
Since the optical properties of AuNPs are dependent on 
both the size and shape, the absorption of AuNPs can 
be regulated by modulating these two determining fac-
tors [21]. It has been well-established that the AuNPs can 
be tuned to various shapes, such as Au nanospheres, Au 
nanorods (AuNRs), Au nanostars, Au nanocrystals, Au 
nanoshells (AuNSs), hollow Au nanoparticles (HAuNP), 
Au nanocluster (AuNCs), Au nanoprisms (AuNPrs) and 
Au nanocage. Thus, both the biological and optical prop-
erties of AuNPs can be modulated by tuning the size, 
charge, and shape of the nanoparticles.

AuNPs for cancer photothermal therapy (PTT)
The PTT is a minimally invasive method with minimum 
side effects among the cancer therapies. It uses near-
infrared (NIR) radiation, particularly the NIR-I, and 
NIR-II at 750–1200  nm wavelength for cancer therapy 

at precise locations with high efficiency to ablate cancer 
cells/tissues. The tumor cells are inefficient in dissipat-
ing heat because of their abnormal vascular structures, 
leading to hyperthermia that causes irreversible cel-
lular damages, such as cell membrane disruption and 
protein denaturation [22, 23]. Thus, The tumor cells are 
more sensitive to the PTT effect than the healthy tissues, 
reducing the risk of cytotoxicity to healthy cells.

Compared to higher energy radiations, such as UV-
radiation, the NIR light shows rapid recovery and much 
deeper penetration in the tissue cells [24]. In general, 
NIR light can penetrate approximately 1 cm deep in the 
human body. It has been well-known that light scatter-
ing reduces when the wavelength increases, resulting in 
light penetration to the deep tissues [25]. However, the 
depth of light penetration (i.e., 1–10 cm) is dependent on 
various factors, such as size and shape of nanoparticles, 
type of the tissue, time of NIR exposure, the wavelength 
of NIR, etc., [26].

Nanoparticles with a simple surface functionalization 
process, plasmon resonance tunability, high photosta-
bility, and high photothermal conversion efficiency are 
preferred for PTT [27]. AuNPs with strong LSPR are 
suggested for PTT-based cancer treatment among these 
nanoparticles [28–30]. Due to their unique optical prop-
erties, AuNPs have been known to absorb light with high 
efficiency at the NIR region, at a 700–1350  nm wave-
length, and convert them into heat-producing PTT effect 
[31]. Upon NIR excitation, the SPR of AuNPs generates 
hot electrons on the nanoparticle surface. The excited 
electron transfers the absorbed energy in the form of 
heat to the metallic lattice, which cools by phonon–pho-
non interactions. The thermal energy is then transferred 
to the environment [32], increasing the temperature to 
about 41–47 °C in the cell compartment where the nano-
particles are located. This might possibly cause irrevers-
ible damage to the cells or the cellular DNA [33].

The absorption of NIR light at desired wavelength by 
AuNPs can be tuned via modulating the shape of AuNPs. 
The plasmonic PTTs of different shaped AuNPs can vary 
due to variations in their SPR oscillations and the cross-
section area of AuNPs. More interestingly, different 
shapes of the AuNPs exhibit plasmonic adsorption from 
NIR radiations from different windows. For example, 
the Au nanospheres show intense plasmonic absorption 
in the first NIR window, while AuNRs show plasmonic 
absorption in the second NIR window. For PTT appli-
cations, AuNPs with large extinction cross-section, i.e., 
addition of absorption  (Cabs) and scattering  (Csca) cross-
section area, and high  Cabs/Csca ratio is preferred [34]. 
Among other shapes of nanogold, AuNRs and Au nanoc-
ages have high extinction cross-section and low threshold 
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power. Thus, they are the most preferred shapes for the 
photothermal destruction of cancer cells [35].

However, a study reported that sharp-tipped AuNPs 
have higher efficiency for photothermal conversion 
than other shapes [36]. Au nanobipyramids (AuNBPs) 
are another type of AuNPs consisting of two pentago-
nal pyramids and have smaller plasmon peak widths and 
narrower size and shape distributions, sharper ends than 
AuNRs [37, 38]. Another study showed that Au nanostars 
have a unique symmetrical structure and sharp edges 
that enable the LSPR peak modulation of Au nanostars 
in the NIR region [39]. Depciuch et  al. showed that the 
PTT effect of Au nanostars depends on edge widths and 
lengths of the star arms and the values of photothermal 
efficiency are higher with the increase of the arm lengths, 
which is correlated with the reducer concentration [40]. 
Therefore, the dispersion and absorption properties of 
AuNPs can be changed by tuning the shapes and sizes of 
AuNPs [41]. Au nanostars have high photothermal con-
version efficiency, small size, and facile synthesis, result-
ing in significant cancer diagnosis and therapy. However, 
the Au nanostars have poor stability. The stability of Au 
nanostars is improved by coating any stabilizing agents 
on their surface. It was found that among different types 
of AuNPs (such as nanorods, nanostars, and nanocubes), 
Au nanoprisms (AuNPrs) possess the highest photother-
mal conversion efficiency [42, 43], and are easily internal-
ized in the cells compared to AuNRs [44]. In addition, 
AuNPrs are beneficial for long-term biosafety as they can 
be removed from the tissue faster than smaller AuNRs 
[45].

Although different-shaped AuNPs act as a promising 
PTT agent, their application in clinical practice is lim-
ited due to their poor photothermal stability, which can 
be improved by reducing the size of AuNPs and modify-
ing their surface properties for the targeted location site 
of tumor [46]. The AuNPs lose their photothermal con-
verting ability upon repetitive NIR radiation. In addi-
tion, AuNPs have a poor drug loading capacity, limiting 
the use of AuNPs as drug carriers [47]. Moreover, most 
of the NPs cannot reach the tumor site due to the hin-
drance caused by the dense interstitial structure of the 
tumor and lack vessels in the tumor [48]. Thus, to achieve 
the maximum localization of AuNPs to the tumor site, 
targeting ligands (such as antibodies, single-chain frag-
ments of antibodies, carbohydrates, or simplified peptide 
sequences, etc.) are introduced on the surface of AuNPs 
[49]. Interestingly, the shape and size of the AuNPs might 
also affect the active targeting of AuNPs despite the 
attachment of the targeting ligand.

AuNPs for photodynamic cancer therapy (PDT)
The PDT requires a photosensitizer (PSs) molecule which 
excites and reacts with oxygen upon exposure to light in a 
determined wavelength, generating oxidant species (radi-
cals, singlet oxygen, triplet species) in target tissues lead-
ing to cell death. The PDT-mediated cytotoxicity is due 
to the oxidation of biomolecules, such as nucleic acids, 
lipids, proteins, etc., present in cells, resulting in altered 
cell signaling cascades and gene expressions. However, 
due to the hydrophobicity of most of the currently used 
PSs, AuNPs are suggested as carriers of PSs. In addition, 
to act as a carrier for PSs, AuNPs can also enhance the 
photosensitizing properties of PSs by acting as a PS by 
generating ROS in response to irradiation [50].

Some of the most widely used PSs for PDT include 
Chlorin e6 (Ce6), zinc phthalocyanine (ZnPcs), and 
alphthalocyanine  (AlPcS4Cl). The Ce6, a second-genera-
tion PS, is among the most widely used PS with low tox-
icity and high efficacy. The Ce6 delivered using AuNPs 
showed enhanced apoptotic activity in the cancer cells 
[51]. Another PS (ZnPcs)/AuNPs conjugate also showed 
enhanced singlet oxygen (1O2) generation and remark-
able PDT in the cancer cell [52]. The effectiveness of 
PDT against cancer stem cells (CSCs) is also improved by 
combining PSs, such as  AlPcS4Cl, with AuNPs and CSCs-
targeting antibodies [53]. Wang et al. showed that AlPcS-
conjugated AuNBPs could significantly suppress tumor 
growth with minimal side effects in tumor xenografts 
[54]. Although AuNBPs have rarely been explored, they 
have advantages over AuNSs and AuNRs because they 
can sensitize  O2 by transferring the energy to attached 
PSs [54].

5-Aminolevulinic acid (5-ALA) (a Cathepsin E-sen-
sitive (CTSE) PDT therapy prodrug) is a type of PS, 
which is designed to be activated selectively by endog-
enous Cathepsin E (Cath E), a proteolytic enzyme highly 
expressed within the cancer cells. When combined with 
5-ALA, AuNPs showed significant PDT efficacy against 
cancer cells [55]. Thus, custom designing of PSs together 
with modifications in the shape and size of AuNPs could 
be a promising approach for enhanced PDT. In another 
study, IR820, a photosensitive drug, was loaded with 
ultra-small spherical AuNPs nanoconstructs synthe-
sized using Gadolinium (Gd) (Gd–AuNPS@IR820). 
They found that Gd–AuNPS@IR820, of hydrodynamic 
size 72.4  nm, had excellent tumor targeting ability and 
enhanced tumor ablation properties in hepatocellular 
carcinoma HCC-LM3 cells bearing nude mice due to 
enhanced PTT and PDT combinational therapy [56].
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Fig. 1 a Schematic illustration for the preparation of PUA‑Ce6 and its application on a combination of PTT and potential enhanced PDT by 
converting intratumor  H2O2 into  O2 for tumor therapy, b Infrared thermal images of PBS or PUA‑Ce6 nanoparticles‑injected MCF‑7 tumor‑bearing 
mice under 808 nm laser irradiation (1.0 W/cm2), c the temperature variation curves of the tumor, d tumor volume curves, e tumor weight change 
of mice, f tumor photographs, g body weight, and h H&E‑stained images of main organs collected from mice after treatments. Reproduced with 
permission from [58]. Copyright ©2018, John Wiley
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Similarly, AuNRs can be combined with platinum nan-
oparticles as potential nanophoto-sensitizers to enhance 
the PTT effect [57]. Liu et  al. used amino-functional-
ized porous metal–organic frameworks  (NH2-MOFs) 
nanoparticles as superior templates for the facile and 
general one-step method to synthesize porous AuNSs 
 (NH2-MOFs@Aushell). Further, they encapsulate plati-
num nanozymes in  NH2-MOFs, coated with porous 
AuNSs coating, and loaded it with Ce6 PS (Pt@UiO-
66-NH2@Aushell-Ce6) to achieve synergistic PDT and 
PTT effects (Fig. 1) [58]. Thus, indicating that AuNPs can 
be combined with other inorganic nanozymes and PSs 
for an excellent synergistic tumor therapy strategy.

AuNPs for radiotherapy (RT)
Radiotherapy (RT) is a frequently used method to ablate 
solid tumors via ionizing radiation-mediated damage to 
tumor tissue [59]. The ionizing radiations cause cellular 
damage by generating free radicals via inducing water 
radiolysis. Although RT is generally used in half of the 
cancer patients, it is strongly evidenced that RT can cause 
tumor cell radio-resistance that requires higher radiation 
doses for cancer treatment [60]. Moreover, high radiation 
doses may cause damage to normal cells surrounding the 
tumor tissue [61]. Although RT is known for eradicating 
local tumor growth by damaging DNA via high-energy 
ionizing radiation, the therapeutic efficacy of RT is lim-
ited due to the problems associated with the delivery of 
radiation dose to the site of the tumor without harm-
ing normal cells. Therefore, increasing damage to tumor 
tissues while reducing the damage to normal tissues 
while using RT is desired.  Hence, to improve the radia-
tion absorbance, radiosensitizers are suggested, which 
might increase the RT outcome. Further, it has been sug-
gested that PTT can sensitize RT-resistant cancer cells to 
enhance anti-tumor efficacy via synergistic effect [62, 63].

Materials with high atomic numbers have high pho-
toelectric absorption cross-sections and emit secondary 
radiation (i.e., Auger/photoelectrons). Thus, resulting in 
a high generation of free radicals. Gadolinium, platinum, 
and iodine are the most widely used radiosensitizers. 
However, AuNPs offer advantages over these frequently 
used radiosensitizers, such as high atomic number (i.e., 
79), ability to modulate the size for passive accumulation 
at the tumor site, modulation of shape, and the possibil-
ity of attaching active targeting/imaging molecule. Thus, 
AuNPs can be used as biocompatible radiosensitizers 
with low toxicity to normal cells [64].

Furthermore, the AuNPs-mediated synergistic PTT 
and RT therapy can modulate various cellular pathways, 
activating pro-apoptosis unfolded protein response 
(UPR) cascades via inhibiting heat shock protein A5 
(HSPA5), a member of the HSP70 family, proved to be 

a promising approach. Upregulation of HSPA5 in can-
cer cells has been well-documented. HSPA5 aids in the 
repair of irradiation-induced DNA and protein damage 
resulting in the development of resistance in tumor cells 
against various treatments. Moreover, HSPA5 assists in 
the maintenance of cellular homeostasis via regulating 
endoplasmic reticulum (ER) stress and activating UPR 
cascades [65].

Fengrong Zhang et al. developed liposomes-based hon-
eycomb-like AuNPs for combined interventional photo-
thermal and brachytherapy (IPT-BT) (a localized internal 
RT performed by implanting iodine-125 radioactive seed 
with minimal invasion). The honeycomb-like AuNPs 
showed a 96.6% tumor inhibition rate in the SW1990 
orthotopic mice model via dsDNA damage, improved  O2 
supply, and better penetration of nanoparticles inside the 
tumor [66]. Thus, AuNPs can be used for RT to enhance 
the therapeutic efficacy against cancer.

Another hurdle for using AuNPs for RT is that the 
standard linear accelerators (LINACs) produce a small 
proportion of low-energy photons in clinical photon 
beams [67]. Very recently, Piccolo et  al. have overcome 
this challenge by developing a novel diamond target beam 
(DTB) that quadruples the proportion of low energy 
photons and increases the amount of localized Auger 
electrons from AuNPs [67]. Although this study showed 
promising enhancement of RT, inadequate AuNPs uptake 
affected the tumor targeting.

It has been found that the attachment of aptamers [68, 
69], peptides [70–73], and antibodies [74–77] endow 
AuNPs with selective tumor cell internalization capa-
bility. Thus, attachment of active targeting agent may 
further enhance the effectiveness of AuNPs as a radio-
sensitizer or as a carrier of radiosensitizers against tumor 
growth.

AuNPs for immunotherapy and immune cell‑based 
delivery
Studies suggest that hyperthermia-inducing therapeu-
tic strategies can synergize with immunotherapies [78]. 
For example, unchecking the T-cell activity within the 
immunosuppressive tumor microenvironment via the 
immune checkpoint blockade is one of the most prom-
ising immunotherapy. In accordance, it was found that 
combining the plasmonic Au nanostars-mediated PTT 
with checkpoint blockade immunotherapy improved the 
therapeutic efficacy in the CTX-2A glioma cell murine 
model. This system can reject the rechallenge offered by 
the memorized anti-cancer immune response [79].

In addition, tumor tropic cells, such as platelets, mac-
rophages, mesenchymal stem cells (MSCs), induced 
pluripotent stem cells (iPSCs), and neural stem 
cells (NSCs), can be used to enhance the uptake of 
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nanoparticles at the site of tumor [80–84]. Since MSCs 
could infiltrate and migrate to the entire tumor, Huang 
et  al. loaded MSCs with TAT-conjugated Au nanostars 
for the enhanced uptake of nanoparticles by the tumor 
cells [85]. Nowadays, immune cells, such as macrophages 
[86], T-cells [87], monocytes [88], natural killer (NK) 
cells, and neutrophils [89, 90], are also exploited for tar-
geting therapeutic agents to the tumor cells. The neu-
trophils can cross the endothelial barrier and enter the 
tumor tissue in response to the chemoattractive agents 
released by the tumor cells. It is known that AuNRs are 
recognized by tumor-infiltrating innate immune cells and 
are accumulated at the tumor site, resulting in enhanced 
tumor ablation upon endoscopic-guided laser irradiation 
[91]. Although immune cells may assist in AuNPs accu-
mulation at the tumor site, active targeting of AuNPs is 
required to improve cancer treatment.

Therefore, Bo Ye et  al. developed BSA and arginine-
glycine-aspartic acid (RGD)-functionalized AuNRs, 
that were further internalized by neutrophils to obtain 
a neutrophil-based cancer cells delivery system, result-
ing in higher toxicity with laser irradiation in deeper tis-
sues [92]. Other immune cells, the NK cells, are mainly 
responsible for inhibiting cancer cells because they 
can even recognize cells devoid of antibodies or cel-
lular markers. Bin Liu et  al. loaded  CaCO3-coated Au 
nanostars together with Ce6 in the NK cells (AuNS@
CaCO3/Ce6-NK). They showed prominent delivery of the 
nanoconjugates to the cancer cells with enhanced syner-
gistic PTT, PDT, and immunotherapy [93]. The immune 
cell-mediated targeting is also known as “Hitchhiking” 
[94], and could be considered an effective targeting strat-
egy without the use of any additional functionalizing 
agent.

AuNPs for tumor starvation therapy
Although PTT has shown good therapeutic efficacy 
against cancer cells, hyperthermia or the penetration of 
NIR light is not sufficient to kill cells from deep tumor 
tissues. Moreover, hyperthermia induces the overexpres-
sion of HSPs in the cells, increasing the cell’s heat toler-
ance ability. Thus, reducing the tumor-killing efficacy of 
PTT treatments. Since the synthesis of HSPs depends 
on ATP-supplied energy, the production of HSPs can 
be reduced or inhibited by restricting the energy sup-
plies. Thus, PTT and glucose oxidase (GOx)-mediated 
cancer starvation therapy can work together as a multi-
therapeutic approach combining tumor growth reduc-
tion via consuming glucose and enhanced PTT effect via 
ATP depletion in tumor cells. Recently, Zhu et  al. syn-
thesized a nanoplatform based AuNRs and GOx coated 
by erythrocyte membrane for effective tumor targeting. 
They reported that these nano constructs could reach the 

tumor site without being recognized by the immune cells 
and enhanced the reduction in tumor growth by trigger-
ing the NIR-mediated PTT effect along with depletion of 
endogenous glucose to limit the energy supply to colon 
cancer cells [95]. Therefore, to enhance the anti-tumor 
efficacy of AuNPs, PTT can be combined with tumor 
starvation therapy by limiting the energy supplies to the 
cancer cells.

AuNPs for imaging/diagnosis
In addition to cancer therapy, AuNPs acts as multipur-
pose tools for in  vitro and in  vivo cancer imaging/diag-
nosis [96]. This is because AuNPs have unique optical 
and electronic properties that render them properties 
for remarkable imaging [97] and diagnostic [98] agent. 
A combination of therapy and imaging can provide valu-
able information that can enable improved therapeutic 
efficacy and safety of AuNPs [99]. Various AuNPs-based 
multimodal imaging/diagnosis techniques are currently 
being explored, such as photoacoustic (PA) imaging, 
magnetic resonance imaging (MRI), and X-ray computed 
tomography (CT).

AuNPs can be used for PA real-time imaging because 
of their tunable optical absorbance in the NIR region that 
results from their SPR effect [100]. The PA imaging used 
an ultrasonic signal based on energy conversion from 
light to sound to analyze the structure and quality of tis-
sue. The PA imaging and exogenous contrast agent can 
increase the resolution of subcellular images. Since the 
optical absorption of AuNPs is much higher than organic 
dyes due to their SPR effect, AuNPs can be used to obtain 
a highly visible contrast in the wavelength range of both 
the biological window, i.e., 650–1100  nm, and second 
near-infrared (NIR) spectral window, i.e., 1100–1350 nm. 
Thus, AuNPs-mediated PA imaging can facilitate the 
imaging of targeted areas that are deeply buried in the 
biological tissues and are hard to image using simple 
methods [101].

MRI is also a conventional anatomical imaging tech-
nique used to image soft tissues/cancers. However, MRI 
imaging has low specificity and can only detect tumors 
at late stages when they are millimeters in size [102]. The 
sensitivity of MRI is increased by using contrast agents, 
such as gadolinium  (Gd3+) or manganese  (Mn2+) because 
of their high electron magnetic moment. Though  Gd3+ 
is the most widely used contrast agent, it is toxic in free 
form. Thus, it is administered in a stable chelate com-
plex form. Recently, Gadolinium (Gd), an element used 
as a contrast agent for MRI images, was complexed with 
AuNRs to synthesize Gd/AuNRs nanocomplex. These 
nanocomplexes were capped with diacid polyethylene-
glycol, loaded with doxorubicin (DOX), and investigated 
as a theranostic agent for pancreatic cancer. The MIA 
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PaCa-2 cells internalized the Gd/AuNRs nanocom-
plex via the EPR effect, resulting in higher cytotoxicity 
towards MIA PaCa-2 than DOX alone. Thus, Gd/AuNRs 
nanocomplex also acted as a bio-imaging agent [103]. 
Thus, AuNPs-functionalized with imaging molecules 
can be used for theranostics applications, i.e., combined 
therapy and imaging purposes. However, active targeting 
of these Au-based nanoconstructs can specifically deliver 
the theranostic construct to the tumor site.

Nowadays, CT imaging accounts for 50–75% of imag-
ing in the medical field. It creates cross-sectional 3D ana-
tomical images of internal body structures with a high 
spatial and temporal resolution by utilizing high-energy 
electromagnetic radiation and a detector array [104]. 
However, CT imaging is not sensitive to soft tissue. Thus, 
AuNPs or iodine-containing probes are used as CT con-
trast agents to enhance the sensitivity of the CT imag-
ing system [104]. However, compared to iodine, AuNPs 
is six times more efficient contrast agent. This is because 
AuNPs can produce contrast effects by absorbing higher 
X-rays due to their higher electron density [105]. Liu 
et al. showed that a combination of CT and MRI provides 
dual-mode imaging can diagnose cancer with more sen-
sitivity and accuracy because it can integrate the advan-
tage of both imaging systems [106]. Thus, a combination 
of more than one of the abovementioned imaging/diag-
nostic techniques in a single AuNPs construct can func-
tion as multimodal imaging/diagnostic agents, which is 
highly desirable and offers a more reliable, sensitive, and 
complete diagnosis.

Functionalized AuNPs used for multimodal cancer therapy
The theranostic efficiency of AuNPs, i.e., conducting 
diagnosis and image-guided therapy is supported by the 
functionalization of AuNPs with targeting agents for can-
cer cells. Some of the recent and most-explored function-
alization agents are discussed below (Table 1).

Epidermal growth factor (EGF)/human epidermal growth 
factor 2 (HER2) antibodies
The Epidermal Growth Factor (EGF) receptor is highly 
present in cancer cells and is selective for its ligand, 
EGF. The EGF is a small secretory protein responsible 
for tumor growth and proliferation. Reports indicate the 
use of EGF for selective uptake of nanoparticles by the 
cancer cells. In a study, EGF-conjugated AuNPs showed 
uptake of 63 nanoconstructs per minute by MDA-
MB-468 triple-negative breast cancer cells. These EGF-
AuNPs nanoconjugates were also combined with Ce6 for 
the combined PDT effect. It was found that these nano-
constructs induced apoptosis in 38% of cancer cells and 
necrosis in 58% of cancer cells at 660  nm, 25  mW/cm2 
irradiation. Moreover, the nanoconstructs-treated cancer 

cells showed nine times higher ROS content than normal 
cells [51].

Breast cancer is the most common type of cancer in 
women with high intra-tumoral heterogeneity, resulting 
in varied therapeutic responses due to wide-ranging phe-
notypes and morphological profiles [51]. Human epider-
mal growth factor receptor 2 (HER2), a member of the 
EGF receptor family, serves as a biomarker, especially for 
breast cancer and gastric cancer [107, 108]. Liang et  al. 
demonstrated that sharp-edged Au nanostars conjugated 
with HER2 monoclonal antibodies improved tumor tar-
geting and retention in the SK-BR-3 human breast cancer 
cell line [39]. Qi Dong et al. used AuNSs-poly (lactic-co-
glycolic acid) (PLGA) magnetic hybrid nanoconstructs 
conjugated with anti-Her2 antibodies for dual-modal 
ultrasound/MRI and PTT effect on SK-BR-3 breast can-
cer cells when irradiated using 808 nm laser at 1 W/cm2 
for 10 min [109]. HER2-targeted AuNPs conjugated with 
Trastuzumab (HER-2 monoclonal antibody) also showed 
promising therapeutic results against gastric cancer 
[110]. Although HER2- has improved the clinical out-
come in breast and gastric cancers, it showed poor out-
comes in other cancers [108]. Therefore, HER2-related 
studies, alone or in combination, are under investigation, 
and it is possible to obtain more diverse results in the 
near future.

Serum albumin (SA)
The serum albumin (SA) serves as efficient drug deliv-
ery and tumor-targeted vehicle because it can conjugate 
or encapsulate chemotherapeutic agents [111]. The SA 
nanovesicles can accumulate in tumor tissue due to their 
interaction with the gp60 receptor that is overexpressed 
in various tumors. Moreover, nanoconstructs with albu-
min can rapidly internalize in the cancer cells via caveo-
lae-mediated endocytosis with the help of a glycoprotein 
known as a secreted protein, acidic and rich in cysteine. It 
was found that the albumin-AuNPs nanoconstructs can 
internalize liver cancer cells via gp60 receptor targeting 
[112]. Moreover, when HepG2 or hepatocytes cells were 
treated with albumin-AuNPs nanoconstructs and then 
irradiated using a 2 W, 808 nm laser, higher apoptotic and 
necrotic rates were observed in HepG2 cells than normal 
hepatocyte cells, indicating selective therapeutic efficacy 
[112]. Liver cancer is a worldwide health challenge. It 
is estimated that there will be > 1 million cases by 2025 
[113]. Although surgical resection is a possible therapy 
for liver cancer, it is feasible in only < 30% of patients. 
Since other treatment strategies show modest results in 
the treatment of liver cancer, new therapeutic approaches 
are still needed [112, 114]. Thus, AuNPs-based therapies 
could be a possible alternative to conventional treatments 
to treat liver cancer.
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The SA functionalized AuNPs have also been used 
to treat colon cancer which is the second most com-
monly diagnosed cancer in women and the third most 
diagnosed cancer in men. Colorectal cancer has a high 
mortality rate globally because the conventional treat-
ments may induce drug resistance and lack selectivity 
[95]. It has been reported that the clusters of AuNPs, 
i.e., AuNCs, of ~ 88  nm size consisting of albumin-
AuNPs (~ 4.5  nm) (AuNCs/BSA-AuNPs) showed sig-
nificant hyperthermia effect in the HCT116 colon 
cancer mice model after laser irradiation (1.5  W/cm2, 

10  min), suppressing tumor growth [115]. Moreover, 
when AuNCs/BSA-AuNPs were further modified with 
cy5.5, they showed good fluorescence-based opti-
cal visualization in the HCT116 colon cancer mice 
model, suggesting efficient tumor targeting [115]. The 
AuNCs show a red-shift phenomenon, strengthening 
NIR absorption in the wide range (650–950  nm), dis-
playing a high anti-tumor effect due to high hyperther-
mal conversion compared to AuNPs. However, AuNCs 
with larger AuNPs lose their inherent fluorescence and 
cannot diagnose or detect tumors, though they show a 

Fig. 2 a Schematic illustration of the synthetic procedure of AuNS@BSA/I‑MMP2 NPs and their applications, b TEM image of AuNS@BSA/
I‑MMP2 NPs, c in vivo NIR fluorescence images of mice bearing A549 tumors after injection of AuNS@BSA/I‑MMP2 NPs (excitation = 710 nm, 
emission = 790 nm), d PA images of AuNS@BSA/I‑MMP2 NPs treated mice at different time intervals (excitation = 780 nm). Reproduced with 
permission from [116]. Copyright ©2019, Elsevier
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significant hyperthermic effect. Therefore, AuNCs with 
small-sized AuNPs might be suitable for both detection 
and PTT effect against various types of cancers.

A study showed that MMP antibodies could be con-
jugated with albumin-coated Au nanostars as carriers 
of IR-780 for efficient lung tumor diagnosis and therapy 
(Fig. 2) [116]. Therefore, a combination of targeted mul-
tifunctional AuNPs-mediated colon cancer therapy sug-
gests synergistically enhanced anti-cancer effect and 
reduced systemic toxicity towards normal cells [117, 
118].

Glutathione
It has been observed that functionalizing the surface of 
AuNPs with glutathione can control the cell internaliza-
tion of AuNPs without disrupting the cell membrane. It 
is because the negatively charged glutathione-AuNPs 
are adsorbed onto the cell membrane [119]. In addition, 
glutathione-capped AuNPs can exhibit photolumines-
cence and size-independent light emission at 600  nm 
and 800  nm at 396  nm and 350  nm excitation wave-
length, respectively [120]. Steckiewicz et al. showed that 
glutathione stabilized AuNPs and conjugated with cyta-
rabine induce more cell death than cytarabine alone on 
various cancer cells [121]. Buonerba et  al. showed that 
the salt-induced well-defined-sized aggregates of both 
glutathione-AuNPs (239 ± 73  nm) and AuNPs coated 
with glutathione functionalized with dansyl fluorophore 
nanoparticles (254 ± 64 nm) were efficiently internalized 
in human hepatocytes HepG2 cell lines via endocytosis 
without inducing cytotoxicity. After internalization, the 
aggregates of glutathione-AuNPs and dansyl fluorophore 
glutathione-AuNPs produce dispersed spherical nano-
particles in the cytoplasm that rapidly crosses the nuclear 
membrane. However, they found that the PTT ablation 
in dansyl fluorophore glutathione-AuNPs aggregates-
treated cells was higher than that of glutathione-AuNPs 
aggregates-treated cells after NIR irradiation with pulsed 
lasers tuned at 760 nm for 1.26  s [122]. This is possibly 
because the chromophore acts as both an antenna and 
transducer of the NIR radiation. Thus, AuNPs coated 
with biocompatible glutathione are widely studied as 
a drug delivery system because glutathione provides 
a stealth effect against serum proteins and renders glu-
tathione-AuNPs highly resistant to adsorption by serum 
proteins [119, 123].

Lactoferrin (Lf)
In general, tumor cells overexpress lactoferrin receptors 
(LfRs) to fulfill their requirements. In a study, a series 
of AuNRs with a tunable dimension of similar aspect 
ratio with similar photothermal transfer efficiency were 
surface-modified with PEG and covalently conjugated 

with tumor-targeting ligand lactoferrin (Lf ). The study 
showed that these AuNRs (70 nm in length and 11.5 nm 
in width) exhibited photothermal cytotoxicity in HepG2 
liver cancer cells when irradiated with 980 nm diode laser 
0.5  W/cm2 power. Further, the HepG2 xenograft nude 
mice model showed that the AuNR70@PEG-Lf showed 
the highest tumor accumulation and prolonged circula-
tion time due to the synergetic effect of dimension and 
surface coating. These xenograft models showed a reduc-
tion in tumor volume after NIR irradiation (980 nm and 
0.5 W/cm2 power for 3 min), suggesting the PTT poten-
tial of AuNR70@PEG-Lf against liver cancer in the NIR-
II window [124].

Since LfRs are highly expressed in the intestine, blood–
brain barrier, and cancer cells, targeting AuNPs via Lf 
is proposed to be an effective strategy. Glioblastoma 
(GBM), a form of malignant central nervous system 
tumor, has a high incidence and mortality rate [125] and 
high reoccurrence chances [126]. Although surgery, fol-
lowed by focal RT, laser interstitial thermal therapy, and 
adjuvant CTX, is the most prevalent treatment for glio-
blastoma, the delicate anatomical structure of the brain 
reduces the chances of successful surgery [127]. Moreo-
ver, GBM patients have shown an average two-year sur-
vival rate with RT and temozolomide so far, possibly 
due to the resistance developed in patients against RT. 
Thus, there is a need to develop alternative approaches 
for effective GBM treatment by improving intrinsic RT 
resistance [128]. AuNPs with < 100 nm diameter can gen-
erally cross the blood–brain barrier (BBB) due to leaky 
vasculature, resulting in their accumulations in the tumor 
tissue. Thus, demonstrating a significant therapeutic PTT 
effect against glioblastoma. However, enhanced blood 
stability and half-life of AuNPs in the blood and targeted 
delivery are also critical criteria that should be consid-
ered for the successful delivery of AuNPs to the brain 
tumor site. Therefore, AuNPs-mediated PTT should 
be combined with targeted delivery for effective GBM 
treatment. Kim et  al. suggested that AuNPs-conjugated 
with Lf can reach GBM in the brain via oral absorption 
[129]. In addition, they used glutathione and PEG to 
enhance the blood circulation time of Lf-AuNPs. After 
oral administration, they observed 11-fold and eightfold 
higher AuNPs concentrations in blood and GBM, respec-
tively [129]. Further, they found that laser irradiation 
post-Lf-AuNPs delivery can increase the temperature in 
GBM, resulting in tumor volume reduction. Thus Lf can 
be used as an efficient targeting molecule to GBM across 
the blood–brain barrier via the oral route.

Folic acid (FA)
Folic acid (FA), vitamin B9, is another tumor cell target-
ing agent that binds to folate receptors and facilitates 
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intracellular uptake via endocytosis [130]. The folate 
receptors are absent in healthy non-proliferating cells 
while overexpressed in proliferating cancerous cells. It 
was observed that FA-conjugated N-(2-hydroxy)propyl-
3-trimethylammonium chitosan chloride (HTCC)-stabi-
lized AuNPs were more internalized by Caco-2, HepG2, 
and HeLa cancer cells than AuNPs. Moreover, it was 
found that the surface modification of Au-decorated 
acrylic copolymeric nanoparticles with FA improved 
the targeting efficiency of NPs by 71.8% cell compared 
to 28.8% uptake for the non-conjugated NPs, result-
ing in increased PTT effect on glioma cells under near-
IR irradiation at 808 nm [131]. Similarly, FA-conjugated 
poly(ethylene glycol) coated Au@iron oxide core–shell 
nanoparticles decreased the growth of KB cancer cells 
by ~  62% and MCF-7 breast cancer cells by ~  33% 
(28994325). These studies suggest that FA-conjugated 
AuNPs showed an enhanced therapeutic effect on vari-
ous types of cancer cells compared to bare AuNPs.

Kumar et  al. showed the higher affinity of FA-conju-
gated AuNPs towards folate receptor-positive MCF7 
breast cancer cells than folate receptor-negative A549 
cancer cells [132]. In accordance, another study also 
showed higher induction of apoptosis by FA-targeted 
 Fe2O3@Au than non-targeted  Fe2O3@AuNPs in human 
nasopharyngeal (KB) cancer cells [133]. Thus, suggesting 
FA as a promising targeting ligand for folate receptor-
positive cancer cells.

Programmed death‑ligand 1 (PD‑L1) peptides/antibodies
The PD-L1, a type 1 transmembrane protein, is highly-
expressed on various cancer cells, including breast can-
cer, lung cancer, colorectal cancer, and melanoma, and 
has been implicated as a biomarker for cancer [134]. The 
PD-L1 overexpression is associated with cancer growth 
[135]. The PD-L1 blocking antibodies, such as MEDI4736 
and MPDL3280A, are  currently approved for cancer 
therapy [136]. It has been found that PD-L1 antibodies 
conjugated AuNPs significantly decreased the growth of 
oral squamous carcinoma cell line (SCC-25) via increas-
ing the expression of apoptotic proteins but did not affect 
the growth of normal HaCaT keratinocytes cells [137]. 
Thus, indicating the expression of PD-L1 on cancer cells. 
Bin Liu et  al. developed a nanoplatform, i.e., AuNPs@
PEG/Ce6-P, by conjugating PEG-coated AuNPrs with 
Ce6 and human programmed death-ligand 1 (PD-L1) 
peptides to target lung tumor cells for imaging-guided 
and actively PTT/PDT. The AuNPs@PEG/Ce6-P nano-
platform demonstrated a remarkable affinity to HCC827 
lung cancer cells with high PD-L1 expression, resulting 
in tumor growth suppression due to synergistic PTT/
PDT effect. In addition, with the help of this nanoparticle 

system, real-time visualization via fluorescence and PA 
imaging was also possible [138]. Lung cancer contributes 
to about 20% of cancer-related mortalities worldwide, 
possibly due to high chances of relapse associated with 
self-renewal CSCs resistant to conventional cancer treat-
ment [139, 140]. As observed, PD-L1 targeted AuNPs@
PEG/Ce6-P nanoplatform showed remarkable targeting 
ability, dual-mode imaging, and promising anticancer 
potential owing to enhanced PDT/PTT effect on lung 
cancer. Thus, suggesting that peptides targeted to PD-L1 
are effective targeting agents for AuNPs-based cancer 
therapy.

It has been known that combination therapies enhance 
the therapeutic efficiencies. In accordance, it has been 
found that the combinational nanoconstructs comprising 
of DOX and AuNPs-conjugated with anti-PD-L1 anti-
bodies showed significant intracellular uptake of DOX. 
Moreover, post-NIR irradiation, these nanoconstructs 
showed synergistic suppression of colorectal CT-26 can-
cer cells proliferation via increased cell cycle arrest and 
apoptosis [141]. Thus, anti-PD-L1 antibodies/peptides 
can be used to target various cancer cells for multiple 
therapeutic strategies.

RGD (Arg‑Gly‑Asp) peptides
The RGD (Arg-Gly-Asp) peptides are associated with 
several types of integrins that are heterodimer cell sur-
face receptors that are highly expressed in cancer cells 
and are involved in the adhesion of cells to the extracel-
lular matrix [142]. Integrins are involved in the signaling 
pathways responsible for cancer growth and metastasis. 
The αvβ3 integrins bind with the RGD peptide in extra-
cellular matrix proteins, such as fibronectin [143]. It has 
been found that the RGD sequence enables the internali-
zation of AuNPs into the tumor cells via endocytosis and 
localize in the late endosomes and lysosomes of breast 
cancer cells [144]. It has also been observed that due to 
the specific targeting, the RGD-labelled AuNPs can be 
metabolized and cleared out of the body, indicating a 
good biosafety profile [106].

Recently, Hua et  al. successfully constructed a nano-
platform for cancer theranostic by using cyclic RGD 
(cRGD) peptide-modified Au-iron oxide nanoparti-
cle (Au4-IO NP-cRGD) for enhanced MRI dual-modal 
imaging-guided Fenton reaction-assisted radiotherapy 
and showed 81.1% tumor-suppression in  vivo [70]. The 
Au nanostars can also be labeled with Raman molecules 
and RGD peptides for A549 human lung adenocarci-
noma cells-targeted SERS-imaging and image-guided 
PTT in both the NIR-I and NIR-II windows [145]. 
Albertini et al. showed that the RGD-conjugated AuNPs 
have also shown enhanced accumulation in the brain of 
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intracranial tumor models compared to bare AuNPs, pos-
sibly due to the presence of αvβ3 integrin receptors on 
the blood–brain barrier [146]. These studies suggest that 
RGD could be used for targeting AuNPs to glioblastomas.

Other peptide/antibodies/aptamers
Various other peptides, antibodies, and/or aptamers are 
used to deliver AuNPs to cancer cells. Bombesin (BBN) 
is a peptide targeting gastrin-releasing peptide recep-
tors that are highly expressed in various cancers, such as 
lung, breast, and prostate cancers [147]. In a study, BBN 
peptide-tagged m-SiO2 coated AuNPs can specifically 
target the NPs to prostate cancer cells overexpressing 
gastrin-releasing peptide receptors [148]. Prostate cancer 
ranks fifth, about 6.6%, among cancer-related mortalities 
in men worldwide [149–151]. Whole-gland treatments, 
such as CTX, RT, and castration therapy, are often pre-
scribed to men with prostate cancer at early stages, 
which have adverse effects [152]. However, in some 
cases, castration therapy becomes ineffective due to the 
emergence of castrate-resistant prostate cancer (CRPC) 
that induces resistance to CTX and RT, thus, shortening 
the survival time of prostate cancer patients [153, 154]. 
Hence, exploring a highly effective and well-tolerated 
therapeutic method for CRPC patients is needed. A mul-
tifunctional nanoplatform composed of IR820-loaded Au 
nanostars with the guided effect of CD133 antibody also 
showed image-guided/targeted synergistic PTT/PDT/
CTX effects to treat castration-resistant prostate cancer 
(CRPC) [155]. When combined with targeting agents, 
such as peptides and/or antibodies, AuNPs can be used 
to treat CRPC.

Another peptide, U11, has also been explored for tar-
geting AuNPs. In a study, the affinity and cellular uptake 
of nanoconstructs consisting of AuNCs, 5-ALA, and 
cyanine dye Cy5.5 (a CTSE-sensitive imaging agent) by 
pancreatic cancer cells were increased by labeling the 
nanoconstructs with U11 peptide, a ligand for urokinase-
type plasminogen activator receptor (uPAR) [55]. With 
minimal side effects, these nanoclusters showed signifi-
cant therapeutic efficacy with endomicroscopy-guided 
PTT/PDT [55]. Pancreatic cancer ranks fourth in cancer-
related mortality cases in the US [156]. This is possible 
because only 20–30% of patients with pancreatic cancer 
respond well to gemcitabine (GEM)-based CTX due to 
chemoresistance caused by the presence of high inter-
stitial fluid pressure and dense tumor stroma. Moreover, 
curative surgical resection is not advisable for most pan-
creatic cancer patients [157]. Since PTT can improve the 
therapeutic efficacy of chemotherapeutic drugs, AuNPs 
under NIR irradiation and chemotherapeutic drugs are 
being studied for pancreatic cancer treatment [158–161]. 

In addition, when combined with targeting ligand, 
AuNPs showed enhanced therapeutic effects against pan-
creatic cancer [55].

Studies on AuNPs attached with PSMA (prostate-
specific membrane antigen)-specific targeting ligand 
have increased rapidly. PSMA is an integral membrane 
glycoprotein that is overexpressed only in androgen-
independent prostate cancers. A dual aptamer, i.e., 
anti-PSMA RNA aptamer (A10) and a peptide aptamer 
(DUP-1), conjugated Au nanostars were developed for 
PSMA(+) and PSMA(−) cells, respectively, which were 
highly efficient in photothermolysis NIR laser (at 808 nm 
and 0.3 W/cm2) [162]. Similarly, it was also observed that 
PSMA-positive PC3pip prostate cancer cells had higher 
PSMA-1-conjugated AuNPs uptake than PSMA-negative 
PC3flu prostate cancer cells [163]. Thus, the functionali-
zation of AuNPs with cancer-specific aptamers could be 
an effective targeting strategy.

Functionalized AuNPs as a carrier for nucleic acids
The nucleic acid [such as small interference RNAs (siR-
NAs) and microRNAs (miRNAs)]-based therapies have 
revolutionized anti-cancer research studies by regulating 
signaling pathways responsible for cellular growth and dif-
ferentiation [164]. Nevertheless, the degradation of nucleic 
acids in the physiological conditions and the intrinsic neg-
ative charge of nucleic acids are the significant hurdles lim-
iting their entry into the cells [165]. This generates a need 
for delivery systems to deliver nucleic acids that protect 
them from physiological conditions. Due to the unique 
properties and biocompatibility, AuNPs are used to deliver 
nucleic acids to the target cells without any transfection 
agent [166]. Moreover, cationic AuNPs can form electro-
static complexes with nucleic acids, rendering nuclease 
protection to nucleic acids and efficiently delivering it to 
target cells [167]. It has been found that AuNPs can also 
act as a carrier for the delivery of siRNA [168] and miRNA 
[169] to down-regulate the expression of PD-L1 and Sp1, 
respectively, in lung cancer and can also provide additional 
PTT effects against lung cancer.

Furthermore, functional modification of AuNPs with 
cationic carbosilane dendrons containing a thiol moiety 
can stabilize the AuNPs, providing both hard metal core 
and soft surface dendrons to the nanoparticles. The metal 
core of the nanoconstructs can help AuNPs to accumulate 
more efficiently at the tumor site, enhancing the cellular 
uptake by the EPR effect. In contrast, the soft dendrons 
enable the AuNPs to bind with nucleic acid. Such gold 
nanocomplexes showed efficient delivery of siRNAs into 
the cells [170]. Despite using AuNPs alone, Au-dendrim-
ers nanohybrids are also efficiently used to deliver nucleic 
acids for cancer gene therapy [171].
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The siRNA-conjugated AuNPs also exhibited a com-
bination of radiotherapy along with gene therapy [172, 
173]. Similarly, AuNPs can co-deliver DOX and siRNA 
for combinational CTX and gene therapy [174, 175]. 
Moreover, modifications of nucleic acid-AuNPs conju-
gates with active targeting agents can further enhance 
their selectivity for tumor cells [169, 176]. Yang et  al. 
developed a siRNA and DOX delivery system composed 
of Au nanocages functionalized with AS1411, an aptamer 
for nucleolin receptors, for site-specific targeted delivery 
to the tumor cells [177]. They also used double-stranded 
DNA (dsDNA) as the rigid support for Au nanocage and 
MMP-2 cleavable peptide that facilitates the destruc-
tion of Au nanocages by MMP-2 enzyme that are over-
expressed in the tumor microenvironment, resulting in 
multifunctional and tumor-specific gene therapy, CTX, 
and PTT [177]. AS1411-modified AuNPs have been well-
studied for active cancer cells targeting [117]. Thus, these 
studies suggest the prospect of multifactorial therapy due 
to its intrinsic therapeutic properties and its ability to 
act as nanocarriers for gene therapy and CTX. Further, 
attachment of targeting agents can enhance their tumor 
cell-specific cellular uptake and enhance therapeutic 
efficacy.

Stimuli‑responsive nanoconstructs for cancer theranostic
Nowadays, multi-modal theranostics is considered a 
promising approach for cancer treatment and imag-
ing [178, 179]. Stimuli-responsive drug delivery systems 
showed advantages in controlling the drug release in 
response to exogenous stimuli (such as light, tempera-
ture, electric pulses, magnetic field, and ultrasound) or 
endogenous stimuli (such as enzyme, pH, and redox) 
[180, 181]. Among these AuNPs-based nanosystems, 
light-sensitive (NIR light) nanoconstructs are mostly 
preferred. Firstly, because AuNPs can absorb NIR light 
radiation and convert them into heat through the SPR 
effect. Secondly, cancer cells are more sensitive to heat 
than normal cells because of the poor vascular struc-
ture of tumor tissues. Thus, avoiding side effects on the 
normal cells. The hyperthermia is further associated 
with thermo-responsive nanosystems for the controlled 
release of drugs [182].

Danju Wu et al. reported the synthesis of a size-shrink-
able thermo-responsive nanomicelle system composed of 
copolymer poly(acrylamide-acrylonitrile)-polyethylene 
glycol-lipoic acid (p(AAm-co-AN)-g-PEG-LA) with an 
upper critical solution temperature (UCST) behavior. 
These nanomicelles were loaded with AuNRs and DOX, 
an anti-cancer drug. They showed that these nanomi-
celles rods of the 54  nm length and 14  nm width were 
initially accumulated on the tumor periphery via the 
EPR effect. After NIR irradiation (λ = 808 nm, 2 W/cm2, 

8 min), the AuNRs produce heat leading to PTT ablation 
of tumor tissue (Fig. 3). In addition, the increase in tem-
perature results in the breakdown of nanomicelles into 
ultra-small nanomicelles (approx. 7  nm) that facilitates 
the penetration of ultra-small nanomicelles into the deep 
tumor site for the smart delivery of the loaded drug [183].

A study showed that polydopamine-coated AuNSs-
based hyperthermia-responsive nanoconstructs could 
significantly deliver pifithrin-μ, an inhibitor of HSPA5, 
for synergistic PTT (808  nm, 1  W/cm2, 5  min) and RT. 
These nanoconstructs showed hyperthermia-respon-
sive release of pifithrin-μ resulting in the amplification 
of UPR in cancer cells (Fig.  4). Further, these nanocon-
structs can also monitor cancer growth in response to the 
therapy (CT & MRI) [128].

AuNPs-based nanosystems that are responsive to the 
endogenous stimuli of tumor microenvironment are 
considered the most ideal drug carriers and are widely 
explored for targeted drug delivery. This is because the 
encapsulated drugs can be delivered at a specific time, 
site, and desired. The tumor microenvironment has low 
pH than normal tissues. Thus, AuNP-based nanocon-
structs composed of materials responsive/sensitive to pH 
of the environment respond to pH change and may swell 
or collapse, resulting in drug release.

Shiyuan et  al. developed pH-/laser-responsive size-
tunable AuNCs modified by carboxymethyl chitosan and 
ICG as combined PTT/RT/PA/near-infrared fluores-
cence (NIRF) imaging agent. These AuNCs (initial size 
about 50  nm) were first accumulated into large aggre-
gates of about 1000  nm under the acidic microenviron-
ment at the tumor site for enhanced tumor retention. 
Further, these AuNCs were dispersed into ultra-small 
AuNPs (about 5 nm diameter) under PTT for enhanced 
penetration and RT effect [63]. Therefore, the use of 
stimuli-responsive size-tunable AuNPs is suggested for 
both enhanced circulation and tumor penetration ability.

A study showed the development of thiol-PEGylated 
AuNRs decorated with mercaptopropionylhydrazide for 
pH-responsive drug release. In addition, these nanocon-
structs were conjugated with DOX, a chemotherapeu-
tic drug, and 5-ALA, a PSs, for combined CTX, PTT 
(808 nm, 2.0 W/cm2, 5 min), and PDT (635 nm, 0.5 W/
cm2, 5  min) for breast cancer. They found that cancer 
cells could efficiently internalize these nanoconstructs, 
suppressing tumor growth without systemic toxicity 
[184].

An acid-triggered surface charge-reversal and pH/NIR 
dual-responsive aldehyde/catechol-functionalized hyalu-
ronic acid and hydroxyethyl chitosan decorated AuNRs 
were developed for combined CTX/PTT for breast can-
cer at 750–900 nm and 2.0 W/cm2 for 5 min. These nano-
constructs were also efficiently internalized in MCF-7 
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breast cancer cells and reduced tumor growth [185]. 
In another study, AuNRs were decorated with 5-ALA, 
Cy7.5, and anti-HER2 antibody-conjugated hyaluronic 
acid to develop a dual-targeting and triple stimuli-
responsive theranostic nanoplatform for both imaging 
and multi-modal therapeutics (Fig. 5) [186]. These nano-
constructs had a circulation half-life of 1.9  h, efficiently 
accumulated in the tumor tissue, and performed image-
guided PDT/PTT treatments for breast cancer.

In addition,  H2O2-responsive AuNCs were also studied 
for PDT and MRI. These AuNPs worked as an intelligent 
nanozyme for "off/on" modulation in response to oxygen. 

These AuNCs were loaded in mesoporous silica  (mSiO2) 
and further wrapped in manganese dioxide  (MnO2) 
nanosheets. It was found that in the presence of  H2O2, 
the  MnO2 shell degrades, switching "on" the PDT (under 
irradiation at 635 nm laser) and MRI activities. However, 
in normal physiological conditions, the  MnO2 generates 
1O2 that switches off MRI and PDT effects [187].

Thus, the AuNPs, in combination with stimuli-respon-
sive polymers or molecules, can assist in the targeted 
delivery and stimuli-responsive release to maximize the 
therapeutic potential and minimize the undesired side-
effect of Au-induced PTT and PDT effects.

Fig. 3 a Schematic representation of the developed size‑shrinkable p(AAm‑co‑AN)‑g‑PEG‑LA nanomicelles loaded with AuNRs and DOX, b infrared 
thermal images of AuNRs‑micelle after laser irradiation, c In vivo real‑time fluorescence images, d Ex‑vivo fluorescence image of the excised organs 
and tumor of HepG2 tumor‑bearing mouse after i.v. injection of AuNRs/ICG micelle, and e Fluorescence images of HepG2 cells treated with AuNRs/
Nile red‑M. Reproduced with permission from [183]. Copyright ©2021, ACS Publication
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Current clinical approaches and key hurdles
Although various hyperthermia-mediated nanomedicines 
for cancer treatment are currently approved or in clinical 
trials [188], their clinical translation is still under explo-
ration. Indeed, most hyperthermia-mediated nanomedi-
cines utilize magnetic fields-mediated heat generation 
[189]. Among the biocompatible hyperthermia-mediated 
nanomedicines, AuNPs have been interested in inducing 
highly localized hyperthermia by converting the absorbed 
NIR light to heat, resulting in tumor ablation in preclinical 
animal models. Various AuNPs-based nanoconstructs are 
under clinical trials, as shown in Table 2.

CYT-6091 is the first thiolated polyethylene gly-
col (PEG) coated and tumor necrosis factor-α conju-
gated AuNPs-based cancer therapy to reach early-phase 
clinical trials (NCT00436410) and phase I clinical trial 
(NCT00356980, NCT00436410). CYT-6091 combined 
with radiations showed significant breast tumor reduc-
tion in preclinical 4T1 breast carcinoma and SCC VII 
head and neck tumor squamous cell carcinoma mice 
models [190]. In phase I clinical trials, CYT-6091 showed 
no dose-limiting toxicity in clinical trials in a diverse set 
of advanced-stage cancer patients, including pancreatic 
ductal adenocarcinoma, breast cancer, and colon cancer, 

Fig. 4 a Schematic representation of PES‑Au@PDA to achieve synergistic PTT and RT of glioblastoma cancer cells, b Confocal laser scanning 
microscopy images of SW1783 cells stained with calcein AM (green) and propidium iodide (PI) (red), c ER structures of SW1783 cells, d CT and 
T1‑weighted MR images were acquired at the indicated times (0, 4, 12, 24, 48 h) following intravenous injection of 12 nm/kg PES‑Au@PDA NPs. 
Reproduced with permission from [128]. Copyright ©2020, Elsevier
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Fig. 5 a Schematic representation, and b In vivo antitumor study in nude mice xenograft models of triple‑responsive drug release from 
AuNR‑HA−ALA/Cy7.5‑HER2 for HER2/CD44 dual‑targeted and fluorescence imaging‑guided combined PDT/PTT treatment of breast cancer showing 
photothermal photographs, digital photos of mice bearing tumors, tumor temperature, tumor volume, tumor weight, and H&E stained micrographs 
of tumor tissues. Reproduced with permission from [186]. Copyright ©2019, Elsevier
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and the presence of AuNPs (CYT-6091) was observed in 
tumor tissue [191]. The National Cancer Institute (NCI) 
has planned for phase II clinical studies in 2021/2022 for 
CYT-6091 in combination with Abraxane (nab-pacli-
taxel) in patients with late-stage endocrine cancers of the 
pancreas and thyroid (CytImmune, https:// www. cytim 
mune. com/ pipel ilne) (accessed on 7th March 2022).

AuroShells (AuNSs on silica,  Aurolase®) is also 
approved in clinical trials for AuNPs-mediated PTT 
ablation of solid tumors via converting NIR light signals 
into heat. The  Aurolase® is ~  150  nm in diameter and 

is specially designed to absorb maximum NIR light at 
800 nm and convert it to heat. The first clinical study on 
AuroShells (ClinicalTrials.gov Identifier: NCT00848042), 
as reported in https:// clini caltr ials. gov/, was performed 
by Nanospectra Biosciences, Inc. This interventional 
study was started in April 2008 and was completed in 
August 2014. They used different doses of AuroLase 
Therapy (i.e., 4.5, 7.5, and 7.5 mL/Kg of AuroShell parti-
cles combined with one or multiple doses of laser at irra-
diation at 808 nm and 3.4, 4.5, and 5 watts, respectively) 
on 11 patients with Head and Neck cancer. Each group 

Fig. 6 a Prostate ablation zone and the nearby urethra and rectum overlaid with a rectangular transperineal grid (3‑mm spacing), b Laser 
introducers (orange hub) placed with the thermocouple (black) through the transperineal grid. c UroNav MR/US Fusion guidance for trocar 
placement with real‑time ultrasound imaging. Reproduced with permission from [196]. Copyright ©2019, National Academy of Sciences

https://www.cytimmune.com/pipelilne
https://www.cytimmune.com/pipelilne
https://clinicaltrials.gov/
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received a single dose infusion of AuroShell (TM) parti-
cles followed by interstitial illuminations with an 808 nm 
laser, followed by monitoring for 6 months. It was found 
that the treatment was followed by few adverse side 
effects [192].

Another clinical study with  Aurolase® was started 
in October 2012 (ClinicalTrials.gov Identifier: 
NCT01679470). In this study, a single dose of AuNPs 
was administered in patients with primary and/or meta-
static lung tumors (with airway obstruction). Then, the 
PTT effect was triggered via bronchoscopy using an opti-
cal fiber emitting NIR light (testing the irradiation of an 
escalating dose) [193, 194]. However, this study was not 
completed and was terminated in June 2014.

In 2016, Nanospectra Biosciences, Inc. started another 
clinical trial in forty-five patients with neoplastic pros-
tate cancer (ClinicalTrials.gov Identifier: NCT02680535). 
The patients received a single intravenous infusion of 
AuroShell particles 12–36 h before MRI/US-guided laser 
irradiation using an FDA-cleared laser and an interstitial 
optical fiber. The patients were evaluated for laser tumor 
ablation and adverse events at three months (primary 
endpoint) and again at one year after laser treatment. 
Although the study was completed in 2020, results are 
not posted yet on https:// clini caltr ials. gov/. Very recently, 
Nanospectra Biosciences, Inc. started recruitment of 
a clinical extension study (ClinicalTrials.gov Identifier: 
NCT04240639) of AuroLase Therapy in the focal ablation 
of prostate tissue via nanoparticle directed irradiation in 
low to intermediate-risk localized prostate cancer.

Although the results of the clinical trials on AuroLase 
therapy are pending, based on chemical, hematological, 
immunological, and urinalysis evaluations, it was found 
that the AuroShell particles have an excellent clinical 
safety profile in 22 patients with prostate cancer that 
matches the nonclinical findings [195]. Moreover, in a 
clinical pilot device study, Rastinehad et al. reported the 
feasibility and safety of laser-excited AuNSs treatment 
combined with MRI/US fusion imaging to treat low-
intermediate-grade prostate tumors from 16 patients. 
The patients underwent AuroShell infusion and high-
precision laser ablation, followed by a multiparametric 
prostate MRI at 48–72 h. After 3 and 12 months of the 
treatment, multiparametric high-resolution MRI/US 
targeted fusion biopsies and a standard 12-core system-
atic biopsy at 12  months were performed. It was found 
that 94% (15/16) of patients showed successful AuNSs-
mediated focal laser ablation with no significant harmful 
changes in genitourinary function, indicating the feasi-
bility and safety of AuroShell-directed laser excitation 
and ablation in men [196] (Fig. 6). Thus, suggesting that 
AuroShell nanoparticles can accumulate at the tumor 

site and can ablate prostate cancer with minimum side 
effects.

Moreover, before clinical translation,  AuroLase® still 
needs to face key hurdles, such as proving that their EPR 
effect can assist in their accumulation at the tumor site. 
Since the EPR effect is not well-proven in clinical tri-
als, relying on only the EPR effect (not attachment with 
an active targeting agent) is challenging for AuroLase® 
[197]. Furthermore, since  AuroLase® is designated as 
local cancer therapy for solid tumors, treating systemic 
malignancies using AuroLase® is difficult and might need 
further modification [198].

Recently, a new term, “Nano-Ayurvedic Medicine,” was 
coined by Khoobchandani et  al., recently approved by 
the US Patents and Trade Marks office [199]. They used 
AuNPs and a combination of phytochemicals to produce 
Nano Swarna Bhasma (NSB). This group first performed 
pre-clinical investigations on breast cancer-bearing mice 
and later moved to clinical trials in human patients. They 
found 100% clinical benefits in patients treated with NSB 
capsules, along with “standard of care treatment”. These 
results indicate that green nanotechnology presents 
promising opportunities for highly effective interventions 
to treat cancer patients.

Despite the tremendous efforts invested in develop-
ing AuNPs-based nanoconstructs for cancer treatment, 
more challenges and rooms still exist. As observed, very 
few clinical trials associated with AuNPs-based cancer 
therapy have been conducted till now. Thus, a lack of 
understandable information on the therapeutic effect and 
side effects of AuNPs-based cancer therapy can nega-
tively influence human health. Therefore, more precise 
information on the long-term toxicity and chain reac-
tions of AuNPs is required. For this purpose, clinically 
relevant organ-on-a-chip models and high-throughput 
assays can be used in addition to clinical toxicity assess-
ments. Thus, the progress in clinical trials and the safety 
profile of AuNPs suggest their promising application to 
treat cancer. However, there is a need for more advanced 
research and collaborations of researchers from various 
sciences, such as biomedical, material science, and clini-
cians, to improvise the use of AuNPs for effective multi-
modal therapy against cancer.

Conclusion
Compared to other traditional hyperthermia-mediated 
cancer treatments, AuNPs-mediated photothermal 
therapy (PTT) can target and ablate tumor cells because 
AuNPs can accumulate in the tumor microenvironment 
and tumor cells via extravasation tumor vascular net-
work. Various in  vitro and in  vivo studies confirm the 
tumor ablation property of AuNPs in different tumor 

https://clinicaltrials.gov/
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models. AuNPs-mediated PTT effect can be combined 
with other therapies, including photodynamic therapy, 
immunotherapy, radiotherapy, etc. Moreover, attaching 
the targeting agents on the surface of AuNPs increases 
the targeting ability of the AuNPs, resulting in increased 
hyperthermia-mediated cancer ablation. Along with pri-
mary tumors, these combinational therapies might also 
treat distant metastatic tumors. However, developing 
modest, effective, and feasible Au-based nanoconstructs 
for combinational therapies against cancer is still chal-
lenging and requires a collaborative effort from research-
ers from different streams.
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