
ar
X

iv
:p

hy
sic

s/0
30

51
34

v2
 [

ph
ys

ic
s.d

at
a-

an
]

12
 Ju

n
20

03
Computing in High Energy Physics (CHEP 2003), La Jolla, California, March 24 - 28, 2003 1

Next-Generation EU DataGrid Data Management Services
Diana Bosio, James Casey, Akos Frohner, Leanne Guy, Peter Kunszt, Erwin Laure, Sophie Lemaitre,
Levi Lucio, Heinz Stockinger, Kurt Stockinger
CERN, European Organization for Nuclear Research, CH-1211 Geneva 23, Switzerland
William Bell, David Cameron, Gavin McCance, Paul Millar
University of Glasgow, Glasgow, G12 8QQ, Scotland
Joni Hahkala, Niklas Karlsson, Ville Nenonen, Mika Silander
Helsinki Institute of Physics, P.O. Box 64, 00014 University of Helsinki, Finland
Olle Mulmo, Gian-Luca Volpato
Swedish Research Council, SE-103 78 Stockholm, Sweden
Giuseppe Andronico
INFN Catania, Via S. Sofia, 64, I-95123 Catania, Italy
Federico DiCarlo
INFN Roma, P.le Aldo Moro, 2, I-00185 Roma, Italy
Livio Salconi
INFN Pisa, via F. Buonarroti 2, I-56127 Pisa, Italy
Andrea Domenici
DIIEIT, via Diotisalvi, 2, I-56122 Pisa, Italy
Ruben Carvajal-Schiaffino, Floriano Zini
ITC-irst, via Sommarive 18, 38050 Povo, Trento, Italy

We describe the architecture and initial implementation of the next-generation of Grid Data Management
Middleware in the EU DataGrid (EDG) project.
The new architecture stems from our experience together with the user requirements gathered during the two
years of running our initial set of Grid Data Management Services. All of our new services are based on the Web
Service technology paradigm, very much in line with the emerging Open Grid Services Architecture (OGSA).
We have modularized our components and invested a great amount of effort in developing secure, extensible
and robust services, starting from the design but also using a streamlined build and testing framework.
Our service components are: Replica Location Service, Replica Metadata Service, Replica Optimization Service,
Replica Subscription and high-level replica management. The service security infrastructure is fully GSI-enabled,
hence compatible with the existing Globus Toolkit 2-based services; moreover, it allows for fine-grained autho-
rization mechanisms that can be adjusted depending on the service semantics.

1. Introduction

The EU DataGrid project [6] (also referred to as
EDG in this article) is now in its third and final year.
Within the data management work package we have
developed a second generation of data management
services that will be deployed in EDG release 2.x. Our
first generation replication tools (GDMP, edg-replica-
manager etc.) provided a very good base and input,
which we reported on in [13, 14]. The experience we
gained in the first generation of tools (mainly written
in C++), is directly used in the second generation
of data management services that are based on web
service technologies and mainly implemented in Java.

The basic design concepts in the second generation
services are as follows:

• Modularity:

The design needs to be modular and allow for
easy plug-ins and future extensions.

In addition, we should use generally agreed stan-
dards and do not rely on vendor specific solu-
tions.

• Evolution:

Since OGSA is an upcoming standard that is
most likely to be adapted by several Grid ser-
vices in the future, the design should allow for
an easy adoption of the OGSA concept. It is
also advisable to use a similar technology.

In addition, the design should be independent of
the underlying operating system as well as rela-
tional database managements system that are
used by our services.

Having implemented the first generation tools
mainly in C++, the technology choices for the sec-
ond generation services presented in this article are as
follows:

• Java based servers are used that host web ser-
vices (mainly Jakarta’s Tomcat as well as Oracle
9iAS for certain applications).

• Interface definitions in WSDL

• Client stubs for several programming languages
(Java, C/C++) through SOAP using AXIS for
Java and gSOAP for C++ interfaces.

TUAT008

http://arXiv.org/abs/physics/0305134v2

2 Computing in High Energy Physics (CHEP 2003), La Jolla, California, March 24 - 28, 2003

• Persistent service data is stored in a relational
database management system. We mainly use
MySQL for general services that require open
source technology and Oracle for more robust
services.

The entire set of data management services consists
of the following parts:

• Replication service framework: This ser-
vice framework is the main part of our data
management services and is described in detail
in Section 2. It basically consists of an over-
all replica management system that uses several
other services such as the Replica Location Ser-
vice, Replica Optimization service etc.

• SQL Database Service (Spitfire): Spitfire
provides a means to access relational databases
from the Grid.

• Java Security Package: All of our services
have very strict security requirements. The Java
security package provides tools that can be used
in Grid services such as our replication services.

All these components are discussed in detail in the
following sections and thus also outline the paper or-
ganization.

2. Replication Service Framework
’Reptor’

In the following section we first give an architectural
overview of the entire replication framework and then
discuss individual services (Replica Location Service,
Replica Optimization Service etc.) in more detail.

2.1. General Overview of Replication
Architecture

Figure 1 presents the user’s perspective of the main
components of a replica management system for which
we have given the code-name ‘Reptor’. This design,
which first was discussed in [7], represents an evolution
of the original design presented in [8, 9]. Several of
the components have already been implemented and
tested in EDG (see shaded components) whereas oth-
ers (in white) are still in the design phase and might
be implemented in the future.

Reptor has been realized as a modular system that
provides easy plugability of third party components.
Reptor defines the minimal interface third party com-
ponents have to provide. According to this design the
entire framework is provided by the Replica Man-
agement Service which acts as a logical single entry
point to the system and interacts with the other com-
ponents of the systems as follows:

• The Core module provides the main function-
ality of replica management, namely replica cre-
ation, deletion, and cataloging by interacting
with third party modules such as transport and
replica and metadata catalog services.

• The goal of the Optimization component (im-
plemented as a service) is to minimize file access
times by pointing access requests to appropriate
replicas and pro-actively replicating frequently
used files based on gathered access statistics.

• The Security module manages the required
user authentication and authorization, in par-
ticular, issues pertaining to whether a user is
allowed to create, delete, read, and write a file.

• Collections are defined as sets of logical file-
names and other collections.

• The Consistency module maintains consis-
tency between all replicas of a given file, as well
as between the meta information stored in the
various catalogs.

• The Session component provides generic check-
pointing, restart, and rollback mechanisms to
add fault tolerance to the system.

• The Subscription service allows for a publish-
subscribe model for replica creation.

We decided to implement the Replica Management
Service and the core module functionality on the client
side in the Replica Manager Client, henceforth re-
ferred to as the Replica Manager. The other subser-
vices and APIs are modules and services in their own
right, allowing for a multitude of deployment scenarios
in a distributed environment.

One advantage of such a design is that if a sub-
service is unavailable, the Replica Manager can still
provide all the functionality that does not make use
of that particular service. Also, critical service com-
ponents may have more than one instance to provide
a higher level of availability and to avoid service bot-
tlenecks.

A detailed description of the implemented compo-
nents and services can be found in the following sub-
sections as well as in the original design in [7].

2.2. Interaction with Services
The Replica Manager needs to interact with many

external services as well as internal ones, such as the
the Information Service and transport mechanisms
like GridFTP servers [1]. Most of the components
required by the Replica Manager are independent ser-
vices, hence appropriate client stubs satisfying the in-
terface need to be provided by the service. By means
of configuration files the actual component to be used

TUAT008

Computing in High Energy Physics (CHEP 2003), La Jolla, California, March 24 - 28, 2003 3

ReplicaInitiation

AccessHistory

 Processing

Service
Management
Replica

Collection Optimization

Core

Sessions Consistency

Subscription

Transport

MetaData
Catalog

Service
Replica Location

Security

User

Replica Selection

Figure 1: Reptor’s main design components.

can be specified and Java dynamic class loading fea-
tures are exploited for making them available at exe-
cution time.

To date, the Replica Manager has been tested using
the following components:

• Replica Location Service (RLS) [4]: used for lo-
cating replicas in the Grid and assigning physi-
cal file names.

• Replica Metadata Catalog (RMC): used for
querying and assigning logical file names.

• Replica Optimization Service (ROS): used for lo-
cating the best replica to access.

• R-GMA: an information service provided by
EDG: The Replica Manager uses R-GMA to ob-
tain information about Storage and Computing
Elements [7].

• Globus C based libraries as well as CoG [12] pro-
viding GridFTP transport functionality.

• The EDG network monitoring services: EDG
(in particular WP7) provides these services to
obtain statistics and network characteristics.

The implementation is mainly done using the Java
J2EE framework and associated web service technolo-
gies (the Apache Tomcat servlet container, Jakarta
Axis , etc.). In more detail, we use client/server
architectures making SOAP Remote Procedure Call
(RPC) over HTTPS. The basic component interaction
is given in Figure 2 and will also explained in a few

more details in the following sub sections. For more
details on web service choices refer to Section 3.2.

For the user, the main entry point to the Repli-
cation Services is through the client interface that is
provided via a Java API as well as a command line in-
terface, the edg-replica-manager module. For each
of the main components in Figure 1, the Reptor frame-
work provides the necessary interface. For instance,
the functionality of the core module includes mainly
the file copy and cataloging process and is handled
in the client library with the respective calls to the
Transport and Replica Catalog modules.

2.3. Replica Location Service (RLS)

The Replica Location Service (RLS) is the service
responsible for maintaining a (possibly distributed)
catalog of files registered in the Grid infrastructure.
For each file there may exist several replicas. This is
due to the need for geographically distributed copies of
the same file, so that accesses from different points of
the globe may be optimized (see section on the Replica
Optimization Service). Obviously, one needs to keep
track of the scattered replicas, so that they can be
located and consistently updated.

As such, the RLS is designed to store one-to-
many relationships between (Grid Unique Identifiers
(GUIDs) and Physical File Names (PFNS). Since
many replicas of the same file may coexist (with dif-
ferent PFNs) we identify them as being replicas of the
same file by assigning to them the same unique iden-
tifier (the GUID).

TUAT008

4 Computing in High Energy Physics (CHEP 2003), La Jolla, California, March 24 - 28, 2003

Replica Optimization

Storage
Element

Replica Location Service

Storage
Element
Monitor

Network Monitor

Replica Manager Client

Information ServiceResource Broker

User Interface

Figure 2: Interaction of Replica Manager with other Grid components.

The RLS architecture encompasses two logical com-
ponents - the LRC (Local Replica Catalog) and the
RLI (Replica Location Index). The LRC stores the
mappings between GUIDs and PFNs on a per-site ba-
sis whereas the RLI stores information on where map-
pings exist for a given GUID. In this way, it is pos-
sible to split the search for replicas of a given file in
two steps: in the first one the RLI is consulted in or-
der to determine which LRCs contain mappings for a
given GUID; in the second one, the specific LRCs are
consulted in order to find the PFNs one is interested
in.

It is however worth mentioning that the LRC is im-
plemented to work in standalone mode, meaning that
it can act as a full RLS on its own if such a deploy-
ment architecture is necessary. When working in con-
junction with one (or several) RLIs, the LRC provides
periodic updates of the GUIDs it holds mappings for.
These updates consist of bloom filter objects, which
are a very compact form of representing a set, in order
to support membership queries [?].

The RLS currently has two possible database back-
end deployment possibilities: MySQL and Oracle9i.

2.4. Replica Metadata Catalog Service
(RMC)

Despite the fact that the RLS already provides
the necessary functionality for application clients, the
GUID unique identifiers are difficult to read and re-
member. The Replica Metadata Catalog (RMC) can
be considered as another layer of indirection on top
of the RLS that provides mappings between Logical
File Names (LFNs) and GUIDs. The LFNs are user
defined aliases for GUIDs - many LFNs may exist for

one GUID.
Furthermore, the RMC is also capable of holding

metadata about the original physical file represented
by the GUID (e.g. size, date of creation, owner). It is
also possible for the user to define specific metadata
and attach it to a GUID or to an LFN. The purpose of
this mechanism is to provide to users and applications
a way of querying the file catalog based on a wide
range of attributes. The possibility of gathering LFNs
as collections and manipulating these collections as
a whole has already been envisaged, but is not yet
implemented.

As for the RLS, the RMC supports MySQL and
Oracle9i as database backends.

2.5. Replica Optimization Service (ROS)

The goal of the optimization service is to select the
best replica with respect to network and storage ac-
cess latencies. It is implemented as a light-weight web
service that gathers information from the EDG net-
work monitoring service and the EDG storage element
service about the respective data access latencies.

In [2] we defined the APIs getNetworkCosts and
getSECosts for interactions of the Replica Manager
with the Network Monitoring and the Storage Ele-
ment Monitor. These two components monitor the
network traffic and the access traffic to the storage
device respectively and calculate the expected trans-
fer time of a given file with a specific size.

In the EU DataGrid Project, Grid resources are
managed by the meta scheduler of WP1, the Resource
Broker [5]. One of the goals of the Resource Broker
is to decide on which Computing Element the jobs
should be run such that the throughput of all jobs

TUAT008

Computing in High Energy Physics (CHEP 2003), La Jolla, California, March 24 - 28, 2003 5

is maximized. Assuming highly data intensive jobs,
a typical optimization strategy could be to select the
least loaded resource with the maximum amount of lo-
cally avaliable data. In [2] we introduced the Replica
Manager API getAccessCost that returns the access
costs of a specific job for each candidate Computing
Element. The Resource Broker can then take this in-
formation provided by the Replica Manager to sched-
ule each job to its optimal resources.

The interaction of the Replica Manager with the
Resource Broker, the Network Monitor and the Stor-
age Element Monitor is depicted in Figure 2.

2.6. Replica Subscription Service
The Replica Subscription Service (RSS) provides

automatic replication based on a subscription model.
The basic design is based on our first generation
replication tool GDMP (Grid Data Mirroring Pack-
age) [14].

3. SQL Database Service: Spitfire

Spitfire [3] provides a means to access relational
databases from the Grid. This service has been pro-
vided by our work package for some time and was
our first service that used the web service paradigm.
Thus, we give more details about its implementation
in Section 3.2 since many of the technology choices
for the replication services explained in the previous
section are based on choices also made for Spitfire.

3.1. Spitfire Overview
The SQL Database service (named Spitfire) permits

convenient and secure storage, retrieval and query-
ing of data held in any local or remote RDBMS. The
service is optimized for metadata storage. The pri-
mary SQL Database service has been re-architected
into a standard web service. This provides a plat-
form and language independent way of accessing the
information held by the service. The service exposes a
standard interface in WSDL format, from which client
stubs can be built in most common programming lan-
guages, allowing a user application to invoke the re-
mote service directly. The interface provides the com-
mon SQL operations to work with the data. Pre-built
client stubs exist for the Java, C and C++ program-
ming languages. The service itself has been tested
with the MySQL and Oracle databases.

The earlier SQL Database service was primarily ac-
cessed via a web browser (or command line) using
pre-defined server-side templates. This functionality,
while less flexible than the full web services interface,
was found to be very useful for web portals, providing
a standardized view of the data. It has therefore been

retained and re-factored into a separate SQL Database
browser module.

3.2. Component Description and Details
about Web Service Design

There are three main components to the SQL
Database service: the primary server component, the
client(s) component, and the browser component. Ap-
plications that have been linked to the SQL Database
client library communicate to a remote instance of
the server. This server is put in front of a RDBMS
(e.g. MySQL), and securely mediates all Grid access
to that database. The browser is a standalone web
portal that is also placed in front of a RDBMS.

The server is a fully compliant web service imple-
mented in Java. It runs on Apache Axis inside a
Java servlet engine (currently we use the Java refer-
ence servlet engine, Tomcat, from the Apache Jakarta
project). The service mediates the access to a RDBMS
that must be installed independently from the service.
The service is reasonably non-intrusive, and can be
installed in front of a pre-existing RDBMS. The lo-
cal database administrator retains full control of the
database back-end, with only limited administration
rights being exposed to properly authorized grid users.

The web services client, at its most basic, consists
of a WSDL service description that describes fully the
interface. Using this WSDL description, client stubs
can be generated automatically in the programming
language of choice. We provide pre-built client stubs
for the Java, C and C++ programming languages.
These are packaged as Java JAR files and static li-
braries for Java and C/C++ respectively.

The browser component is a server side component
that provides web-based access to the RDBMS. It pro-
vides the functionality of the previous version of the
SQL Database service. This service does not depend
on the other components and can be used from any
web browser. The browser component is implemented
as a Java servlet. In the case where it is installed to-
gether with the primary service, it is envisaged that
both services will be installed inside the same servlet
engine.

The design of the primary service is similar to that
of the prototype Remote Procedure Call GridDataSer-
vice standard discussed in [11], and indeed, influenced
the design of the standard. It is expected that the SQL
Database service will eventually evolve into a proto-
type implementation of the RPC part of this GGF
standard. However, to maximise the usability and
portability of the service, we chose to implement it as
a plain web service, rather than just an OGSA service.
The architecture of the service has been designed so
that it will be trivial to implement the OGSA specifi-
cation at a later date.

The communication between the client and server

TUAT008

6 Computing in High Energy Physics (CHEP 2003), La Jolla, California, March 24 - 28, 2003

components is over the HTTP(S) protocol. This max-
imises the portability of the service, since this proto-
col has many pre-existing applications that have been
heavily tested and are now very robust. The data
format is XML, with the request being wrapped us-
ing standard SOAP Remote Procedure Call. The in-
terface is designed around the SQL query language.
The communication between the user’s web browser
and the SQL Database Browser service is also over
HTTP(S).

The server and browser components (and parts of
the Java client stub) make use of the common Java
Security module as described in Section 4. The secure
connection is made over HTTPS (HTTP with SSL or
TLS).

Both the server and browser have a service certifi-
cate (they can optionally make use of the system’s
host certificate), signed by an appropriate CA, which
they can use to authenticate themselves to the client.
The client uses their GSI proxy to authenticate them-
selves to the service. The user of the browser service
should load their GSI certificate into the web browser,
which will then use this to authenticate the user to the
browser.

A basic authorisation scheme is defined by default
for the SQL Database service, providing administra-
tive and standard user functionality. The authorisa-
tion is performed using the subject name of the user’s
certificate (or a regular expression matching it). The
service administrator can define a more complex au-
thorisation scheme if necessary, as described in the
security module documentation.

4. Security

The EDG Java security package covers two main
security areas, authentication authorization. Authen-
tication assures that the entity (user, service or server)
at the other end of the connection is who it claims to
be. Authorization decides what the entity is allowed
to do.

The aim in the security package is always to make
the software as flexible as possible and to take into
account the needs of both EDG and industry to make
the software usable everywhere. To this end there
has been some research into similarities and possibili-
ties for cooperation with for example Liberty Alliance,
which is a consortium developing standards and solu-
tions for federated identity for web based authentica-
tion, authorization and payment.

4.1. Authentication
The authentication mechanism is an extension of

the normal Java SSL authentication mechanism. The
mutual authentication in SSL happens by exchanging

public certificates that are signed by trusted certificate
authorities (CA). The user and the server prove that
they are the owners of the certificate by proving in
cryptographic means that they have the private key
that matches with the certificate.

In Grids the authentication is done using GSI proxy
certificates that are derived from the user certificate.
This proxy certificate comes close to fulfilling the
PKIX [10] requirement for valid certificate chain, but
does not fully follow the standard. This causes the
SSL handshake to fail in the conforming mechanisms.
For the GSI proxy authentication to work the SSL
implementation has to be nonstandard or needs to be
changed to accept them.

The EDG Java security package extends the Java
SSL package. It

• accepts the GSI proxies as the authentication
method

• supports GSI proxy loading with periodical
reloading

• supports OpenSSL certificate-private key pair
loading

• supports CRLs with periodical reloading

• integrates with Tomcat

• integrates with Jakarta Axis SOAP framework

The GSI proxy support is done by finding the user
certificate and making special allowances and restric-
tions to the following proxy certificates. The al-
lowance is that the proxy certificate does not have
to be signed by a CA. The restriction is that the dis-
tinguished name (DN) of the proxy certificate has to
start with the DN of the user certificate (e.g. ‘C=CH,
O=cern, CN=John Doe’). This way the user cannot
pretend to be someone else by making a proxy with
DN ‘C=CH, O=cern, CN=Jane Doe’. The proxies
are short lived, so the program using the SSL connec-
tion may be running while the proxy is updated. For
this reason the user credentials (for example the proxy
certificate) can be made to be reloaded periodically.

OpenSSL saves the user credentials using two files,
one for the user certificate and the other for the pri-
vate key. With the EDG Java security package these
credentials can be loaded easily.

The CAs periodically release lists of revoked cer-
tificates in a certificate revocation list (CRL). The
EDG Java security package supports this CRL mech-
anism and even if the program using the package is
running, these lists can be periodically and automati-
cally reloaded into the program by setting the reload
interval.

The integration to Jakarta Tomcat (a Java web
server and servlet container) is done with an interface

TUAT008

Computing in High Energy Physics (CHEP 2003), La Jolla, California, March 24 - 28, 2003 7

class and to use it only the Jakarta Tomcat configu-
ration file has to be set up accordingly.

The Jakarta Axis SOAP framework provides an
easy way to change the underlying SSL socket imple-
mentation on the client side. Only a simple interface
class was needed and to turn it on a system variable
has to be set while calling the Java program. In the
server side the integration was even simpler as Axis
runs on top of Tomcat and Tomcat can be set up as
above.

Due to issues of performance, many of the services
described in this document have equivalent clients
written in C++. To this end, there are several C++
SOAP clients that have been written based on the
gSOAP library. In order to provide the same authen-
tication and authorization functionality as in the cor-
responding Java SOAP clients, an accompanying C
library is being developed for gSOAP. When ready, it
is to provide support for mutual authentication be-
tween SOAP clients and SOAP servers, support for
the coarse-grained authorization as implemented in
the server end by the Authorization Manager (de-
scribed below) and verification of both standard X509
and GSI style server and server proxy certificates.

4.2. Coarse grained authorization

The EDG Java security package only implements
the coarse grained authorization. The coarse grained
authorization decision is made in the server before the
actual call to the service and can make decisions such
as ‘what kind of access does this user have to that
database table’ or ‘what kind of access does this user
have to the file system’. The fine grained authoriza-
tion that answers the question ‘what kind of access
does this user have to this file’ can only be handled
inside the service, because the actual file to access is
only known during the execution of the service. The
authorization mechanism is positioned in the server
before the service.

In the EDG Java security package the authorization
is implemented as role based authorization. Currently
the authorization is done in the server end and the
server authorizes the user, but there are plans to do
mutual authorization where also the client end checks
that the server end is authorized to perform the ser-
vice or to save the data. The mutual authorization
is especially important in the medical field where the
medical data can only be stored in trusted servers.

The role based authorization happens in two stages,
first the system checks that the user can play the role
he requested (or if there is a default role defined for
him). The role the user is authorized to play is then
mapped to a service specific attribute. The role defi-
nitions can be the same in all the services in the (vir-
tual) organization, but the mapping from the role to
the attribute is service specific. The service specific

attribute can be for example a user id for file system
access of database connection id with preconfigured
access rights. If either step fails, the user is not autho-
rized to access the service using the role he requested.

There are two modules to interface to the informa-
tion flow between the client and the service; one for
normal HTTP web traffic and the other for SOAP web
services. The authorization mechanism can attach to
other information flows by writing a simple interface
module for them.

In a similar fashion the authorization information
that is used to make the authorization decisions can
be stored in several ways. For simple and small instal-
lation and for testing purposes the information can be
a simple XML file. For larger installations the infor-
mation can be stored into a database and when using
the Globus tools to distribute the authorization infor-
mation, the data is stored in a text file that is called
the gridmap file. For each of these stores there is
a module to handle the specifics of that store and to
add a new way to store the authorization information.
Only a interface module needs to be written. When
the virtual organization membership service (VOMS)
is used the information provided by the VOMS server
can be used for the authorization decisions and all the
information from the VOMS is parsed and forwarded
to the service.

4.3. Administration web interface

The authorization information usually ends up be-
ing rather complex, and maintaining that manually
would be difficult, so a web based administration in-
terface was created. This helps to understand the au-
thorization configuration, eases the remote manage-
ment and by making management easier improves the
security.

5. Conclusions

The second generation of our data management ser-
vices has been designed and implemented based on
the web service paradigm. In this way, we have a
flexible and extensible service framework and are thus
prepared to follow the general trend of the upcoming
OGSA standard that is based on web service tech-
nology. Since interoperability of services seems to be
a key feature in the upcoming years, we believe that
our approach used in the second generation of data
management is compatible with the need for service
interoperability in a rapidly changing Grid environ-
ment.

Our design choices have been as follows: we aim for
supporting robust, highly available commercial prod-
ucts (like Oracle/DB and Oracle/Application Server)

TUAT008

8 Computing in High Energy Physics (CHEP 2003), La Jolla, California, March 24 - 28, 2003

as well as standard open source technology (MySQL,
Tomcat, etc.).

The first experience in using the new generation
of services shows that basic performance expectations
are met. During this year, the services will be de-
ployed on the EDG testbed (and possibly others): this
will show the strength and the weaknesses of the ser-
vices.

Acknowledgments

This work was partially funded by the European
Commission program IST-2000-25182 through the EU
DataGrid Project.

References

[1] W. Allcock, J. Bester, J. Bresnahan, A.
Chernevak, I. Foster, C. Kesselman, S. Meder, V.
Nefedova, D. Quesnal, S. Tuecke; ”Data Manage-
ment and Transfer in High Performance Compu-
tational Grid Environments.” Parallel Comput-
ing, 2002.

[2] W. H. Bell, D. G. Cameron, L. Capozza,
P. Millar, K. Stockinger, F. Zini, Design of
a Replica Optimisation Framework, Techni-
cal Report, DataGrid-02-TED-021215, Geneva,
Switzerland, December 2002.

[3] William Bell, Diana Bosio, Wolfgang Hoschek,
Peter Kunszt, Gavin McCance, and Mika Silan-
der. “Project Spitfire - Towards Grid Web Service
Databases”. Technical report, Global Grid Fo-
rum Informational Document, GGF5, Edinburgh,
Scotland, July 2002.

[4] Ann Chervenak, Ewa Deelman, Ian Fos-
ter, Leanne Guy, Wolfgang Hoschek, Adriana
Iamnitchi, Carl Kesselman, Peter Kunszt, Matei
Ripenu, Bob Schwartzkopf, Heinz Stocking, Kurt
Stockinger, Brian Tierney , “Giggle: A Frame-
work for Constructing Scalable Replica Loca-
tion Services”,Proceedings of SC2002 Conference,
November 2002

[5] DataGrid WP1, Definition of Architecture, Tech-
nical Plan and Evaluation Criteria for Scheduling,
Resource Management, Security and Job Descrip-
tion, Technical Report, EU DataGrid Project. De-
liverable D1.2, September 2001.

[6] European DataGrid project (EDG):
http://www.eu-datagrid.org

[7] L. Guy, P. Kunszt, E. Laure, H. Stockinger, K.
Stockinger “Replica Management in Data Grids”,
Technical Report, GGF5 Working Draft, Edin-
burgh Scotland, July 2002

[8] Wolfgang Hoschek, Javier Jaen- Martinez, Pe-
ter Kunszt, Ben Segal, Heinz Stockinger, Kurt
Stockinger, Brian Tierney, ”Data Management
(WP2) Architecture Report”, EDG Deliverable
2.2, http://edms.cern.ch/document/332390

[9] Wolfgang Hoschek, Javier Jean-Martinez, Asad
Samar, Heinz Stockinger, Kurt Stockinger. Data
Management in an International Data Grid
Project. 1st IEEE/ACM International Workshop
on Grid Computing (Grid’2000). Bangalore, In-
dia, Dec 17-20, 2000.

[10] R. Housley et.al. “Internet X.509 Public Key In-
frastructure Internet X.509 Public Key Infras-
tructure, RFC 3280, The Internet Society April
2002, http://www.ietf.org/rfc/rfc3280.txt

[11] Amy Krause, Susan Malaika, Gavin McCance,
James Magowan, Norman W. Paton, Greg Ric-
cardi “Grid Database Service Specification”,
Global Grid Forum 6, Edinburgh, 2002.

[12] Gregor von Laszewski, Ian Foster, Jarek Gawor,
Peter Lane: “A Java Commodity Grid Kit”, Con-
currency and Computation: Practice and Expe-
rience, 13(8-9), 2001.

[13] H. Stockinger, A. Samar, B. Allcock, I. Foster,
K. Holtman, B. Tierney. ”File and Object Repli-
cation in Data Grids.” Proceedings of the Tenth
International Symposium on High Performance
Distributed Computing (HPDC-10), IEEE Press,
August 2001

[14] Heinz Stockinger, Flavia Donno, Erwin Laure,
Shahzad Muzaffar, Giuseppe Andronico, Peter
Kunszt, Paul Millar. “Grid Data Management in
Action: Experience in Running and Supporting
Data Management Services in the EU DataGrid
Project”, Computing in High Energy Physics
(CHEP 2003), La Jolla, California, March 24 -
28, 2003.

[15] B. Bloom “Space/time tradeoffs in hash cod-
ing with allowable errors”, CACM, 13(7):422-426,
1970.

TUAT008

http://www.eu-datagrid.org
http://edms.cern.ch/document/332390
http://www.ietf.org/rfc/rfc3280.txt

