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Abstract—Codes on graphs of interest for next generation
forward error correction (FEC) in high-speed optical networks,
namely turbo codes and low-density parity-check (LDPC) codes,
are described in this invited paper. We describe both binary
and nonbinary LDPC codes, their design, and decoding. We also
discuss an FPGA implementation of decoders for binary LDPC
codes. We then explain how to combine multilevel modulation
and channel coding optimally by using coded modulation. Also,
we describe an LDPC-coded turbo-equalizer as a candidate
for dealing simultaneously with fiber nonlinearities, PMD, and
residual chromatic dispersion.

Index Terms—Coded modulation, codes on graphs, fiber-optics
communications, low-density parity-check (LDPC) codes, turbo
equalization.

I. INTRODUCTION

T
HE transport capabilities of fiber-optic communication

systems have increased tremendously in the past two

decades, primarily due to advances in optical devices and

technologies, and have enabled the Internet as we know it

today with all its impacts on the modern society. In particular,

dense wavelength division multiplexing (DWDM) became a

viable, flexible, and cost-effective transport technology. Net-

work operators already consider 100 Gb/s per DWDM channel

transmission, yet the performance of fiber-optic communication

systems operating at those data rates is degraded significantly

due to several transmission impairments including intra- and

interchannel nonlinearities, the nonlinear phase noise, and

polarization-mode dispersion (PMD) [1], [2]. These effects

constitute the current limiting factors in efforts to accommodate

demands for higher capacities/speeds, longer link lengths, and

more flexible wavelength switching and routing capabilities

in optical networks. To deal with those channel impairments,

novel advanced techniques in modulation and detection, coding

and signal processing should be developed; and some important

approaches will be described in this invited paper.
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Codes on graphs [3], such as turbo codes [4]–[9] and low-den-

sity parity-check (LDPC) codes [10]–[15] have revolutionized

communications, and are becoming standard in many applica-

tions. LDPC codes, invented by Gallager [10] in 1960s, are

linear block codes for which the parity check matrix has low

density of ones. LDPC codes have generated great interests in

the coding community recently, and this has resulted in a great

deal of understanding of the different aspects of LDPC codes

and their decoding process. An iterative LDPC decoder based

on the sum-product algorithm (SPA) has been shown to achieve

a performance as close as 0.0045 dB to the Shannon limit [13].

The inherent low-complexity [10]–[15] of this decoder opens

up avenues for its use in different high-speed applications, in-

cluding optical communications.

The purpose of this invited paper is threefold: (i) to describe

different classes of codes on graphs of interest for optical com-

munications, (ii) to describe how to combine multilevel mod-

ulation and channel coding optimally (Section IV) and (iii) to

describe how to perform equalization and soft decoding jointly.

We first describe briefly, in Section II, the codes on graphs pro-

posed for use in optical communications, namely, turbo-product

codes (TPCs) and LDPC codes. Due to the fact that LDPC

codes can match and outperform TPCs in terms of bit-error ratio

(BER) performance while having a lower complexity decoding

algorithm, in this paper, we are mostly concerned with LDPC

codes. We describe basic concepts (in Section III) of LDPC

codes and describe how to design large girth quasi-cyclic LDPC

codes. We also provide a log-domain decoding algorithm and its

implementation on an FPGA. The main problem in decoder im-

plementation for large girth binary LDPC codes is the excessive

codeword length and fully parallel implementation on a single

FPGA is quite a challenging problem. To solve this problem, we

describe nonbinary LDPC codes over of large girth.

Then we describe, in Section IV, how to optimize multilevel

modulation and coding process to achieve the best possible BER

performance through the use of multilevel coding (MLC) and

coded orthogonal frequency division multiplexing (OFDM). Fi-

nally, in Section V, we discuss how to combine the maximum

a posteriori probability (MAP) equalizer in an optimal fashion

with an LDPC decoder, in so-called turbo-equalization fashion.

II. CODES ON GRAPHS

The codes on graphs of interest in optical communications
include turbo codes, turbo-product codes, and LDPC codes. The
turbo codes [4]–[9] can be considered as the generalization of
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the concatenation of codes in which, during iterative decoding,
the decoders interchange the soft messages for a certain number
of times. Turbo codes can approach channel capacity closely in
the region of interest for wireless communications. However,
they exhibit strong error floors in the region of interest for fiber-
optics communications (see [5]); therefore, alternative iterative
soft decoding approaches are to be sought. As recently shown
in [7]–[9], [12]–[15], turbo-product codes and LDPC codes can
provide excellent coding gains, and when properly designed, do
not exhibit error floor in the region of interest for fiber optics
communications.

A turbo-product code (TPC) is an code in
which codewords form an array such that each row is
a codeword from an code , and each column is
a codeword from an code . With , and
( ,2) we denote the codeword length, dimension and min-
imum distance, respectively, of the component code. The soft
bit reliabilities are iterated between decoders for and . In
fiber-optics communications, TPCs based on BCH component
codes are intensively studied, e.g., [7]–[9].

A. LDPC Codes

If the parity-check matrix has a low density of ones and
the number of 1’s per row and per column are both constant,
the code is said to be a regular LDPC code. To facilitate the
implementation at high speed, we prefer the use of regular
rather than irregular LDPC codes. The graphical representation
of LDPC codes, known as bipartite (Tanner) graph represen-
tation, is helpful in efficient description of LDPC decoding
algorithms. A bipartite (Tanner) graph is a graph whose nodes
may be separated into two classes (variable and check nodes),
and where undirected edges may only connect two nodes not
residing in the same class. The Tanner graph of a code is drawn
according to the following rule: check (function) node is
connected to variable (bit) node whenever element in a
parity-check matrix is a 1. In an parity-check matrix,
there are check nodes and variable nodes. As an
illustrative example, consider the -matrix of the following
LDPC code

For any valid codeword , the checks used to
decode the codeword are written as:

• Equation : .
• Equation : .
• Equation : .
• Equation : .
The bipartite graph (Tanner graph) representation of this code

is given in Fig. 1(a). The circles represent the bit (variable)
nodes while squares represent the check (function) nodes. For
example, the variable nodes , , and are involved in Eq.

and, therefore, connected to the check node . A closed
path in a bipartite graph comprising edges that closes back on
itself is called a cycle of length . The shortest cycle in the bipar-
tite graph is called the girth. The girth influences the minimum
distance of LDPC codes, correlates the extrinsic log-likelihood

Fig. 1. (a) Bipartite graph of LDPC(6, 2) code described by��� matrix below.
Cycles in a Tanner graph: (b) cycle of length 4 and (c) cycle of length 6.

ratios (LLRs) and, therefore, affects the decoding performance.
The use of large girth LDPC codes is preferable because the
large girth increases the minimum distance and de-correlates
the extrinsic info in the decoding process. To improve the iter-
ative decoding performance, we have to avoid cycles of length
4, and preferably 6 as well. To check for the existence of short
cycles, one has to search over -matrix for the patterns shown
in Fig. 1(b) and (c).

The code description can be done by the degree distribution
polynomials and , for the variable-node ( -node) and
the check-node ( -node) respectively [15]

(1)

where and denote the fraction of the edges that are
connected to degree- -nodes and -nodes, respectively, and

and denote the maximum -node and -node degrees,
respectively.

III. QUASI-CYLIC (QC) LDPC CODES

In this section, we describe a method for designing large girth
QC LDPC codes; an efficient and simple variant of SPA suitable
for use in optical communications, namely the min-sum-with-
correction term algorithm; an FPGA implementation of their
binary decoders; and nonbinary QC LDPC codes.

A. Design of Large Girth Quasi-Cyclic LDPC Codes

Based on Tanner’s bound for the minimum distance of an
LDPC code [11] [see (2), shown at the bottom of the next page,
where and denote the girth of the code graph and the
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column weight, respectively, and where stands for the min-
imum distance of the code], it follows that large girth leads to an
exponential increase in the minimum distance, provided that the
column weight is at least 3. ( denotes the largest integer less
than or equal to the enclosed quantity.) For example, the min-
imum distance of girth-10 codes with column weight is
at least 10. The parity-check matrix of regular QC LDPC codes
[14], [16] can be represented by

(3)
where is ( is a prime number) identity matrix, is
permutation matrix given by ,
(zero otherwise), and where and represent the number of
block-rows and block-columns in (3), respectively. The set of
integers are to be carefully chosen from the set

so that the cycles of short length, in the corresponding Tanner
(bipartite) graph representation of (3), are avoided. According to
Theorem 2.1 in [16], we have to avoid the cycles of length
( ) defined by the following equation:

(4)

where the closed path is defined by
with the pair of indices denoting

row-column indices of permutation-blocks in (3) such that
, ( ). Therefore, we have

to identify the sequence of integers
( ; ) not satisfying (4), which can be
done either by computer search or in a combinatorial fashion.
For example, to design the QC LDPC codes in [17], we intro-
duced the concept of the cyclic-invariant difference set (CIDS).
The CIDS-based codes come naturally as girth-6 codes, and to
increase the girth we had to selectively remove certain elements
from a CIDS. The design of LDPC codes of rate above 0.8,
column weight 3 and girth-10 using the CIDS approach is a very
challenging and is still an open problem. Instead, in our recent
paper [14] , we solved this problem by developing an efficient
computer search algorithm. We add an integer at a time from
the set (not used before) to the initial set
and check if the (4) is satisfied. If the (4) is satisfied, we remove
that integer from the set and continue our search with another

integer from set until we exploit all the ele-
ments from . The code rate of these QC codes,

, is lower-bounded by

(5)

and the codeword length is , where denotes the cardi-
nality of set . For a given code rate , the number of elements
from to be used is . With this algorithm, LDPC
codes of arbitrary rate can be designed.

1) Example 1: By setting , the set of integers to be
used in (3) is obtained as

The corresponding LDPC code has rate
, column weight 3, girth-10 and length

. In the example above, the initial set of integers was
, and the set of rows to be used in (3) is {1,3,6}. The

use of a different initial set will result in a different set from that
obtained above.

2) Example 2: By setting , the set is obtained as

If 30 integers are used, the corresponding LDPC code has rate
, column weight 3, girth-8 and length

.

B. Decoding of LDPC Codes

In this sub-section, we describe the min-sum with correction
term decoding algorithm [15], [18]. It is a simplified version
of the original algorithm proposed by Gallager [10]. Gallager
proposed a near optimal iterative decoding algorithm for LDPC
codes that computes the distributions of the variables in order to
calculate the a posteriori probability (APP) of a bit of a code-
word to be equal to 1 given a received vector

. This iterative decoding scheme engages
passing the extrinsic info back and forth among the -nodes and
the -nodes over the edges to update the distribution estimation.
Each iteration in this scheme is composed of two half-iterations.
In Fig. 2, we illustrate both the first and the second halves of
an iteration of the algorithm. As an example, in Fig. 2(a), we
show the message sent from -node to the -node . -node
collects the information from channel ( sample), in addition

(2)
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Fig. 2. Illustration of the half-iterations of the sum-product algorithm: (a) first
half-iteration: extrinsic info sent from �-nodes to �-nodes, and (b) second half-
iteration: extrinsic info sent from �-nodes to �-nodes.

to extrinsic info from other -nodes connected to -node, pro-
cesses them and sends the extrinsic info (not already available
info) to . This extrinsic info contains the information about the
probability , where . This is performed
in all -nodes connected to -node. On the other hand, Fig. 2(b)
shows the extrinsic info sent from -node to the -node ,
which contains the information about Pr( equation is satis-
fied ). This is done repeatedly to all the -nodes connected to

-node.
After this intuitive description, we describe the min-sum-

with-correction-term algorithm in more detail [15] because of
its simplicity and suitability for high-speed implementation.
Generally, we can either compute APP or the APP
ratio , which is also
referred to as the likelihood ratio. In log-domain version of the
sum-product algorithm, we replace these likelihood ratios with
log-likelihood ratios (LLRs) due to the fact that the probability
domain includes many multiplications which leads to numerical
instabilities, whereas the computation using LLRs involves
addition only. Moreover, the log-domain representation is more
suitable for finite precision representation. Thus, we compute
the LLRs by . For
the final decision, if , we decide in favor of 0 and if

, we decide in favor of 1.
To further explain the algorithm, we introduce the following

notations due to MacKay [12].

= { -nodes connected to -node }.

= { -nodes connected to -node } { -node
}.

= { -nodes connected to -node }.

= { -nodes connected to -node } { -node
}.

= {messages from all -nodes except node }.

= {messages from all -nodes except node }.

= .

= event that the check equations involving
are satisfied.

= .

=
.

In the log-domain version of the sum-product algorithm, all
the calculations are performed in the log-domain as follows:

(6)

The algorithm starts with the initialization step where we set
as follows:

(7)

where is the probability of error in the binary symmetric
channel (BSC), is the variance of the Gaussian distribution
of the AWGN, and and ( ,1) represent the mean
and the variance of Gaussian process corresponding to the bits

,1 of a binary asymmetric (BA)-AWGN channel. After
initialization of , we calculate as follows:

(8)

where denotes the modulo-2 addition, and denotes a pair-
wise computation defined by

(9)

The term is the correction term and is implemented
as a lookup table.

After we calculate , we update

(10)

Finally, the decision step is as follows:

otherwise.
(11)

If the syndrome equation (where the superscript
denotes transposition) is satisfied or the maximum number of
iterations is reached, we stop, otherwise, we recalculate
and update and and check again. It is important to
set the number of iterations high enough to ensure that most of
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the codewords are decoded correctly and low enough not to af-
fect the processing time. It is important to mention that decoder
for good LDPC codes require less number of iterations to guar-
antee successful decoding.

C. BER Performance of LDPC Codes

The results of simulations for an additive white Gaussian
noise (AWGN) channel model are given in Fig. 3, where
we compare the large girth LDPC codes [Fig. 3(a)] against
RS codes, concatenated RS codes, TPCs, and other classes
of LDPC codes. In optical communications, it is a common
practice to use the -factor as a figure of merit of binary
modulation schemes instead of signal-to-noise ratio.1 In all
simulation results in this paper, we maintained the double
precision. For the LDPC(16935,13550) code, we also provided
3- and 4-bit fixed-point simulation results [see Fig. 3(a)].
Our results indicate that the 4-bit representation performs
comparable to the double-precision representation whereas
the 3-bit representation performs 0.27 dB worse than the
double-precision representation at the BER of . The
girth-10 LDPC(24015,19212) code of rate 0.8 outperforms
the concatenation (of rate 0.82)
by 3.35 dB and RS(255,239) by 4.75 dB both at BER of

. The same LDPC code outperforms projective geom-
etry (PG) based LDPC(4161,3431) (of rate 0.825) of
girth-6 by 1.49 dB at BER of , and outperforms CIDS
based LDPC(4320,3242) of rate 0.75 and girth-8 LDPC codes
by 0.25 dB. At BER of , it outperforms lattice based
LDPC(8547,6922) of rate 0.81 and girth-8 LDPC code by
0.44 dB, and TPC of rate
0.82 by 0.95 dB. The net effective coding gain (NECG) at BER
of is 10.95 dB.

In Fig. 3(b), different LDPC codes are compared against RS
(255,223) code, concatenated RS code of rate 0.82 and convo-
lutional code (CC) (of constraint length 5). It can be seen that
LDPC codes, both regular and irregular, offer much better per-
formance than hard-decision codes. It should be noticed that
pairwised balanced design (PBD) based irregular LDPC code
of rate 0.75 is only 0.4 dB away from the concatenation of con-
volutional-RS codes [denoted in Fig. 3(b) as ] with
significantly lower code rate at BER of . As
expected, irregular LDPC codes (black colored curves), outper-
form regular LDPC codes (pink colored curves).

D. FPGA Implementation of Large Girth LDPC Codes

We use the min-sum algorithm which is a further simpli-
fied version of the min-sum-with-correction-term algorithm de-
tailed in the previous subsection. The only difference is that the
min-sum algorithm omits the correction term in (9). Among var-
ious alternatives, we adopted a partially parallel architecture in
our implementation since it is a natural choice for quasi-cyclic
codes. In this architecture, a processing element (PE) is assigned
to a group of nodes of the same kind instead of a single node.
A PE mapped to a group of bit nodes is called a bit-processing
element (BPE), and a PE mapped to a group of check nodes is
called a check-processing element (CPE). BPEs (CPEs) process

1The �-factor is defined as � � �� � � ���� � � �, where � and �
(� � �,1) represent the mean and the standard deviation corresponding to the
bits � � �,1.

Fig. 3. (a) Large girth QC LDPC codes against RS codes, concatenated RS
codes, TPCs, and previously proposed LDPC codes on an AWGN channel
model, and (b) LDPC codes versus convolutional, concatenated RS, and
concatenation of convolutional and RS codes on an AWGN channel. Number
of iterations in sum-product-with-correction-term algorithm was set to 25.

Fig. 4. Assignment of bit nodes and check nodes to BPEs and CPEs,
respectively.

the nodes assigned to them in a serial fashion. However, all
BPEs (CPEs) carry out their tasks simultaneously. Thus, by
changing the number of elements assigned to a single BPE and
CPE, one can control the level of parallelism in the hardware. In
Fig. 4, we depict a convenient method for assigning BPEs and
CPEs to the nodes in a QC-LDPC code. This method is not only
easy to implement but also advantageous since it simplifies the
memory addressing.

The messages between BPEs and CPEs are exchanged via
memory banks. In Table I, we summarize the memory alloca-
tion in our implementation where we used the following nota-
tion: MEM B and MEM C denote the memories used to store
bit node and check node edge values, respectively; MEM E
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TABLE I
MEMORY ALLOCATION OF THE IMPLEMENTATION

Fig. 5. Pseudo code describing assignment of bit nodes and check nodes to
BPEs and CPEs.

stores the codeword estimate; MEM I stores the initial log-like-
lihood ratios; and finally, MEM R holds the state of the random
number generator needed for AWGN source, which is based on
Mersenne Twister algorithm.

In our initial design [20], we used the MitrionC hardware pro-
gramming language, which is “an intrinsically parallel C-family
language” developed by Mitrionics, Inc. [21]. Using MitrionC
syntax, we provided a pseudo code in Fig. 5 showing how the
data are transferred from MEM B to MEM C after being pro-
cessed by BPEs. The code features three loop expressions of
two types. The for loop sequentially executes its loop body for
every bit node, , in a BPE. On the contrary, the for each loop is
a parallel loop, and, hence, the operations in the loop body are
applied to all the elements in its declaration simultaneously. To
expatiate, due to the first for each loop, all BPEs perform their
operations on their th bit nodes in parallel. Since we are using a
single memory in our implementation to store the edge values of
all check nodes, the second for each loop causes a BPE to update
its connections in MEM C in a pipelined fashion. As also shown
in Fig. 5, we compute the memory addresses to read/write data
from/to “on-the-fly” using the bit node ID ( ), BPE ID ( ) and
CPE ID ( ). This convenient calculation of addresses is possible
because of the quasi-cyclic nature of the code and the way we
assigned BPEs and CPEs.

We tested our design on the FPGA Subsystem located at the
High Performance Computing (HPC) Center at The Univer-
sity of Arizona. This FPGA Subsystem consists of SGI RASC
RC1000 Blade having two Virtex 4 LX2000 FPGAs. In Fig. 6,
we present BER performance comparison of FPGA and soft-
ware implementations for a girth-10 quasi-cyclic LDPC (16935,
13550) code. We observe a close agreement between the two
BER curves. Furthermore, the performance of the min-sum al-
gorithm is only 0.2 dB worse than that of the min-sum-with-cor-
rection-term algorithm at the BER of and the gap gets

Fig. 6. BER performance comparison of FPGA and software implementations
of the min-sum algorithm.

closer as the Q factor increases. The NECG of the min-sum al-
gorithm for the same LDPC code at BER of is found to be
10.3 dB.

The main problem in decoder implementation for large girth
binary LDPC codes is the excessive codeword length, and
a fully parallel implementation on a single FPGA is quite a
challenging problem. To solve this problem, in the next sub-
section, we will consider large-girth nonbinary LDPC codes
over [22]–[25]. By designing codes over higher-order
fields, we aim to achieve the coding gains comparable to binary
LDPC codes but for shorter codeword lengths.

E. Nonbinary QC LDPC Codes

In this sub-section, we describe a two-stage design technique
for constructing nonbinary regular, high-rate LDPC codes. We
show that the complexity of the nonbinary decoding algorithm
over used to decode this code is 1.1 times less complex
compared to the min-sum-with-correction-term algorithm, de-
scribed in sub-section B, used for decoding a bit-length-matched
binary LDPC code. Furthermore, we demonstrate that by en-
forcing the nonbinary LDPC codes to have the same nonzero
field element in a given column in their parity-check matrices,
we can reduce the hardware implementation complexity of their
decoders without incurring any degradation in the error-correc-
tion performance.

A -ary LDPC code is a linear block code defined as the null
space of a sparse parity-check matrix over a finite field of
elements that is denoted by where is a prime or prime-
power. Davey and MacKay [23] devised a -ary sum-product
algorithm (QSPA) to decode -ary LDPC codes, where
and is an integer. They also proposed an efficient way of con-
ducting QSPA via fast Fourier transform (FFT-QSPA). FFT-
QSPA is further analyzed and improved in [24]. A mixed-do-
main version of the FFT-QSPA (MD-FFT-QSPA) that reduces
the computational complexity by transforming the multiplica-
tions into additions with the help of logarithm and exponenti-
ation operations is proposed in [26]. Due to the availability of
efficient decoding algorithms, we consider -ary LDPC codes
where is a power of two.

In the first step of our two-stage code design technique, we
design binary QC LDPC codes of girth-6 using the algebraic
construction method based on the multiplicative groups of finite
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fields [26]. Let be a primitive element of and let
be a -by- matrix given as follows:

(12)

We can transform into a quasi-cyclic parity-check matrix
of the following form:

(13)

where every sub-matrix is related to the field element
by

(14)
where is a -tuple over
whose th component and all other components
are zero. Using Theorem 1 in [26], we can show that the parity-
check matrix, , given in (13), which is a -by-
array of circulant permutation and zero matrices of size

-by- , has a girth of at least six. We use this quasi-cyclic,

girth-6 parity-check matrix in the second stage.
If we simply choose block-rows and block-columns from

while avoiding the zero matrices, we obtain a -reg-
ular parity-check matrix whose null space yields a -regular
LDPC code with a rate of at least . Instead of a simple,
random selection, however, if we choose rows and columns from

while avoiding performance-degrading short cycles, we
can boost the performance of the resulting LDPC code. Hence,
following the guidelines in [16], the first step in the second stage
is to select rows and columns from in such a way that
the resulting binary quasi-cyclic code has a girth of eight. In
the second step, we replace the 1’s in binary parity-check ma-
trix with nonzero elements from either by completely
random selection or by enforcing each column to have the same
nonzero element from while letting the nonzero element
of each column be determined again by a random selection. We
denote the final -ary -regular, girth-8 matrix by .

Following the two-stage design we had discussed above, we
generated (3,15)-regular, girth-8 LDPC codes over the fields

, where . All the codes had a code rate
( ) of at least 0.8 and, hence, an overhead
of 25% or less. We compared the BER performances of these
codes against each other and against some other well-known
codes, namely the ITU-standard RS(255,239), RS(255,223) and

codes; and
TPC. We used the binary AWGN (BI-AWGN)

channel model in our simulations and set the maximum number
of iterations to 50. In Fig. 7, we present the BER performances
of the set of nonbinary LDPC codes discussed above. Using the
figure, we can conclude that when we fix the girth of a nonbi-
nary regular, rate-0.8 LDPC code at eight, increasing the field
order above eight exacerbates the BER performance. In addition
to having better BER performance than codes over higher order
fields, codes over have smaller decoding complexities
when decoded using MD-FFT-QSPA algorithm since the com-
plexity of this algorithm is proportional to the field order. Thus,

Fig. 7. Comparison of nonbinary, (3,15)-regular, girth-8 LDPC codes over
BI-AWGN channel.

Fig. 8. Comparison of 4-ary (3,15)-regular, girth-8 LDPC codes; a binary,
girth-10 LDPC code, three RS codes and a TPC code.

we focus our attention on nonbinary, regular, rate-0.8, girth-8
LDPC codes over in the rest of the sub-section.

In Fig. 8, we compare the BER performance of the
LDPC(8430,6744) code over discussed in Fig. 7
against that of the RS(255,239) code, RS(255,223) code,

concatenation code, and
TPC. We observe that the

LDPC code over outperform all of these codes with a
significant margin. In particular, it provides an additional coding
gain of 3.363 dB and 4.401 dB at BER of when compared
to the concatenation code and
the RS(255,239) code, respectively. Its coding gain improve-
ment over TPC is 0.886
dB at BER of 4 . Finally, we computed the NECG of
the 4-ary, regular, rate-0.8, girth-8 LDPC code over to
be 10.784 dB at BER of . We also presented in Fig. 8 a
competitive, binary, (3,15)-regular, LDPC(16935,13550) code
proposed in [14]. We can see that the 4-ary, (3,15)-regular,
girth-8 LDPC(8430,6744) code beats the bit-length-matched
binary LDPC code with a margin of 0.089 dB at BER of

. More importantly, the complexity of the MD-FFT-QSPA
used for decoding the nonbinary LDPC code is lower than the
min-sum-with-correction-term algorithm [18], [27] used for de-
coding the corresponding binary LDPC code. The complexity
of MD-FFT-QSPA for a -ary, bit-length matched -reg-
ular nonbinary LDPC code with check nodes is given
by additions. On the other
hand, to decode binary -regular LDPC codes using the
min-sum-with-correction-term algorithm [18], [27] one needs

additions. Thus, a (3,15)-regular 4-ary nonbinary
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LDPC code requires 91.28% of the computational resources
required in decoding a bit-length matched (3,15)-regular LDPC
code of the same rate and bit length.

IV. CODED MODULATION

In this section, we describe how to optimally combine modu-
lation with channel coding, and describe two coded-modulation
schemes: (i) multilevel coding [28], [29], and (ii) coded-OFDM
[30]. Using this approach, modulation, coding and multiplexing
are performed in a unified fashion so that, effectively, the trans-
mission, signal processing, detection and decoding are done at
much lower symbol rates. At these lower rates, dealing with the
nonlinear effects and PMD is more manageable, while the ag-
gregate data rate per wavelength is maintained above 100 Gb/s.

A. Multilevel Coding

-ary PSK, -ary QAM and -ary DPSK achieve the
transmission of ( ) bits per symbol, providing
bandwidth-efficient communication. In coherent detection, the
data phasor is sent at each
th transmission interval. In direct detection, the modulation is

differential, the data phasor is sent instead,
where is determined
by the sequence of input bits using an appropriate
mapping rule. Let us now introduce the transmitter architecture
employing LDPC codes as channel codes. If component LDPC
codes are of different code rates but of the same length, the
corresponding scheme is commonly referred to as multilevel
coding (MLC). If all component codes are of the same code
rate, corresponding scheme is referred to as the bit-interleaved
coded-modulation (BICM). The use of MLC allows us to adapt
the code rates to the constellation mapper and channel. For
example, for Gray mapping, 8-PSK and AWGN, it was found in
[31] that optimum code rates of individual encoders are approx-
imately 0.75, 0.5 and 0.75, meaning that 2 bits are carried per
symbol. In MLC, the bit streams originating from different
information sources are encoded using different LDPC
codes of code rate . denotes the number of infor-
mation bits of the th ( ) component LDPC code,
and denotes the codeword length, which is the same for all
LDPC codes. The mapper accepts bits, ,
at time instance from the ( ) interleaver column-wise and
determines the corresponding -ary ( ) constellation
point [see Fig. 9(a)].

The receiver input electrical field at time instance for an
optical -ary differential phase-shift keying (DPSK) receiver
configuration from Fig. 9(b) is denoted by .
The outputs of I- and Q-branches [upper and lower-branches in
Fig. 9(b)] are proportional to and ,
respectively. The corresponding coherent detector receiver ar-
chitecture is shown in Fig. 9(c), where

is coherent receiver input electrical field at time instance and

is the local laser electrical field. For homodyne coherent detec-
tion, the frequency of the local laser is the same as that

Fig. 9. Bit-interleaved LDPC-coded modulation scheme: (a) transmitter archi-
tecture, (b) direct detection architecture, and (c) coherent detection receiver ar-
chitecture. � � ��� , � is the symbol rate.

of the incoming optical signal , so the balanced outputs
of I- and Q-channel branches [upper- and lower-branches of
Fig. 9(c)] can be written as

(15)

where is photodiode responsivity while and
represent the laser phase noise of transmitting and receiving
(local) laser, respectively.

The outputs at I- and Q-branches (in either coherent or direct
detection case), are sampled at the symbol rate (we assume per-
fect synchronization), and the symbol LLRs are calculated in an
APP demapper block as follows:

(16)

where is determined by using Bayes’ rule

(17)

Notice that is the transmitted signal constella-
tion point at time instance , while ,

, and are the samples of I-
and Q-detection branches from Fig. 9(b) and (c). In the pres-
ence of fiber nonlinearities, from (17) is estimated by
evaluation of histograms, employing sufficiently long training
sequence. Notice that for direct detection, even in the absence
of nonlinearities we have to use the histogram method because
the distribution functions are not Gaussian. With we de-
note the a priori probability of symbol , while is a referent
symbol. The normalization in (16) is introduced to eliminate the
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Fig. 10. BER performance comparison between bit-interleaved LDPC-coded
modulation with coherent detection schemes and direct detection schemes over
the AWGN channel. � represents the average bit energy, and� is the power
spectral density.

denominator from (17). The bit LLRs ( ) are
determined from symbol LLRs of (16) as

(18)

The th bit LLR in (18) is obtained as the logarithm of the ratio
of a probability that and probability that . In
the nominator (denominator), the summation is done over all
symbols having 0 (1) at the position . The APP demapper
extrinsic LLRs (the difference of demapper bit LLRs and LDPC
decoder LLRs from previous step) for LDPC decoders become

(19)

With we denoted LDPC decoder extrinsic LLRs which
are initially set to zero. The LDPC decoder extrinsic LLRs (the
difference between LDPC decoder output and the input LLRs),

, are forwarded to the APP demapper as a priori bit LLRs
so that the symbol a priori LLRs are calculated as

(20)

By substituting (20) into (17) and then (16), we are able to calcu-
late the symbol LLRs for the subsequent iteration. The iteration
between the APP demapper and LDPC decoder is performed
until the maximum number of iterations is reached, or the valid
code-words are obtained.

The results of the simulations, which use 30 iterations in
the sum-product algorithm and 10 iterations between the APP
demapper and the LDPC decoder, and employ only BICM and
Gray mapping, are shown in Fig. 10. Although the actual noise
in the repeated systems is dominated by the ASE noise, in this
calculation we observed the thermal noise dominated scenario,
to be consistent with digital communication literature [39]. The

Fig. 11. Polarization-multiplexed LDPC-coded OFDM employing both
polarizations: (a) transmitter architecture, (b) OFDM transmitter configuration,
(c) receiver architecture, and (d) OFDM receiver configuration. DFB: dis-
tributed feedback laser, PBS(C): polarization beam splitter (combiner), MZM:
dual-drive Mach–Zehnder modulator, APP: a posteriori probability, LLRs:
log-likelihood ratios.

coding gain for 8-PSK at the BER of is about 9.5 dB and
a much larger coding gain is expected at BERs below .

Bit-interleaved LDPC-coded 8-PSK with coherent detec-
tion outperforms LDPC-coded 8-DPSK with direct detection
by 2.23 dB at the BER of . 8-DQAM outperforms 8-DPSK
by 1.15 dB at the same BER. LDPC-coded 16-QAM slightly
outperforms LDPC-coded 8-PSK, and significantly outper-
forms LDPC-coded 16-PSK. As expected, LDPC-coded BPSK
and LDPC-coded QPSK (with Gray mapping) perform very
closely, and they both outperform LDPC-coded OOK by almost
3 dB.

B. Polarization-Multiplexed Coded-OFDM

In this sub-section we describe how to combine coded modu-
lation with OFDM, which is illustrated in Fig. 11. The trans-
mitter configuration up to the mapper is identical to that al-
ready described in Fig. 9. The 2-D signal constellation points
[see Fig. 11(b)] are split into two streams for OFDM trans-
mitters corresponding to the - and -polarizations. The QAM
constellation points are considered to be the values of the fast
Fourier transform (FFT) of a multicarrier OFDM signal. The
OFDM symbol is generated as follows: input QAM
symbols are zero-padded to obtain input samples for in-
verse FFT (IFFT), nonzero samples are inserted to create
the guard interval, and the OFDM symbol is multiplied by the
Blackman-Harris window function. For efficient chromatic dis-
persion and PMD compensation, the length of cyclically ex-
tended guard interval should be longer than the total spread due
to chromatic dispersion and DGD.

The cyclic extension is accomplished by repeating the last
samples of the effective OFDM symbol part ( sam-

ples) as a prefix, and repeating the first samples as a
suffix. After D/A conversion (DAC), the RF OFDM signal is
converted into the optical domain using the dual-drive Mach-
Zehnder modulator (MZM). Two MZMs are needed, one for
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Fig. 12. BER performance of polarization multiplexed coded-OFDM, for DGD
of 1200 ps. � denotes the aggregate data rate.

each polarization. The outputs of MZMs are combined using
the polarization beam combiner (PBC). One DFB laser is used
as CW source, with - and -polarization separated by polariza-
tion beam splitter (PBS).

The polarization-detector soft estimates of symbols carried
by the th subcarrier in the th OFDM symbol, , are
forwarded to the APP demapper, which determines the symbol
LLRs ( ) of - ( -) polarization by

(21)

where and denote the real and imaginary part of a
complex number, QAM denotes the QAM-constellation dia-
gram, denotes the variance of an equivalent Gaussian noise
process originating from ASE noise, and denotes a cor-
responding mapping rule. ( denotes the number of bits per con-
stellation point.) Let us denote by the th bit in an ob-
served symbol binary representation for

- ( -) polarization. The bit LLRs needed for LDPC decoding
are calculated from symbol LLRs in fashion similar to (18). The
extrinsic LLRs are iterated backward and forward until conver-
gence or predetermined number of iterations has been reached.
The polarization-detector soft estimates can be obtained by em-
ploying: (i) polarization-time coding [32] similar to space-time
coding proposed for use in MIMO wireless communication sys-
tems [33], (ii) using BLAST algorithm [34], (iii) by polariza-
tion interference cancellation scheme [34], or (iv) carefully per-
formed channel matrix inversion [35].

In Fig. 12, we show both the uncoded and LDPC-coded
BER performance of the polarization multiplexed LDPC-coded
OFDM scheme from [35], against the polarization diversity
OFDM scheme, for different constellations sizes. For DGD of
1200 ps, the polarization multiplexed scheme [35] performs
comparable to the polarization-diversity OFDM scheme in
terms of BER (the corresponding curves overlap each other),
but it has two times higher spectral efficiency. The net effective
coding gain increases as the constellation size grows. For

QAM based polarization multiplexed coded-OFDM the
net effective coding gain is 8.36 dB at BER of , while for

QAM based LPDC-coded OFDM (of aggregate data
rate 100 Gb/s) the coding gain is 9.53 dB at the same BER.

Fig. 13. LDPC-coded turbo equalization scheme configuration.

V. LDPC-CODED TURBO-EQUALIZATION (TE)

In this section we describe an LDPC-coded turbo equal-
ization scheme [36], as a universal scheme that can be used
simultaneously for: (i) suppression of fiber nonlinearities, (ii)
PMD compensation, and (iii) chromatic dispersion compensa-
tion in multilevel coded-modulation schemes. The LDPC-coded
turbo equalizer is composed of two ingredients: (i) the multi-
level BCJR algorithm [36], [37] based equalizer, and (ii) the
LDPC decoder. The transmitter configuration, for MLC, is
already explained previous section [see Fig. 9(a)]. The receiver
configuration of LDPC-coded trubo equalizer is shown in
Fig. 13. The outputs of upper- and lower-balanced branches,
proportional to and respectively, are used
as inputs of multilevel BCJR equalizer, where the local laser
electrical field is denoted by ( denotes
the laser phase noise process of the local laser) and incoming
optical signal at time instance with .

The multilevel BCJR equalizer operates on a discrete dy-
namical trellis description of the optical channel. Notice that
this equalizer is universal and applicable to any 2-D signal
constellation such as -ary PSK, -ary QAM or -ary
polarization-shift keying (PolSK), and both coherent and
direct detections. This dynamical trellis is uniquely defined
by the following triplet: the previous state, the next state,
and the channel output. The state in the trellis is defined as

,
where denotes the index of the symbol from the following
set of possible indices , with
being the number of points in corresponding -ary signal
constellation. Every symbol carries bits, using
the appropriate mapping rule (natural, Gray, anti-Gray, etc.)
The memory of the state is equal to , with being
the number of symbols that influence the observed symbol
from both sides. An example trellis of memory
for 4-ary modulation formats (such as QPSK) is shown in
Fig. 14. The trellis has states ( ),
each of which corresponds to the different 3-symbol patterns
(symbol-configurations).

The state index is determined by considering sym-
bols as digits in numerical system with the base . For ex-
ample, in Fig. 14, the quaternary numerical system (with the
base 4) is used. (In this system 18 is represented by .) The
left column in dynamic trellis represents the current states and
the right column denotes the terminal states. The branches are
labeled by two symbols, the input symbol is the upper symbol
of branch (the blue symbol), the output symbol is the central
symbol of terminal state (the red symbol). Therefore, the cur-
rent symbol is affected by both previous and incoming symbols.
For the complete description of the dynamical trellis, the transi-
tion probability density functions (PDFs) ,

are needed; where is the set of states in the trellis, and
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Fig. 14. Portion of trellis for 4-level BCJR equalizer with memory ���� � �.

Fig. 15. BER performance of LDPC-coded turbo equalizer in the presence of
fiber nonlinearities for: (a) QPSK modulation format with aggregate data rate of
100 Gb/s, and (b) RZ-OOK modulation format at 40 Gb/s. For both simulations,
dispersion map shown in Fig. 16 is used.

is the is the vector of samples (corresponding to the trans-
mitted symbol index ). The conditional PDFs can be deter-
mined from collected histograms or by using instanton-Edge-

worth expansion method [38]. The number of edges originating
in any of the left-column states is , and the number of merging
edges in arbitrary terminal state is also .

As an illustration of the potential of the proposed scheme,
the BER performance of an LDPC-coded turbo equalizer is
given in Fig. 15 for the dispersion map shown in Fig. 16 (launch
power of 0 dBm and single channel transmission). EDFAs with
a noise figure of 5 dB are deployed after every fiber section. The
bandwidth of the optical filter is set to and that of the elec-
trical filter is set to , where with being the
symbol rate and being the code rate (0.8). In Fig. 15(a), we

Fig. 16. Dispersion map under study is composed of � spans of length � �

��� km, consisting of ���� km of� fiber followed by ��� km of� fiber,
with precompensation of ����� ps�nm and corresponding postcompensation.
The fiber parameters are given in Table II.

TABLE II
FIBER PARAMETERS

Fig. 17. BER performance of LDPC(16935,13550)-coded PMD TE with trellis
memory �� � � � �.

present simulation results for QPSK transmission at the symbol
rate of 50 Giga symbols/s. The symbol rate is appropriately
chosen so that the effective aggregate information rate is 100
Gb/s. The figure depicts the uncoded BER and the BER after
iterative decoding with respect to the number of spans, which
was varied from 4 to 84. The propagation was modeled by
solving the nonlinear Schrödinger equation using the split-step
Fourier method. It can be seen from Fig. 15(a) that when a
4-level BCJR equalizer of state memory and an
LDPC(16935,13550) code of girth-10 and column weight 3 are
used, we can achieve QPSK transmission at the symbol rate of
50 Giga symbols/s over 55 spans (6600 km) with a BER below

. On the other hand, for the turbo equalization scheme
based on a 4-level BCJR equalizer of state memory
[see Fig. 15(a)] and the same LDPC code, we are able to achieve
even 8160 km at the symbol rate of 50 Giga symbols/s with a
BER below . Notice that in both cases the BCJR equalizer
trellis detection depth was equal to the codeword length. The
BER performance comparison of LDPC-coded TE against
large-girth LDPC codes and turbo-product codes for RZ-OOK
system operating at 40 Gb/s (in effective information rate) is
given in Fig. 15(b), for different trellis memories. LDPC-coded
TE with state memory provides almost 12 dB
improvement over the BCJR equalizer with state memory of

at BER of .
In order to apply the proposed multilevel turbo equalizations

scheme to real 100 Gb/s systems, the practical circuit imple-
mentation study would be mandatory. It is evident from Fig.
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Fig. 18. (a) Experimental setup for PMD compensation study by LDPC-coded
turbo equalization, and (b) BER performance of the PMD compensator.

13 that complexity of dynamic trellis grows exponentially, be-
cause the number of states is determined by , so that
the increase in signal constellation leads to increase of the base,
while the increase in channel memory assumption
leads to the increase of exponent. We have shown in the case
of QPSK transmission [see Fig. 15(a)], that even small state
memory assumption leads to significant per-
formance improvement with respect to the state memory

. For larger constellations and/or larger memories, a reduced
complexity BCJR algorithm is to be used instead. For example,
instead of detection of sequence of symbols corresponding to
the length of codeword , we can observe shorter sequences.
Further, we do not need to memorize all branch metrics but
several largest ones. In forward/backward metrics’ update, we
need to update only the metrics of those states connected to
the edges with dominant branch metrics, and so on. Moreover,

operation
required in forward and backward recursion steps can be ap-
proximated by operation. Thus, forward and back-
ward BCJR steps become the forward and backward Viterbi al-
gorithms, respectively.

The nonlinear ISI turbo equalizer described above can also
be used as a PMD compensator. The results of simulations,
for 10 Gb/s transmission and ASE noise dominated scenario,
are shown in Fig. 17 for a differential group delay (DGD)
of ps and a girth-10 LDPC code of rate 0.81.
RZ-OOK of a duty cycle of 33% is observed. The bandwidth of
super-Gaussian optical filter is set to , and the bandwidth of
Gaussian electrical filter to , with being the line rate.
For DGD of 100 ps, the LDPC-coded turbo equalizer
(for trellis memory ) has a penalty of only 2 dB
with respect to the back-to-back configuration.

In the rest of this section, we turn our attention to the ex-
perimental verification. The experimental setup for PMD com-
pensation study by LDPC-coded turbo equalization is shown in
Fig. 18(a). The LDPC-encoded sequence is uploaded into An-
ritsu pattern generator via GPIB card controlled by a PC. A zero-
chirp Mach-Zehnder modulator is used to generate the NRZ data
stream. The launch power is maintained at 0 dBm at the input
of PMD emulator (with equal power distribution between states
of polarization). The output of PMD emulator is combined with
an ASE source immediately prior to the preamplifier. The ASE
noise power is controlled by variable optical attenuator (VOA)
in order to provide an independent optical signal-to-noise ratio
(OSNR) adjustment at the receiver. A standard preamplified
PIN receiver is used for direct detection and is preceded by an-
other VOA to maintain a constant received power of .
The sampling oscilloscope (Agilent), triggered by the data pat-
tern, is used to acquire the received sequences, downloaded via
GPIB card back to the PC which serves as an LDPC-coded turbo
equalizer.

The experimental results for 10 Giga symbols/s (effective
information rate) NRZ transmission are shown in Fig. 18(b),
for different DGD values. The TE is based on a quasi-cyclic
LDPC(11936,10819) code of code rate 0.906 and girth-10, with
5 outer and 25 sum-product decoding algorithm iterations. The
OSNR penalty for DGD of 125 ps is about 3 dB at

, while the coding gain improvement over BCJR equalizer
(with memory ) for ps is 6.25 dB at

. Larger coding gains are expected at lower BERs.

VI. SUMMARY

In this invited paper, we described the large-girth binary
LDPC code design, the min-sum-with-correction-term de-
coding algorithm and its FPGA implementation, and provided
a class of nonbinary LDPC codes suitable for use in optical
communications. We explained how to combine multilevel
modulation and channel coding by using: (i) multilevel
coding, and (ii) coded-OFDM. Furthermore, we described the
LDPC-coded turbo-equalization scheme as a universal equal-
izer to deal simultaneously with fiber nonlinearities, PMD, and
residual chromatic dispersion.
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