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Abstract—Millimeter wave (mmWave) small cells have been
considered as an effective technique of significantly improving
the data rates of future networks. More particularly, this article
investigates the potential benefits of mmWave small cell networks
from the perspective of non-orthogonal multiple access (NOMA)
and wireless caching. We highlight a range of innovative resource
management solutions conceived for mmWave small cell networks
by invoking adaptive learning. Finally, several promising future
research directions of mmWave small cell networks are identified.

I. INTRODUCTION

In order to meet the explosive increase in the volume of

mobile traffic over the coming decade, new solutions have

to be conceived for addressing future challenges. Given the

availability of large bandwidths, millimeter wave (mmWave)

solutions may find their way into next generation networks. To

support the ever-growing mobile traffic demand and massive

connectivity required, the combination of mmWave techniques

and network densification has been considered as a potential

future candidate [1].

MmWave small cell networks are generally different from

the systems used at lower frequencies owing to their advanced

radio technologies. One reason is that the short millimeter

wavelength allows large numbers of antennas to be packed

into compact form factors [2], which supports the much

needed highly directional transmission to compensate for the

high path loss. Moreover, the unique propagation conditions

at mmWave frequencies impose fundamental challenges on

mmWave small cell systems. As a result, new system concepts

and architectures are required for efficiently exploiting these
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characteristics. The goal of this article is to provide a com-

prehensive overview of mmWave small cell networks in terms

of their multiple access, resource management and caching,

which is motivated by the exploration of emerging technolo-

gies for improving the spectral efficiency. For instance, non-

orthogonal multiple access (NOMA)-aided mmWave small

cell networks are capable of providing multiplexing gains by

encouraging multiple users to share the same resource block.

In addition, another application of cache-enabled mmWave

small cell networks is to exploit the benefits of memory

for reducing the network’s tele-traffic. Moreover, advanced

resource management techniques are capable of enhancing the

network capacity and the fairness by efficient algorithmic de-

signs. By jointly designing the resource allocation in terms of

subchannel assignments, user scheduling and power allocation

with the aid of machine learning tools [3], one can achieve a

near-optimal resource management [4]. Indeed the application

of mmWave small cells attains potential benefits, but there

are still substantial research challenges, which motivates us to

contribute this article.

II. KEY FEATURES OF MMWAVE SMALL CELL NETWORKS

In conventional small cell networks, substantial inter-cell

interference is encountered. The configuration of mmWave

small cell networks is more challenging than that of the classic

sub-2GHz networks owing to their pre-dominantly Line-of-

Sight (LOS) wideband transmissions. The key features of

future mmWave small cell networks have to be harmonized

with their propagation model and network architecture, which

will be discussed in the following subsections.

A. From Sub-6 GHz to MmWave Band

In contrast to the propagation encountered in traditional

wireless communication in the sub-6 GHz band, propagation

in the mmWave band takes place between 30 and 300 GHz

[5]. As a consequence, the mmWave solutions are expected

to have: 1) highly directional transmission to compensate for

the path loss, which has the benefit of increasing the number

of users served in small cells, 2) low wall-penetration and

consequently high signal attenuation, hence reducing the inter-

cell interference, 3) high bandwidth resulting in a high data

rate for the users.
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The channel impulse response (CIR) of mmWave channels

is expected to exhibit limited scattering, thus it tends to have

a sparse angular domain response [5]. Based on the well-

established mmWave transmission model, the channel vector

associated with a uniform linear array (ULA) between a

multiple-antenna aided BS and a single-antenna aided user

can be expressed as h =
∑L

l=0 a(θl)
αl√

L(1+dηl )
, where l = 0

denotes the line-of-sight (LoS) path and L is the total number

of non-line-of-sight (NLoS) paths, while d denotes the distance

between the BS and the user. Furthermore, η0 and ηl, l =
1, · · · , L, denotes the path loss exponents corresponding to

the LoS and NLoS paths, respectively. Moreover, αl is the

complex-valued gain of the l-th path of the user, and a(θl) is

the antenna array response vector of the BS with θl ∈ [−1, 1]
being the normalized direction of the l-th path. Finally, θl
is a function of the physical angle of departure, the signal

wavelength and the distance between antenna elements.

B. Architecture of MmWave Small Cell Networks

Again, mmWave small cell networks will operate in a

different manner from traditional sub-6 GHz networks, since

they rely on hybrid analog/digital beamforming. Recent chan-

nel measurements have shown that due to the high path

loss, mmWave transmission is only capable of achieving a

range of about 150-200 meters by using highly directional

beamforming [5]. As a consequence, it is desired that mmWave

transmissions co-exist with a traditional sub-6 GHz cellular

network capable of providing a wide area coverage for avoid-

ing excessively frequent handovers.

Fig. 1 illustrates the system architecture of mmWave small

cell networks relying both on NOMA and caching, where the

macro BS operates at sub-6 GHz frequencies and the small cell

BSs operate in the mmWave frequency band. As illustrated by

Fig. 1, NOMA increases the number of users supported beyond

the number of resource slots available, while caching offloads

the core network’s traffic. In such networks, mmWave small

cells are deployed in ultra-dense scenarios to support a large

number of connections, where resource management becomes

a key issue of improving the network’s utility.

III. NEW MULTIPLE ACCESS TECHNIQUES FOR MMWAVE

SMALL CELL NETWORKS

Next-generation mmWave small cell networks are expected

to support massive connectivity of wireless devices. Hence the

NOMA principle may be exploited, which supports multiple

users in each time/frequency resource-slot by distinguish-

ing them in the power domain [6], [7]. As a consequence,

NOMA-aided mmWave small cells are eminently suitable for

supporting massive connectivity and for meeting the users’

diverse service requirements. In contrast to the conventional

orthogonal multiple access (OMA)-aided mmWave small cells,

multiple users can also share the same beam simultaneously

in NOMA-assisted mmWave small cells. In order to better

illustrate the structure of NOMA-aided mmWave small cell

systems, we consider a NOMA-aided mmWave downlink (DL)

scenario as our example. As shown in Fig. 2, the BS performs
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Figure 1: MmWave small cell network that can support the

NOMA transmission and has the capability of caching.
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Figure 2: System model for mmWave-NOMA transmission in

downlink multiple input and single output (MISO) scenarios.

multiple input and multiple output (MIMO) transmission re-

lying on M beams, where multiple users can be served by

a single beam at different power levels. Specifically, the BS

will simultaneously send M superposed data streams for the

K users relying on M clusters. As for the users in the same

cluster, those having better channel conditions (better users)

shall perform SIC for removing the intra-cluster interference

from the user having weaker channel conditions (weaker

users). Depending on the power domain multiplexing principle

in NOMA, the signals from the weaker users is remodulated

and subtracted from the composite multi-user signal at the

better users, hence automatically leaving behind the signal of

the users having better channel conditions.

It is worth pointing out that the hybrid analog/digital beam-

forming design becomes more challenging in NOMA-aided

mmWave transmissions due to the massive scale of connec-

tivity. As a result, inter-beam interference will contaminate

the signal of each clusters, which makes the structure of the
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NOMA-aided mmWave small cells advocated rather different

from that of the conventional NOMA-aided single input and

single output (SISO) or multi-carrier systems [6], [8]. Let us

consider the beamformer weights w1 supporting User k and

User j as an example in Fig. 2. To reduce the beamformer’s

feedback overhead, we assume that only partial channel state

information (CSI) feedback is adopted for the mmWave-

NOMA system of Fig. 2. Note that depending on the specific

communication scenarios encountered, the terminology of

partial CSI may represent partial knowledge of the channel

gains, of the distance of the users or the angle of arrival of the

users’ channels, as discussed for example in [9]. Let us denote

the channel’s column vectors by hk and hj valid for User k
and User j, respectively. Let us assume furthermore that the

equivalent channel gains of User k and User j satisfy the

condition of
|hkw1|∑

M
n=2

|hkwn|pn+σ2
≥ |hjw1|∑

M
n=2

|hjwn|pn+σ2
, where

pn, n = 1, · · · ,M , denotes the power allocated to the n-th

beam and σ2 denotes the noise power. As shown in Fig. 2,

to obtain a potential gain for NOMA in mmWave small cells,

User k expects to decode the signal of User j and to subtract

it before decoding its desired signal.

A remarkable advantage of this mmWave-NOMA design

is that the number of users can be much higher than that of

the radio frequency (RF) chains. This is beneficial, since the

number of RF chains is limited due to their high hardware

costs. Nevertheless, conceiving sophisticated hybrid beam-

forming designs for mmWave-NOMA systems still requires

further research efforts, accounting for the coupling between

hybrid beamformers and the SIC decoding orders of NOMA

users [10].

IV. CACHE-ENABLED MMWAVE SMALL CELL

COMMUNICATIONS

MmWave small cell networks naturally support ultra-dense

deployments and ultra-high data rates, given rich spectral

resources. However, the tele-traffic of small BSs is often

limited by the capacity of backhaul links, which represent

the connection between the small BSs and the core network.

Wireless caching is capable of alleviating the backhaul burden

as well as reducing both the delay and the energy consumption

[11]. For maximizing the offloading benefits of cache-enabled

small cell mmWave communications, it should be judiciously

decided on what to cache, where to cache and how to cache.

Motivated by this, we will discuss these three issues in the

following subsections.

A. What to Cache

A cache-enabled mmWave cellular network relying on D2D

communications is shown in Fig. 1. Each user has a local

cache and can invoke short-range communications to share

cached files. During off-peak time, the users prefetch popular

files for storing in their local caches. This is capable of

substantially reducing the average delay, while mitigating the

network’s traffic during the peak time. Due to the limited

cache size, it may become difficult for a single user to

cache all popular files in their storage. In order to improve

the caching performance attained, each user has to decide

what contents to cache. Generally, the long-term popularity of

contents provides an accurate reflection of the users’ requests.

The impact of the caching memory size on the density of

small cell BSs was investigated in [12] by assuming that

the BSs only store the most popular contents. For a static

content catalogue, the Zipf distribution provides a good model

to capture the asymptotic properties of the content popularity.

In practice, due to the dynamically fluctuating features of the

popularity of contents, an accurate prediction model is helpful

for designing adaptive caching policies. Big data processing

and machine learning techniques are capable of capturing

the dynamics of the popularity by relying on historical data,

which can enhance the accuracy of the prediction model.

A machine learning aided caching policy was developed in

[13] by learning the user’s preference. Moreover, the contents

associated with similar applications often tend to be correlated,

as exemplified by still pictures found by image recognition and

articles on topical subjects, which encourage the system to

cache contents, where possible. A key problem in the context

of enhancing the caching efficiency is how to characterize the

contents. For instance, for the contents in a specific virtual

reality game, the specific image semantics becomes important

for image retrieval. Due to the limited time available for

caching and owing to the stringent requirements of low-latency

transmissions, the specific types of content the system should

cache depends on the practical application.

B. Where to Cache

Naturally, it is preferable to aim for a high data rate by

exploiting the substantial bandwidth reserves of the mmWave

frequency bands coupled with the high area-spectral efficiency

(ASE) of small cells. Therefore, adopting mmWave carriers

for cache-enabled networks is appealing for further enhancing

the throughput. When the content is stored in small BSs, this

so-called femto-caching circumvents the backhaul constraints

of small cells. In contrast to femto-caching, caching at the

user devices allows the subscribers to exchange their cached

contents through device to device (D2D) communications,

which has the potential of significantly enhancing both the

connectivity and the spectral efficiency by relieving the BSs.

To elaborate on cache-enabled D2D mmWave communica-

tions, we consider the simple downlink transmission scenario

of Fig. 3 as an example. At the commencement of the

cache-enabled D2D mmWave transmission, some users may

volunteer to store files and hence may act as a helper to share

files via D2D links. Depending on whether a user can find the

requested file stored by one of its neighbour, the users can be

classified into two types:

• D2D users (DUs): If a user requests one of the files stored

in its neighbours’ caches, the D2D transmitter will handle

the request locally through D2D communication.

• Cellular users (CUs): If the file requested by a user is not

cached by its neighbours, the user fetches the file from

the BS as a regular cellular user.

C. How to Cache

To maximize the benefits of traffic offloading for the BSs, it

is conducive to adopt incentives for promoting D2D transmis-
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Figure 3: An illustration of network model for cache-enabled

mmWave D2D communications with three potential D2D

users. We have illustrated all possible D2D communication

links in the figure.
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Figure 4: An example of potential D2D communication links.

sions by maximizing the total number of D2D links. To model

the process of caching delivery, we may invoke the classic

graph theory for illustrating the potential ways of obtaining

the requested file for each user with the aid of D2D mmWave

communications as seen in Fig. 4, where the vertices and the

edges denote the potential D2D users and the corresponding

potential D2D links, respectively. With the goal of maximizing

the total number of D2D links, we can use a directed graph

having 5 vertices and 5 edges, as seen in Fig. 4(a), for example.

Again, with the goal of minimizing the transmission distances

in mind, a directed graph is employed in Fig. 4(b), where the

weights d(i, j) reflect the distances between user i and user

j, i, j ∈ {1, 2, 3, 4, 5}.

Bearing in mind that all users can play the role of the

transmitter and the receiver in the D2D links, the resultant

graph ~G = (V, ~E) is non-bipartite. However, based on the

specific roles of the users, the vertices V can be partitioned

into two sets T and R, where the vertices in T represent all

of the transmitters in G and the vertices in R represent all

of the receivers in G. Note that the vertex set T and R are

disjoint, since every edge connects a vertex in T to one in

R. Hence, the directed graph ~G can be transformed into a

bipartite graph, denoted by G = (T ,R, E). As shown in Fig.

4(c), let us consider the simple bipartite graph transformation

of Fig. 4(a) and Fig. 4(b) as an example. With the advent

of low-cost storage techniques, low-delay and highly-quality

caching strategies are expected to emerge. These might rely

on the radically new concept of caching multiple contents

simultaneously in the spirit of the popular non-orthogonal

resource-allocation principles. Additionally, the users’ requests

tend to change with the elapse of time, depending on the

specific task they are engaged in. In this case, graph based

machine learning provides a powerful tool that incorporates

adaptive learning algorithms.

V. RESOURCE MANAGEMENT FOR MMWAVE SMALL CELL

NETWORKS

Motivated by the reduced interference encountered in these

systems, improved resource utilization, energy efficiency and

load balancing may be attained. Specifically, the resource

management involves the optimization of power allocation,

user scheduling and hybrid beamforming designs in mmWave

small cells. In this section, we will first touch upon the

challenges of the resource management problem of mmWave

small cells from the perspective of spectral efficiency and the

diverse user requirements. Then we will contrast them to the

conventional resource management strategies. Finally, we will

discuss the potential of machine learning in tackling these

challenging problems.

A. Conventional Resource Management

In typical next-generation applications and scenarios the

demands of users will be quite diverse. Therefore, it is essential

to seek an optimal resource management strategy with the

ultimate aim of maximizing the benefits for the users in

mmWave small cells. Note that maximizing the sum rate

of a single mmWave cell relying on hybrid beamforming,

configuring both the power allocation and user scheduling is

challenging owing to the coupling amongst the analog/digital

beamforming vectors, the power allocation coefficients and the
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user scheduling. To elaborate, hybrid beamforming compli-

cates the channel estimation and the training signal design,

especially in dense networks. One of the particular challenges

is that in small cells the angles-of-arrival (AoA) changes

rapidly, which increases the call-dropping probability, unless

frequent AoA updates are used. This in turn would increase

the pilot overhead. Therefore, using partial CSI based resource

management strategies is desirable for mmWave small cells.

Random beamforming strikes a compromise between reducing

the overhead of channel estimation as well as the feedback

requirement and performance gain [14], [15]. In an effort to

improve the performance of random beamforming, an efficient

user scheduling method is required. Moreover, sophisticated

power sharing strategies among the beams are capable of

further enhancing the performance of mmWave-NOMA net-

works, which is also a pivotal issue of mmWave small cells.

Not withstanding the above discussions, another challenging

task in the resource management is that the objective func-

tion and the related constraints tend to be nonlinear func-

tions of their parameters. Specifically, the related resource-

management performance optimization tends to exhibit com-

binatorial features such as those routinely encountered both

in user-scheduling and in subchannel assignment as well

as resulting in non-convex data-rate and energy-efficiency

problems. Depending on the number of parameters and on

the specific nature of the particular resource management

problem, the task of finding the globally optimal solution can

be rather challenging. Hence substantial research efforts have

been invested in developing efficient algorithms for tackling

these challenges, which can be broadly classified as follows:

1) deterministic approaches, 2) heuristic approaches, and 3)

learning based approaches. Most of the above deterministic

methods rely on strategies that infer the structures from

the problem of interest [2], [5]. By contrast, the heuristic

approaches invoke various of random guided search method-

ologies for finding the globally optimal solutions despite

only visiting a fraction of the entire search space [8], [14].

The third class of methods attempts to harness probabilistic

techniques for spotting the globally optimal solution, which is

particularly suitable for scenarios associated with the unknown

dynamics of the model considered [4], [13]. An overview of

resource management in mmWave small cells is provided at

a glance in Table I. In this treatise, we propose to exploit

the powerful family of branch and bound (BB) techniques

for global optimization by invoking the idea of monotonic

transformation of the problem at hand.

Specially, we consider the NOMA-aided mmWave small

cell shown in Fig. 2, where the BS uses random analog

beamforming and the NOMA principle is invoked within each

beam. For this system, we developed an optimal user schedul-

ing and power allocation strategy in [10]. For the mmWave-

NOMA system, the problem of maximizing the sum rate can

be formulated as a multi-dimensional rectangular constrained

optimization problem. Then BB techniques can be employed

for finding both the optimal user scheduling and power alloca-

tion solution. Beneficial user-scheduling and power-allocation

schemes may be designed based on classic matching theory

and on successive convex approximation (SCA) approaches,

respectively. Accordingly, in Fig. 5 we compare the perfor-

mance of our low-complexity solution [10] based on matching

theory and SCA to the excessive-complexity optimal solution

based on BB both in NOMA-aided and in OMA-assisted

mmWave networks. Our low-complexity algorithm achieves

a sum rate close to that attained by the optimal algorithm

for the specific parameters illustrated. The results also reveal

that NOMA-aided mmWave small cell transmissions achieve

a beneficial performance gain over OMA-based solutions,

despite requiring a lower feedback overhead. Hence, NOMA-

aided mmWave small cells constitute a promising architecture

for the evolution of mmWave small cell networks.

B. Machine Learning Aided Resource Management

Traditional resource management techniques are gener-

ally designed for specific network configurations relying on

scenario-oriented algorithms without any learning capability.

By contrast, conceiving mmWave small cell networks relying

on intelligent adaptive learning and decision making is capable

of making resource management schemes more efficient. More

explicitly, the main motivation of invoking machine learning

for resource management is to enable the mmWave small cell

networks to infer and harvest the diverse features of both the

networks’ architecture and the users’ specific scenarios for

autonomously determining the optimal system configurations.

This enables the mmWave small cell networks to become self-

organized, and to serve users at increased rates.

Machine learning enables devices in mmWave small cell

networks such as the BS and user terminals to rely on human-

like thinking, in order to utilize intelligent algorithms for

resource managements. Cluster analysis constitutes a popular

unsupervised learning method relying on sophisticated cog-

nitive capabilities [3]. However, the choice of the clustering

algorithm has to take into account the structure of the data

set in the feature space. Having said that, it is challenging

to beneficially adopt machine learning algorithms to the user

clustering problems of mmWave-NOMA systems, since the

attainable performance directly depends both on the specific

properties of the features to be optimized and on the mea-

surements. To facilitate the application of machine learning

aided clustering techniques, both a quantitative feature set and

a measurement function characterizing the objects of interest

are required. For example, the channel correlations provide

beneficial measurements for user clustering in mmWave-

NOMA systems. To illustrate the correlation characteristics

of mmWave channels, let us consider the two-user downlink

MISO scenario illustrated in Fig. 6 as an example in conjunc-

tion with a pair of single-path mmWave channel vectors hi

and hj . The similarity between hi and hj can be qualitified by

cos(hi,hj) = FM (π[θi−θj ]), where FM (x) denotes the Fejér
kernel. This means that the cosine similarity of two users’

channel vectors can be characterized by their normalized di-

rections determined by θi and θj . Fig. 6 shows the correlations

versus the AoD difference between two channels. Note that in

Fig. 6 the two users’ channels are strongly correlated, when

the difference of the two AoDs tends to zero. This is attributed

to the fact that the beamforming-aided highly directional
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Table I: Overview of resource management in mmWave small cells

Problems
Solutions Mathematical tools

Performance metrics Designing parameters

Network utility and diverse user
requirements such as sum rate and
energy efficiency.

Power allocation
User scheduling
BS association
Hybrid beamforming

Deterministic approaches Convex optimization
Nonlinear Programming
Random search methodologies.

Heuristic approaches

Learning based approaches Probability theory
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Figure 5: The sum rate of OMA and NOMA algorithms in

mmWave networks at 28 GHz. The number of users is 6 with

maximum 2 users sharing one beam. The minimum rate for

each user is Rth = 0.1 bits/s/Hz. The radius of the mmWave

small cell is 10 m.

Figure 6: Illustrations of the channel correlation between two

users under a single-path mmWave channel model.

transmission routinely used at mmWave frequencies makes

the users channel strongly correlated, when their locations are

close. In practice, mmWave small cells can be often found

in the areas of high user density, such as coffee shops and

airport terminals, etc [2], where users are more likely to be

close to each other, hence forming hotspots. Therefore, a

correlated setup based on spatial clustering models has become

a preferred choice for the accurate modelling and analysis of

these networks. In this spirit, a machine learning framework

was proposed for user clustering in NOMA-aided mmWave

small cell networks in [4].

VI. CONCLUSIONS AND FUTURE CHALLENGES

In this article, the design challenges of NOMA-aided and

cache-enabled mmWave communications have been high-

lighted. We first showed the key features of mmWave small

cell networks, which provide new opportunities for ultra-

dense deployments and massive connectivity. Then the benefits

of NOMA-aided mmWave small cell networks have been

demonstrated, followed by the design aspects of cache-enabled

mmWave small cell networks. Finally, the challenges of re-

source management problems as well as the corresponding

potential solutions suitable for mmWave small cell networks

have been identified. There are still numerous open problems

in the design of mmWave small cell networks, some of which

are listed below.

• Caching for mmWave small cell networks handling

big data: Some initial big data analysis based investi-

gations in terms of cache-enabled mmWave small cell

networks have been conducted by inferring and then

exploiting the popularity of the content files. By relying

on sophisticated data analytical tools such as stochastic

modelling, data mining and machine learning, we can

discover useful patterns from historical data, which con-

stitutes a compelling research direction.

• Unified OMA and NOMA mmWave small cell net-

works: The family of advanced NOMA-aided mmWave

transmission solutions is expected to co-exist both with

conventional OMA and with sub-6 GHz transmission.

The coexistence of these multiple access techniques raises

challenging design issues, which have to be carefully

considered.

• Intelligent resource management paradigms: Due to

the heterogeneous network architecture of mmWave small

cell networks, their resource allocation and interference

coordination becomes a key challenge in the face of the

ever-growing mobile traffic demand. Machine learning

techniques are expected to further enhance the system

performance of mmWave small cell networks by in-

telligent learning and decision making. However, given

the dynamically fluctuating features and node mobilities,

online and reinforcement learning algorithms have to be

investigated.
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• Implementation cost: In many proposals for mmWave

small cell networks, most of the calculations are per-

formed by the core network, which imposes a heavy

feedback overhead and a high computational complexity.

As a remedy, distributed computing algorithms are capa-

ble of alleviating the computational load imposed on the

core network, while reducing the backhaul traffic. Given

the recent advances in self-organizing network (SON)

enabled mmWave network infrastructures, distributed

computing provides beneficial insights into sophisticated

algorithmic designs exhibiting improved flexibility at a

reduced cost. However, the distributed computing algo-

rithms are often constrained by the internal structure

of distributed systems, such as their inherent coupling

constraints and local information. These impediments

have to be eliminated by further research.
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