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Single-cell omics aim at charting the different types and properties of all cells in the human
body in health and disease. Over the past years, myriads of cellular phenotypes have been
defined by methods that mostly required cells to be dissociated and removed from their
original microenvironment, thus destroying valuable information about their location and
interactions. Growing insights, however, are showing that such information is crucial to
understand complex disease states. For decades, pathologists have interpreted cells in
the context of their tissue using low-plex antibody- and morphology-based methods.
Novel technologies for multiplexed immunohistochemistry are now rendering it possible to
perform extended single-cell expression profiling using dozens of protein markers in the
spatial context of a single tissue section. The combination of these novel technologies with
extended data analysis tools allows us now to study cell-cell interactions, define cellular
sociology, and describe detailed aberrations in tissue architecture, as such gaining much
deeper insights in disease states. In this review, we provide a comprehensive overview of
the available technologies for multiplexed immunohistochemistry, their advantages and
challenges. We also provide the principles on how to interpret high-dimensional data in a
spatial context. Similar to the fact that no one can just “read” a genome, pathological
assessments are in dire need of extended digital data repositories to bring diagnostics and
tissue interpretation to the next level.

Keywords: multiplexed immunofluorescencence and immunohistochemistry, spatial profiling, single-cell ‘omics,
tissue architecture analysis, methods for spatial profiling
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INTRODUCTION

For centuries, medical sciences have tried to achieve a deep
understanding of the human body, both in health and disease.
Twenty years ago, a major hurdle was crossed with the mapping
of the human genome (1). However, it is now becoming clear
that one cannot just “read” a genome and subsequently
understand or predict the principles that underlie human
biology or disease. The sole true interpreters of the genome are
cells, and understanding how the genome functions within cells,
how cells form tissues and dynamically remodel their activities
when they progress towards disease, is among the greatest
scientific and technological challenges of our era. The goal is
no longer to find differences in “bulk” genomic readouts but
rather to see explicit changes in a specific set of cells and to
predict their behavior. In this light, multiple human cell atlas
initiatives are working towards describing every cell of the
human body, as a reference map to accelerate progress in
biomedical science (2–5). These ambitious projects – similar in
scale to the human genome project – aim to chart the different
types and molecular properties of all human cells in health and
disease, for which a multitude of organ-oriented working groups
are mapping the single-cell composition and their spatial
architectures. Technological advances in the field of single-cell
‘omics ’ such as single cel l genomics, epigenomics,
transcriptomics, and proteomics, and even their combinations
in a multi-omic setting (6, 7) are now rendering it possible to
map physiological features of each individual cell in an organ as a
functional unit. However, current methods still mostly require
that cells are dissociated and removed from their original
microenvironment, thus destroying valuable information about
their location and interactions – information that is crucial to
understand many disease patho-physiologies. The next, ongoing
step is aimed at describing single-cell features in their natural
microenvironment (8).

At the moment, understanding cellular functions at single-
cell level within the context of a tissue is primarily done by
expression profiling, using either transcriptional (9) or protein-
based multiplex methods in pathological tissue sections (10),
even though the realm of spatial omics keeps on growing fast (11,
12). While methods for enhanced spatial omics are only now
starting to become available, pathologists have been evaluating
cells in tissue sections using classical antibody- and morphology-
based (i.e. H&E staining) methods for decades (13). Daily clinical
practice is mostly performed using classical (chromogenic)
immunohistochemical (IHC) methods that allow the
simultaneous assessment of one or two proteins in a single
tissue slide, which are mostly evaluated in a visual, semi-
quantitative way by a pathologist (14). Novel technologies and
methods, that will be discussed in this review, are now making it
possible to perform quantitative spatial, antibody-based
expression profiling of dozens of protein markers in a single
tissue section. This will, when carefully selected, provide deeper
insights in disease states while offering the ability to study cell-
cell interactions, precisely define disease-related niches, all within
the original context of the tissue (see below).
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Such technology also comes along with multiple challenges as
well. First, a careful selection of the right technology to answer
the biological question is crucial: as we will discuss below, this is
defined by the type and size of a tissue, the number of samples
that need to be processed, and the number of markers that need
to be interrogated. Second, besides the technical hurdles that
need to be overcome to collect high quality, pathology-grade
images in which each marker is carefully monitored, storing and
processing the large volumes of image data also pose a significant
logistic and infrastructural challenge. Finally, the plethora of
information that is obtained from these analyses is also becoming
of such magnitude and complexity that mere eyeballing of a
tissue by a pathologist or researcher is no longer sufficient to
properly extract information and interpret expression patterns.
Similar to the fact that mutations in a genome need to be
interpreted for biological and clinical relevance, pathological
assessments also need the installation of suitable analysis
algorithms and extended digital data repositories to bring
diagnostics and tissue interpretation to the next level.

In this review, we provide a comprehensive overview of the
available technologies for multiplexed immunohistochemistry,
their advantages and challenges, and provide the basic principles
on how to interpret high-dimensional data in a spatial context.
METHODS FOR MULTIPLEXED
IMMUNOHISTOCHEMISTRY

Lately, the armamentarium of technologies for antibody-based
multiplexed IHC is rapidly growing. While several technologies
have been described in literature performing manual IHC
protocols, there is a clear trend of seemingly ‘plug-and-play’
instruments entering the market that automated the same
principles to some extent. Importantly, however, since all these
technologies depend on an antibody-based detection of proteins
in a large variety of tissue types, the selection, validation and
performance of the used antibodies have to be done with
sufficient care. Adequate minimal validation guidelines need to
be set, including the use of appropriate positive and negative
controls (e.g. based on classical chromogenic stains (15)), to
guarantee sensitivity, specificity and warrant the collection of
biologically relevant data. Indeed, the performance of an
antibody can vary enormously depending on the tissue type,
the experimental conditions in which the antibody is applied,
and whether formalin-fixed paraffin embedded (FFPE) or frozen
materials are used (16–18). As such, the development and
optimization of suitable antibody panels for multiplexed IHC
still requires a significant amount of time, although externally
validated reagents to detect commonly used markers are
becoming more routinely available, for instance thanks to large
scale initiatives such as the Protein Atlas consortium (19) or NIH
initiatives (20).

The first step, even before exploring different multiplex
staining methods, is figuring out if and/or how spatial analysis
can help in answering your biological question. Spatial analysis
can provide additional information on proximity-based cell-cell
July 2022 | Volume 12 | Article 918900
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interactions, such as the infiltration of immune cells in a tissue,
their proximity to tumor cells (see below). Subsequently, once it
has been decided that spatial analysis will be needed to answer a
particular biological question, the selection of the method
becomes key (Figure 1, Table 1). As indicated above, the
selection of the most appropriate method is largely defined by
several parameters. First, the type (i.e. frozen vs FFPE) and size
(i.e. needle biopsy vs tissue microarray (TMA) vs whole tissue
slide) of a tissue, in addition to the number of samples that need
to be analyzed (from 1 sample at the time to cohorts of hundreds
of patients), will already define the first selection. As we will
describe below, not all methods are compatible with FFPE/
Frozen or large tissue samples, or can be easily scaled up to
analyse hundreds of slides in a practical timeframe and with
minimal variance induced by batch-effects. A second important
parameter is linked to the number of markers that needs to be
interrogated, a feature that is commonly highly project specific
(e.g. 5 vs 50 markers). Finally, understanding how the currently
available methods for multiplexed IHC work will be crucial to
select the most appropriate one. (Figure 1, Table 1)

Overall, technologies for multiplexed IHC can be classified by
the way the antibodies are administered and detected. Indeed,
depending on the technology, large mixtures of antibodies (+20)
can be administered simultaneously to a slide, following which a
Frontiers in Oncology | www.frontiersin.org 3
dedicated instrument is able to image, resolve and unmix the
location of each antibody in the tissue. Alternatively, various
methods also use cyclic procedures through which smaller
amounts of antibodies (2–4) are used for staining and imaging,
following which the detected signal is removed. By repeating this
cycle multiple times, large numbers of markers can be detected in
the same tissue section. Finally, several hybrid methods are
available that combine both approaches or even use other
technologies (e.g. NGS analysis) to resolve the complex
mixtures of markers. In the first part of the review, we provide
an extended overview of several of the currently available
technologies for multiplexed IHC analysis on tissue sections,
including their compatibility with materials, antibodies,
throughput, plex level, timing, and compatibility with standard
or dedicated instrumentation. Methods are grouped by the type
of modification that is used to detect the various antibodies.

Fluorescence-Based Detection of
Antibody Mixtures
The largest group of methods for multiplexed IHC depends on
the detection of mixtures of antibodies using fluorescent signals.
Indeed, because fluorophores harbor specific excitation and
emission spectra, they can be resolved using commonly used
or more advanced microscopy tools, depending on how many
A B

D E F

C

FIGURE 1 | Schematic overview of the currently available methods for multiplexed immunohistochemistry (IHC). (A) Currently, the most common approach for
multiplexed IHC makes use of fluorescently labelled probes, which are either directly coupled to the primary antibody or indirectly provided by a secondary antibody,
that are detected in a cyclic fashion consisting of a staining protocol, followed by tissue imaging and signal removal. (B) In contrast to cyclic methods, single-step
spectral methods detect all dyes in the tissue simultaneously: these can either be provided by directly labelled antibodies that are all simultaneously present in the
tissue section or by the cyclic generation of TSA precipitates which are subsequently spectrally unmixed in a single imaging step. (C) Antibodies can also be
detected by covalently linked nucleotide labels to which fluorescently labelled probes are hybridized in a cyclic fashion for which each cycle gets imaged. (D) Non-
fluorescent mIHC methods involve the cyclic generation of chromogenic substrates that are washed away following an imaging step in between each cycle. (E) For
imaging mass cytometry (IMC), antibodies are labelled with metal isotopes which are detected by the local vaporization of the metal ions by a UV laser, following
which the present isotopes are resolved using atomic spectrometry. (F) Finally, nucleotide labelled antibodies can be detected by removing the nucleotide labels from
the antibodies using a laser beam, following which the nucleotides that were collected from a precise region of interest are sequenced to quantify the amount of
available proteins in that region.
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TABLE 1 | Technical overview of multiplex IHC staining methodologies.

e Automation n of slides/

experiment

Time (for 40-plex staining

of 1 large slide)

Resolution Tissue

preservation

Current

Scientific

use+

Refs

Partially automated 30+ 2-3 weeks subcellular Yes Mature (21–23)

Partially automated 30+ 2-3 weeks subcellular Yes Mature (24)

Fully automated 2 <1 week subcellular No Limited (25)

o

ction

fully automated 1-4 1-2 days subcellular Yes Limited (26)

m Service/Fully

automated

NA <1 week subcellular Yes Mature (27)

/slow Service/automated

detection

1 2 weeks subcellular, 1

μm/px

No Mature (28)

Is 800

²)

automated detection 1 2 weeks subcellular,

650 nm/px

No Mature (29)

automated detection 1 <1 week subcellular No Mature (30–32)

automated,

sequencing still

required

1 <1 day Subcellular/

grid

No Mature (33)

Partially automated 30+ <1 day (for 9-plex) subcellular No Mature (34)

Partially automated 30+ 2-3 weeks subcellular Yes Method

published

(35)

Partially automated 30+ 2-3 weeks subcellular Yes (36)

Partially automated 1 2-3 weeks subcellular Yes Mature (37)

Partially automated 30+ 1-2 weeks subcellular Yes Method

published

(38)

Fully automated NR <1 day (for 6-plex) subcellular No Method

published

(39)

Partially automated 1 <1 day (for 10-plex) subcellular No Method

published

(40)

partially automated 30+ <1 day (for 10-plex) subcellular Yes Mature (41)

Partially automated 30+ <1 day (for 5-plex) subcellular Yes Method

published

(42)

Partially automated 30+ <1 week (for 10-plex) subcellular Yes Method

published

(43–44)

b, antibody; ROI, region of interest.
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Method

Name

Commercial Name Sample Max. n of

Markers

Flexibility to implement

new markers¥

Primary

Ab

Ab

tag

Signal removal

technique

Tissue s

MILAN NA FFPE 82 High Unconj.

and Conj.

FL

sec
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Ab stripping WS/TM

CycIF NA FFPE 60 High Conj. FL bleaching WS/TM

MICS
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WS/TM

seqIF™ COMET™/
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FFPE 40 High Unconj.

and

Conj.

FL

sec
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Ab stripping TMA/up

2.2x2.2cm s

Chipcytometry CellScape™ / ZellScanner ONE™ Frozen (FFPE not

recommended)

65 High Conj. FL bleaching TMA/2x1

section

IMC™ Hyperion FFPE/Frozen/Liquid

biopsies

37 Limited Conj. Metal None WS+ROI TM

MIBI™ IONpath/

MIBIscope™

Frozen 40+ Limited Conj. Metal None TMA/slow (RO

x 800 μm

NA CODEX® Frozen/FFPE 40+ Limited Conj. NUC None WS/TM

DSP NanoString’s GeoMx® Digital Spatial Profiler

(DSP)
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Polaris™ spectral scanner
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biopsies

10 Limited Conj. NUC None WS/TM

Ultivue NA FFPE/Frozen 8 Limited Conj. NUC None WS/TM

SIMPLE NA FFPE 5+ High Unconj. HRP Chemical Ab stripping WS/TM

MICSSS NA FFPE 10 High Unconj. HRP Chemical destaining +

Ab blocking

WS/TM

NA, Not applicable; WS, whole slide; TMA, tissue microarray; FL, fluorescent; FFPE, formalin fixed paraffin embedded; Conj., conjugated;
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fluorophores require resolving and their spectral overlap. In
addition, most imaging instruments achieve a resolution below
0.6µm and are therefore perfectly compatible with single cell
measurements [the average human nucleus is approximately 10
micrometers in diameter (45)]. A common issue with these
methods is however the presence of autofluorescence in tissue:
upon excitation with specific wavelengths, naturally occurring
substances in tissue [for example extracellular matrix
components, lipo-pigments, aromatic amino acids and flavins
(46)] will emit light which overlaps with the fluorescence of the
measured fluorophore, and needs to be considered and dealt with
while processing images. Some chemical treatments (e.g. using
bleach, sudan black or borohydrate) have been suggested to
remove autofluorescence, but need to be used carefully and
typically only solve the problem partially, while computational
methods often offer better solutions, although in that case
sufficient control images that capture autofluorescence need to
be collected.

Cyclic Methods Using Fluorescent Antibody
Detection
These methods make use of a cyclic procedure in which several
steps (Figure 1A), including (i) the staining of small numbers of
antibodies (2 to 4; typically defined by the microscope settings),
(ii) the imaging of the sample and (iii) the removal of the stain,
are repeated multiple times until all markers are detected. While
cyclic methods are in general more time consuming, this
approach allows to perform interim evaluations (allowing the
researcher to validate every individual step and if needed repeat
them), refine the composition of the panel during the procedure
and adapt to unforeseen problems/results since cyclic methods
conserve the tissue during analysis.

In these procedures, either directly labelled primary
antibodies or labelled secondary antibodies are used to detect
the markers. The former approach is used in the multi-epitope-
l i g a n d c a r t o g r a p h y (MELC ) ( 3 7 ) , mu l t i p l e x e d
immunofluorescence (MxIF) (35), cyclic immunofluorescence
(CyCIF) (24), Cyclic Multiplexed-Immunofluorescence (cmIF)
(36), MACSima Imaging Cyclic staining (MICS) (25) and
Iterative Bleaching Extends multi-pleXity (IBEX) (38)
procedures. Indeed, MELC, MxIF, CmIF, IBEX and CyCIF
make use of directly labelled antibodies which are usually
combined in a triple/quadruple staining using 3/4 distinct
fluorophores with non-overlapping spectra. Following staining
and imaging, the fluorescent signal is removed using a photo-
induced or chemical bleaching step before probing for the next
markers (24, 35–38). This is different for the MICS technology,
which makes use of recombinant antibodies from which the
fluorescent label can be removed using a proprietary enzymatic
cleavage reaction (25). In either case, antibodies [or the Fab
fragments which are left after cleavage (20)] remain in the tissue
when the next round of markers are added to the tissue slide. The
latter is different in the MILAN approach (21–23), which makes
use offluorescently labelled secondary antibodies that bind to the
specific primary antibodies. This has the advantage that signals
can be amplified making it easier to detect weakly expressed
Frontiers in Oncology | www.frontiersin.org 5
markers, which might be an issue when using directly labeled
antibodies without amplification. Another difference is that in
the MILAN procedure, antibodies are entirely removed using an
SDS/ßMercaptoethanol washing step to denature, inactivate, and
remove the antibodies from the tissue (15), avoiding potential
issues with antibody crowding or steric hindrance which could
theoretically arise in methods that do not remove the antibodies
(even though there is no formal evidence for such issues at the
moment). The downside, however, is that the usage of secondary
antibodies in MILAN forces users to make combinations of
primary antibodies that were raised in different hosts or harbor
different isotypes to avoid cross-reactivity during primary
antibody detection (e.g. combinations of Mouse IgG1, Mouse
IgG2, rat, goat and/or rabbit need to be made). On the other
hand, directly labelled procedures depend on the direct labelling
of antibodies, which requires careful selection of color
combinations and carrier-free formulations of the primary
antibody solutions (which may require custom made
formulations), but, once available and validated, can be
combined independent of the species where the antibody
was raised.

In either of these methods, antibodies are commonly
administered to the tissue in small batches (2 to 4) after which
the tissue is imaged. Importantly, this setting allows the usage of
regular microscopy and imaging tools using common fluorescent
channels that are typically available in laboratories across the
world. Moreover, automation of these procedures is gradually
increasing, including the use of autostainers and automated slide
scanners with regular fluorescent settings, and novel technologies
using microfluidics (such as incorporated in the LABSAT and
COMET system from Lunaphore, the CODEX system from
Akoya (see below), or the MACSima instrument for MICS) are
rendering it possible to further speed up the acquisition for small
numbers of slides (26). The MICS method, on the other hand,
has been optimized on a proprietary instrument, which allows
unassisted, automatic processing of a small number of tissue
sections (25). Similarly, chipcytometry (27) makes use of highly
specialized equipment in which microchambers containing
attached cells or (frozen) tissue can be mounted, and
subsequently subjected to large multiplex analysis, which is
primarily done in a cyclic way, one antibody at the time.

Finally, these methods are primarily compatible with FFPE
tissue sections, while the MELC and MICS method have also
been described to be compatible with frozen materials (15, 25, 47,
48). Overall, using these technologies, large numbers of markers
can be analyzed (50+ have been reported (see Table 1), and the
number of analytes keeps on rising constantly. Here, we added a
new example of a melanoma tissue sample that was stained for 82
markers using the MILAN method (23) over the course of 50
rounds (Supplement Figure 1), while the MACSima technology
was used to stain 327 markers in tonsil tissue over 160+ rounds
(25). Overall, the primary limitation of the number of markers
mainly comes from the compatibility of the tissue with the
antibody removal procedure: methods involving chemical
bleaching steps (such as in CyCIF and MxIF) eventually lead
to tissue destruction, loss of antigenicity and/or tissue loss, and
July 2022 | Volume 12 | Article 918900
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are therefore limited in the number of cycles that can be
performed (47, 49). Also, cover slips that have to be added/
removed repeatedly between the staining/imaging cycles, may
cause tissue damage. Finally, the tissue type and how it was
preserved prior to the start of the mIHC largely determines the
plex leve l that can be achieved and needs to be
defined experimentally.

Next to tissue damage, also the scalability of methods needs
attention: while some methods (e.g. MELC, CyCIF and MILAN)
allow the simultaneous processing of multiple slides, others (e.g.
MICS, COMET) are limited to 2-4 slides at the time, although
robotic systems that allow automated slide loading are in
development. Also, the area that can be imaged/scanned can
differ greatly among systems (from a few mm (2) to whole slide).
Scaling can be further enhanced by compiling tissue microarrays
(TMA), in which carefully selected tissue subsamples (also
referred to as ‘cores’) from large tissue blocks are assembled on
a single slide (typically 60 cores of 2mm diameter can be put on
the same slide). Considering there is more heterogeneity
observed across the dimensions of a single section than
between different sections in tumors (50), one should
deliberately design the TMA to capture this potential
heterogeneity, by taking a smaller number of cores from small
and homogeneous samples and a larger number in big and
heterogeneous specimens. The role of the pathologist in
selecting the different regions of interest and design of the
TMA remains key. In this manner, it has been shown that
different tumor biomarkers are accurately reported through the
assessment of TMAs (51–53). As such, cohorts of 50-150 patients
can be analyzed within the timeframe of a couple of weeks. This
workflow is highly compatible within the research context, for
instance in performing retrospective analyses simultaneously on
big patient groups avoiding batch effects. However, within the
daily clinical routine, implementation of TMAs in the workflow
is less obvious, even though there may be a role for them when
scan areas of more automated (faster) mIHC systems are too
small to cover the entire tissue section as a whole and the analysis
of multiple regions of interest is still needed.

Batch Methods Using Fluorescent Antibody
Detection
In addition to cyclic procedures, novel methods are appearing
that allow more extended, single-step multiplexing (Figure 1B).
This is currently achieved by labelling antibodies with specific
fluorophores which can subsequently be resolved using spectral
unmixing methods, such as used in the RareCyte Orion system
(39). The advantage of this approach is that a maximum of
currently 21 antibodies are applied simultaneously in a single
staining procedure, as such offering a fast staining of the sample.
However, the generation of antibody panels containing 20+
different fluorescent dyes can be challenging, and requires
dedicated instrumentation for spectral unmixing. Moreover, a
significant amount of time (i.e. multiple hours) is required to
collect high-resolution images from a small number of whole
slides for each included channel. Finally, the simultaneous
addition of all markers limits the flexibility to modify the panel
Frontiers in Oncology | www.frontiersin.org 6
after it has been validated, and the generation of the labelled
antibodies remains cumbersome and requires a careful selection
and validation of the multicolor panel. On the other hand, for
routine purposes where the same panel has to be applied
repeatedly, this method may offer excellent options, although
this has not been investigated yet. Another recent approach
enabling higher level multiplexing involves the UltraPlex,
hapten-based technology, which adds labels to primary
antibodies, which are subsequently detected by anti-hapten
antibodies coupled to various fluorophores. While so far only
lower plex panels (4-8-plex) were tested, it bears the potential to
scale to routine assays of 12 or more markers (54).
Hybrid Approaches Using Fluorescent Marker
Detection
In addition to cyclic and batch procedures, other methods use a
hybrid approach to achieve extended multiplexing (Figure 1C).
This is currently achieved by labelling antibodies with unique
nucleotide barcodes which are subsequently detected using either
direct hybridization of fluorescently labelled complementary
nucleotide probes (as in the CODEX system (30–32)), or by
using an in-situ amplification system (as used in the
immunoSABER system (40) or the InSituPlex system (Ultivue)
(41)). The hybrid nature of these approaches comes from the
batch application of all antibodies simultaneously in a first step,
while their subsequent detection using the detector probes is
subsequently done in a cyclic fashion where hybridization/
denaturation steps are alternated with imaging, with the latter
needing to be repeated for each cycle (as such leading to a time
scale comparable to the cyclic methods). An alternative approach
was recently described in the SeqStain procedure (55), where
antibodies labelled with fluorescently-labelled DNA (either
primary or secondary) are used to detect protein markers,
following which the DNA is removed by an enzymatic reaction
using a nuclease. By repeating these cycles, multiple markers
could be visualized.

These approaches require that antibodies are labelled with
nucleotide probes, which reduces flexibility and speed to design
novel panels. Moreover, the nucleotide sequence composition of
the probes still requires significant optimization to avoid
nonspecific binding. On the other hand, unlimited numbers of
antibodies could theoretically be labelled with unique barcodes,
and as such be combined in large quantities. It remains to be
seen, however, how feasible such extended approach will be,
whether and when steric hindrance/overcrowding will become
an issue, and how destructive multiple rounds of hybridization/
denaturation will be for the tissue structure, a step that will
probably define the plex level. The cyclic application of the
probes also requires specific instrumentation containing
microfluidic devices and temperature control or repeated
manual work, currently complicating the scalability of this
approach to large batches of slides. Finally, while the CODEX
was initially optimized for frozen materials, both methods are
now compatible with either FFPE or frozen tissue sections
(32, 40).
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Detection Using Fluorescent Precipitates
Finally, while all the above-mentioned technologies allow the
measurements of large numbers of protein markers, in many
cases, researchers don’t need such complicated systems.
Alternatively, a limited number of markers can be detected by
using fluorescent precipitates (Figure 1D), for example by using
tyramide signal amplifications (TSA) reagents, an enzyme-
mediated detection method (34). The detection of antibodies in
this system is based on a cyclic procedure, where each primary
antibody is stained separately, probed with a Horse Radish
peroxidase (HRP) secondary antibody, and then a specific
fluorescent precipitate of the TSA reagent is generated. At the
end of each cycle, the primary and secondary antibodies are
removed while leaving the fluorescent precipitate before probing
with the next antibody. Because all precipitates harbor a different
fluorescent spectrum, imaging is only done once at the end, after
which antibodies are spectrally unmixed. This concept is used in
for example the OPAL system (34), allowing to perform 6-plex
staining of FFPE tissue in an automated fashion using commonly
available autostainers (typically present in pathology labs) and a
dedicated spectral scanner. This technology is compatible with
FFPE materials, and tens of slides can be stained simultaneously
depending on the autostainer instruments used. In addition, it
has to be said that some fluorescence-based detection systems are
using directly linked primary antibodies. Therefore, it could be
suggested that sensitivity is lower compared to the generally used
chromogenic staining, which is often used with an amplification
(frequently a polymer with several HRP enzymes) of the signal
(56). Currently, there is a lack of good comparative studies which
investigate this question. Some studies even suggest a
comparable sensitivity (57, 58). A proper evaluation of the
advantages and disadvantages of each technology regarding
specific research/clinical question should be done.
2. Chromogenic Detection of Antibody
Mixtures
Next to fluorescent detection methods, the use of more classical
chromogens has been employed to develop methods for
multiplexed IHC (Figure 1E). The Sequential immunoperoxidase
labeling and erasing (SIMPLE (42)) or the multiplexed
immunohistochemical consecutive staining on single slide
(MICSSS (43, 44)), are methods that use the alcohol-soluble
peroxidase substrate 3-amino-9-ethylcarbazole, a reagent that in
the presence of the commonly used HRP and H2O2, generates a
chromogenic, red precipitate that can be imaged using regular white
light, brightfield microscopy. Once the image is collected, the red
precipitate is washed out using ethanol following which the
antibody is eluted using acidified permanganate. As such, 5 to 10-
plex stains have been described (42, 43). While this method is
largely compatible with standard equipment and procedures in
pathology laboratories, it remains to be seen whether the tissue can
withstand increased rounds of the low pH antibody washout buffer.
Another recent approach using chromogenic multiplexing involves
the UltraPlex, hapten-based technology, allowing to generate low-
plex analyses (54). So far mainly FFPE tissues were processed, while
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frozen samples were not analyzed yet. Finally, while easy to assess
whether markers are highly expressed or completely absent, the
quantification of chromogens is far less quantitative than
fluorescent dyes.

3. Mass-Cytometry Based Detection of
Antibody Mixtures
As an alternative for chromophore/fluorescence-based imaging,
imaging mass cytometry (IMC) makes use of metal-labelled
antibodies, which are resolved using mass-spectrometry, an
approach that is currently used in the Hyperion (28) or the
multiplexed ion beam imaging (MIBI/IONPath) (29) systems
(Figure 1F). At the moment, 42 purified metal isotopes, mostly
from the lanthanide series, are commercially available for
labelling purposes, although the theoretical amount could be
135 based on the possible isotopes, a number that is mostly
limited by the excavation of these metal isotopes in sufficient
amounts and purity. The analysis of tissues using IMC involves
the staining of the tissue with the mixture of all pre-titrated
antibodies together, following which laser-assisted ionization
allows the analysis of the generated cloud containing the metal
ions in a connected mass cytometer. The batch application of
antibodies also makes it compatible with both frozen and FFPE
materials. The resolution is currently 0.3-1µm, dependent on the
system and settings, but imaging is rather slow at a rate of 2h/
mm (2), which puts some constraints on the analysis of whole
tissue slides or large cohorts of patients. Finally, similar to several
other methods, labelling of antibodies is required, although
commercial kits are available that are sufficiently easy to use (59).

4. Sequencing-Based Detection of
Antibody Mixtures
A final approach to perform high-dimensional multiplexed IHC
involves the combination of nucleotide-labelled antibodies and
next-generation sequencing (NGS) (Figure 1G). Indeed, the
Digital Spatial Profiling platform (DSP) makes use of photo-
cleavable probes to label primary antibodies (33). By staining
tissues with these antibodies, precise illumination of specific
regions of interest in the tissue using a dedicated platform
allows the isolation of the cleaved nucleotides which are
subsequently quantified using NGS. As such, multiplexing of
up to 40 proteins (or 5,000 mRNA probes) has been described
(33), but this technology allows up to 800- of 80-plex profiling of
either mRNA or protein, respectively, using an optical barcode
readout and has the potential for even greater multiplexing using
an NGS readout. This method is also compatible with both FFPE
and frozen materials. However a minimum of (non-adjacent)
cells (10-20 cells for protein, 50-200 cells for RNA (60)) is
required to obtain sufficient probes to achieve high quality
NGS data. As such, this technology does not yet achieve true
single cell analysis, although specific cell populations could be
profiled in depth. The selection of the cells to study, a critical step
in this technology, can still be done by performing a lowplex IHC
staining prior to probe isolation, but the isolation of specific,
more complex, rare phenotypes could be hampered by this low-
plex staining procedure.
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DATA ANALYSIS TOOLS FOR
PATHOLOGICAL INTERPRETATION

As described above, a multitude of technologies are currently
available to measure dozens of protein markers using
multiplexed IHC at single-cell level in a tissue slide. Most
technologies make use of automated slide scanners, which are
able to image a wide range of tissue areas, from pre-selected
(small) regions of interest (ROIs) to entire slides/tissue samples.
Such output is subsequently subject to a detailed analysis process.
Indeed, while the ‘wet lab’ procedures may still be adopted
relatively quickly and easily by laboratories, the subsequent
image analysis and interpretation of the resulting high-
dimensional data still faces enormous challenges. In the second
part, we therefore describe a general workflow of methods to
perform data-analysis and extract the most relevant information
(Figure 2). Also, while methods for imaging-based cellular
analysis are well described (61) (e.g. as used in high content
screening approaches of in vitro cultured cells), analysing images
from tissue samples typically comes along with various
additional challenges. Overall, analysing images from
multiplexed IHC consists of 2 major steps, including (i) image-
analysis and (ii) high-dimensional, spatially resolved data
analysis. Image analysis refers to the extraction of quantitative
and meaningful information from the image by means of digital
processing techniques and can be further divided in two
fractions: low-level and high-level processing. In low-level
image processing, a digital image is used as input and another
digital image is obtained as output (e.g., a corrected image for
improved visualization/analysis), while high-level processing
involves functions whose outcome is a description of the
content of the input image such as cell edges or tissue regions.
The reader should note that upstream steps such as image-
acquisition fall outside the scope of this review and are not
covered here.
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Low-Level Image Analysis
During low-level image analysis, all collected images are
prepared for data extraction. While the procedures can be
different between the various technology platforms, it generally
shares a common strategy. Considering that the majority of
technologies make use of fluorescent detection, we will primarily
focus on these procedures.

When dealing with immunofluorescent images of tissue
sections, these are often affected by aberrations which are
critical to the quality of the results (62). Examples of these
aberrations include out-of-focus regions (blurriness), vignetting
effects, saturation debris, and artifacts due to e.g. air bubbles and
tissue folds. Various methods have been described to tackle some
of these aberrations. Examples include ConvFocus (63) from
Google AI or FQPath (64) for blurriness detection (focus),
CIDRE (65) that uses an energy minimization model and a
flat-field correction method developed by Kask and colleagues
which uses an additive and a multiplicative component to correct
for field-of-view artifacts (vignetting) (66), a protocol
implemented in CellProfiler (67) which uses supervised
machine learning for automatic quality control of image-based
measurements, and HistoQC (62) which implements an
automated, quantifiable, quality control process for identifying
artifacts and measuring slide quality.

On top of undesired impurities, IF images are also subject to
other sources of fluorescent signals such as background and
tissue autofluorescence that need to be tackled before quantifying
true signals. Examples of methods addressing this issue include
dark pixel intensity identification (68) which estimates
background signals by acquiring images at a different set of
exposure times, and an autofluorescence removal method that
uses non-negative matrix factorization that separates the signal
into true signal and autofluorescence components (69).
Moreover, high-throughput experiments can be subject to
batch effects, that is, part of the acquired signal is described by
FIGURE 2 | Schematic overview of the required steps for downstream image analysis using the most commonly used fluorescent, cyclic methods for multiplexed
IHC. Images are collected across multiple cycles but still need to be cleaned (QC), corrected (PP), registered/aligned (REG), autofluorescence removed (AF),
segmented (SEG), feature extracted (FE), phenotypically annotated (PI), and spatially resolved (SA).
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undesired technical variation (for example, sample
manipulation) rather than biological sources (61). An example
of a method to tackle this issue is RESTORE (70) which identifies
negative control cells for each marker and uses their expression
levels to normalize and remove sample-to-sample variation.
Local/grid-based normalization tools (71) have also been
developed, although their general implementation still requires
a broader implementation.

In cyclic methods where images are acquired in consecutive
rounds, the next step consists of the exact super-positioning of
images acquired from consecutive imaging rounds (commonly
referred to as ‘image registration (54)). Registration of medical
images is a need that has been around for a while and thus a large
number of methods are available. These methods can be broadly
classified as rigid (image transformation is limited to translation,
rotation, and scaling) (72, 73) and plastic (the moving image can
be elastically deformed to best match the fixed image) (74).
Historically, image registration was meeting a macroscopic need
(for example, overlapping of MRI and Xray images). For
multiplexing however, microscopic precision is required as a
shift of a few pixels can overlap completely different cells.
Therefore, recently, new registration methods have been
published in the literature which aim to reach the required
precision for exact-cell overlapping (75–78). While usually not
required in “batch” methods (see above), this seemingly trivial
step can be extremely computationally ‘expensive’ for large
images (>100 million pixels) when applying plastic methods.
Therefore, the latest algorithms come with GPU implementation.
Also, depending on how images are acquired in the imager (e.g.
some imagers scan all fluorescent channels at each step, while
others scan the entire sample for each channel separately),
additional registration of the acquired fluorescent channels
may be required.

Image pre-processing requires a very systematic approach
and should be robust and identical across all samples/images of
the same project to avoid the loss of biological information and a
potentially biased interpretation of the results. While
computational tools exist tackling the individual issues, their
implementation for non-expert users is challenging and requires
some level of computational knowledge. Moreover, linking the
inputs and outputs of consecutive steps is far from trivial and
integrated workflows are still missing. All of this together makes
that to date, image pre-processing is mainly done by manual/
visual inspection in the routine setting, thus largely limiting the
throughput of these techniques.

High-Level Image Analysis
During high-level image analysis, the output of the different
functions is a description of the content of the input image(s)
such as cell edges, cell features or tissue regions. Once a set of
images is properly aligned and ‘cleaned’, cells need to be precisely
delineated (commonly described as ‘cell segmentation’). The
quality of this step is very important for proper cell
identification (see below). In tissue sections, this step is
commonly done using nuclear segmentation. Historically
nuclear segmentation has been tackled mechanistically
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(watershed algorithm and variations (79, 80). However, the
introduction of deep learning algorithms (specifically
convolutional neural networks (CNNs) like uNets) have
outperformed all the mechanistic algorithms and now
represent the state-of-the-art (81, 82). The main drawback of
deep-learning based algorithms is the need for large training
datasets. However, current efforts are ongoing to implement
machine learning approaches (83), which are gradually
becoming more efficient at recognizing and splitting cells
requiring minimal hands-on image training (84, 85). While a
few algorithms have explored the possibility of segmenting full
cells (including cytoplasm and membrane) (86, 87) cell nuclei are
far less heterogeneous making nuclear segmentation more
robust. Regarding the clinical implementation of cell
segmentation approaches, deep-learning based methods will
require to fine-tune existing algorithms to optimize the
accuracy of the predictions and adjust it to the specific
acquisition instrument and sample material. To the best of our
k n ow l e d g e , s u c h a n amb i t i o u s c omp a r i s o n i n
immunofluorescent images and in a multi-center setting with a
variety of acquisition instruments is not available in the
literature. However, a similar study has been carried out for
Ki-67 expression, a prognostic marker in breast cancer, which
has shown excellent accuracy and reproducibility in different
analysis platforms performed by multiple operators (88).
Accuracy and reproducibility are well known issues in state-of-
the-art histopathology where the sample readouts are extracted
by the subjective eye-rolling of an expert pathologist which
causes intra- and inter-observer variability (89, 90). In fact, the
main limitation for the automation (human or computational) of
pathological evaluations is the lack of standardization (91).
However, we believe that with the right standardized roadmaps
to histopathological analysis integrated computational pipelines
will become state-of-the-art and that the future of pathology is
mainly digital (92).

Finally, the acquired signals, such as fluorescence intensity,
amount of metal isotopes, read-counts, etc., are quantified in
every cell together with morphological features of the nucleus
(nuclear size, shape, etc.) and topological features (X/Y
coordinates) in a step called ‘feature extraction’, and collected
in a structured data matrix.

Overall image pre-processing is highly dependent on the
technology that was used to acquire the images – each of them
will still require significant tweaks and adaptations to translate
the procedures of one technology to another. While most
vendors of the above described instruments provide
accompanying software, these commonly don’t extend beyond
mere viewing of images, a step that is crucial for quality
assessments of the stains, but don’t allow quantitative and
extended analysis. More dedicated (commercial) image analysis
platforms are also gradually becoming available (e.g. Halo
(Indica labs) or Visiopharm software packages for digital
pathology, and the open source tools such as QuPath (93),
CellProfiler (94), or HistoCat (95), are continuously updated,
but considering the enormous amounts of biological questions
that still require downstream analysis of the spatially resolved cell
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types, such packages typically remain constricted to initial
groundwork, or highly dedicated to one particular type of
analysis. Some more integrative pipelines are also gradually
being released, such as MCMIRCO (96) or SIMPLI (97),
although these still require a high level of bioinformatics skills.

High-Dimensional, Spatially Resolved Data
Analysis
Next, the obtained data matrix containing the high-dimensional
data still requires further analysis and interpretation. A first step
in this process involves the identification of the various cellular
(pheno)types (i.e. epithelial cells, particular T cell subtypes,
tumor cells, blood vessels, etc), a step that is usually done
using clustering analysis and manual interpretation according
to methods that resemble many other single cell methodologies.
More automated algorithms that can be trained to assign labels
to each cell (e.g. using convolutional neural networks (43)), and
pretrained templates (98) do exist, but still require significant
training, as cellular phenotypes can vary extensively between
organs and/or disease conditions. In addition, this step is
commonly further complicated by imperfect cell segmentation,
as markers of adjacent cells can “pollute” neighboring cells,
making interpretation difficult. This can require an interactive
iteration of the settings for cell segmentation, next to a step-wise
approach in clustering, where in a first step the major cell types
are defined, after which the different subtypes of these cells can
be defined. The latter is mainly used to avoid that large
populations outcompete small/rare populations.

Regarding clustering, there are several methods publicly
available without any single method proving to perform better
than the others. While many studies have used one or another
clustering algorithm (49, 99–101), our group implemented a
consensus clustering procedure (31, 35) following a “Wisdom of
the crowds” type of approach, where three independent
algorithms (to choose between Phenograph, K-means,
FlowSom, ClusterX, Clara, Hierarchical clustering, among
various others) were used to cluster the identified cells. Each of
the identified clusters is then annotated manually by an expert
pathologist/immunologist, and only cells that remain in the same
annotated cell type across minimal 2 methods are retained for
further analysis. Since multiplexing datasets can identify millions
of cells, clustering is done in a subset of these cells. There are
different sampling strategies available, including random
sampling, stratified random sampling, stratified proportional
random sampling, etc. The annotated subset is then projected
on the entire dataset using cell-type-specific fingerprints. The
above-described methodology, however, still requires significant
manual work from expert pathologists/immunologists, a step
that could still largely benefit from properly curated databases,
which will allow for machine learning tools to automatically
recognize and annotate cell types.

Once this information has been gathered, data is subsequently
projected against the spatial context of the tissue. Indeed, each
cell is composed of a precise subset of pixels with specific
coordinates that span a specific surface in the image. This
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information therefore allows the analysis the spatial
distribution of the cells that can be used to model cell-cell
interactions (32) (typically referred to as ‘neighborhood
analysis’) and any other spatial measurement (e.g. distance
measurements to structures of interest, nearest-neighbor
analysis, etc), but also the definition of larger cell communities
and tissue architectures (102). For any of these analysis subtypes,
in spite of the presence of several methods implemented in
papers published in literature (102–106), there are currently very
few software packages available, mostly requiring specific and
specialized bioinformatics skills. However, from a biological
point of view, this step is the most crucial as it will allow
researchers to explore complex biological systems in a
quantitative way, so sufficient efforts will still be required in
the coming years to develop standardized methods. Moreover,
the high complexity of these analyses, together with the relatively
small scanned areas or amount of slides/patients (which cannot
capture the full heterogeneity of a tissue or disease group),
typically results in large patient-to-patient variation, which will
require that significantly large cohorts are interrogated to come
to statistically robust conclusions. Whether sufficiently large
cohorts can be analyzed will in great part be defined by the
used platform (see above). Also, diagnostic tools using mIHC/IF
have shown their benefits for the treatment of the patient.
Standardized methods to perform image analysis will have to
be developed and properly validated before their clinical
implementation can even be considered.

Finally, each described method will eventually generate
terabytes of images containing expression profiles of each
included marker. The size of such data sets poses an additional
challenge to store, label, transfer, computationally process and
interpret the data in a reasonable amount of time. Current
methods for big data processing, however, should be easy to
adopt, but are only now becoming available in most institutes. In
line with this, over the coming years, this “next-generation”
pathology field will also need extended digital data repositories
and standardized analysis methods to bring diagnostics and
tissue interpretation to the next level. Implementing the
required safety measures in line with the current General Data
Protection Regulation (GDPR) regulations will also be of
primary importance (107).
MAKING THE DIFFERENCE WITH
SPATIAL IHC PROFILING

In the last part of this review, we provide an overview on how
multiplexed IHC has been used and implemented in research
over the past years. Considering the growing number of papers
(all to which we can unfortunately not refer), we chose to focus
on the most important concepts and provide examples of how
researchers have used (some) of the above described methods
together with dedicated bioinformatics analysis pipelines to gain
additional insights in complex biological processes.
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The General use of Multiplexed IHC
Across Research
First, to get a top-level view on how multiplexed IHC has been
used over the past years, we have performed an in-depth
literature search, for which keywords and co-occurring terms
were extracted from ~1000 papers from PUBMED using a query
related to “multiplexed immunohistochemistry” (see Methods),
and generated scientific networks. Based on the most occurring
terms in the titles and abstracts of these papers, we can draw two
main conclusions (Figure 3):

First, considering the topics of research, we identified 3 main
topics: (i) technology/methodology development for multiplexed
IHC using antibodies in tissue sections with the majority of
methods focused on the usage of immunofluorescence; (ii) a
strong focus on cancer research, with the aim to better predict
prognosis, outcome and survival of patients based on the analysis
of tissue sections; (iii) the vast majority of research papers used
multiplexed IHC for the analysis of immune infiltrates, with a
primary focus on T cell biology, checkpoint inhibition,
macrophages and B cells. In addition, a more detailed density
map also shows several prominent biological markers (e.g. CD3,
CD4, CD8, CD68, CD163, CD20, PD1/PDL1, CTLA4, etc) that
are generally used for T cell profiling, checkpoint analysis, and
the investigation of macrophages and B-cells.

Second, when overlaying the generated network with the dates
of when the papers containing the indicated terms were published,
we identify a trend where research was initially focused on
technology development (before 2016), while gradually moving
to its implementation in the research community to study
immune infiltrates related to cancer development and its
treatment using immunotherapy (2016-2020).

Using multiplexed IHC to answer complex
biological questions
Considering the rise in available technologies for multiplexed
IHC over the past few years and their gradual implementation,
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only the tip of the iceberg has been uncovered. Indeed, next to
the revolution in single cell profiling, for which single-cell RNA
(scRNA) sequencing is still the primary method for cellular
phenotype exploration (108), the implementation of spatial
technologies is becoming increasingly important to precisely
locate the identified cell types and phenotypes in the context of
a tissue and across a patient cohort. In this way, accurate atlases
of healthy and disease-specific microenvironments can be
compiled, both for human and mouse tissues (109, 110). For
instance, the myeloid compartment of glioblastoma brain tumors
was recently described using the combination of scRNAseq,
CITEseq and multiplexed IHC through which the various
ontologies of the infiltrating macrophages and resident
microglial cells could be identified, while their distributions
were spatially separated over various niches, which, moreover,
evolved from the newly diagnosed to the recurrent setting (111).
The distribution of the various cells across a tissue section was
determined by computationally breaking up the tissue in smaller
“tiles” in which the relative distributions of the identified cell
types were determined. The same approach is directly applicable
to define tumoral, peritumoral, perivascular and non-tumoral
areas (112), and, while these insights are key to define the
macrostructure of a tissue, such analysis still remains on the
level of one cell type at the time. Once macro-level areas are
defined, it becomes key to understand local cellular distributions,
an analysis type that is done by performing neighborhood or
nearest neighbor analyses. In this analysis, the local
neighborhood from each individual cell is defined by assessing
which other cell types are present within a certain radius or
distance. We and others have used this approach to define local
cell-cell interactions between all identified immune cell
populations in melanoma samples (23, 96). As such, it was
found that exhausted cytotoxic CD8+ T cells were typically
residing in close vicinity to TIM3- or PDL1-positive
macrophages (23, 113, 114). Similarly, it was found that the
CD8+/TCF7+ double positive T cells that were residing in the
FIGURE 3 | The bibliometric map of multiplexed IHC over the years. Using VOS Viewer, a software tool for constructing and visualizing the bibliometric network
related to “multiplexed immunohistochemistry” on PUBMED (see Methods), we observed a shift from 2010 where technology development started (blue circles), to
its use to unravel complex cellular networks in 2020 (yellow areas) with a strong focus on immuno-oncology and T-cell biology.
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tumor could be reactivated and showed a positive correlation to
responsiveness to checkpoint blockers in melanoma (115).

Such inference could only be achieved by performing
multiplex analysis in tissue sections, allowing researchers to
simultaneously define the phenotypic and functional status of
each identified cell type but also define the spatial distribution of
each cell and how they relate to each other. A similar cellular
sociology was identified in breast tumors using IMC through
which communities and local niches could be determined which
typically consisted of a dominant tumor clone in combination
with a variety of immune cells (102). Cellular neighborhoods
could also be identified in colorectal tumors (116). Moreover, by
measuring such neighborhoods, the presence of particular CD4+
T cells in cellular neighborhoods that were also enriched for
granulocytes was identified as a positive markers for survival in
CRC, while the presence of macrophages in breast tumor
communities rather correlated with poor prognosis (102, 116).
Also in lung, ovarian, liver, kidney and various other cancer
types, the presence of specific immune cell infiltrates were shown
to correlate with good or poor outcomes (117–119) or with
response to immunotherapy (120). The number of research
papers using this type of analysis keeps on rising steeply (and
we apologize to all the authors of papers we have not mentioned
here), even though the scale at which such projects can be
performed should become even larger to achieve the next
clinical revolution.
MULTIPLEXED IHC VS. SPATIAL
TRANSCRIPTOMICS: A
COMPLEMENTARY DUO

In this review, we have mainly focused on methods for
multiplexed IHC. The main advantage of these methods
resides in their prompt translatability to the clinical setting:
indeed, pathology labs have been performing antibody-based
assessments for decades and adding mIHC should be more easily
adoptable in such setting, even though a transition towards
digital pathology will be required. Recently, methods for spatial
transcriptomics are being developed at rapid pace: the main
advantage of the latter methods (for which a plethora of technical
approaches is currently available (121)) is their more universal
character, whereby complementary detection probes can be
developed in a more generic and species independent way,
while mIHC largely depends on the availability of specific, high
quality antibodies, which are not always available and often not
cross-reactive over species (e.g. mouse vs human). While such
approach enables researchers to uncover unknown pathways and
patterns, RNA-based methods also harbor some pitfalls as well.
Indeed, for the majority of (archival) samples, the currently
available standard quality of materials (as they are mostly
available as FFPE materials in biobanks across the world, and
less often in the form of fresh frozen tissue blocks) is typically
directly amenable for antibody-based approaches leading to
robust insights. The quality of samples for RNA based analyses
will, on the other hand, require very close monitoring of sample/
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RNA quality, as the stability and longevity of RNA molecules is
much less compared to proteins. The translational character of
RNA-based methods will therefore still require proper
benchmarking to ensure robust pathology grade readouts. The
coming months and years will have to show how this exciting
field keeps on evolving.

Finally, both protein and RNA-based methods are gaining
more and more traction to unravel complex cellular networks
and architectures. However, the main setting currently still relies
on the “discrete” utilization of one method at the time. Indeed,
while each method can already provide highly valuable insights
at single-cell resolution, each approach also harbors various
downsides as well. For instance, while transcriptome analysis is
excellent at unravelling transcription factor networks or identify
the source of cytokine expression in complex tissues (122),
signal-transduction events, protein-protein interactions or
particular immune cell states can be measured more reliably at
the protein level (123). As such, combining multiple
methodologies in an orchestrated fashion can produce highly
synergistic insights that cannot be achieved by either method
alone. This evolution towards multi-omics approaches is a very
active domain, where various challenges will have to be
overcome as well. Not only will methods have to be adapted in
such way that capturing RNA and protein based features will
remain possible, also data integration will require further
evolution, even though steps are being put in that direction
(121, 122).
CONCLUSION

A la rge va r i e t y o f t e chno log i e s f o r mu l t ip l e xed
immunohistochemistry has been developed over the past years,
each with their own advantages and downsides, and it is expected
that these will keep on improving over the coming years.
Moreover, combinations with other spatial omics, such spatial
transcriptomics, genomics, chromatin accessibility, lipidomics or
metabolomics, are underway which bring yet another level of
technological and computational challenges. Regardless of the
approach, each technology has the goal to interrogate increasing
numbers of analytes in pathological tissue samples at single-cell
and spatial resolution. This revolution allows us now to
investigate complex patho-biological processes at unseen
resolution- insights that bear the potential of becoming the
next generation of higher order biomarkers. This can, however,
only be achieved if appropriate computational tools and
infrastructure – the hallmark of a true shift towards digital
pathology – are implemented that can deal with this approach
and complexity. Moreover, considering the number of
parameters that will be measured, it will be paramount to
investigate sufficiently large populations of patients so that we
can evolve from anecdotical case reports to more fundamental,
robust and clinically useful insights. The latter will require the
combination of highly standardized methodological processes
and concurrent validated analysis pipelines. Finally, such next-
generation pathology will also require standardized digital data
July 2022 | Volume 12 | Article 918900
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repositories to set appropriate standards and benchmarks to
bring the field to the next level.
METHODS

Digital Literature Analysis
The VOSViewer tool and algorithms (Visualizing scientific
landscapes; https://www.vosviewer.com (124);) were used to
analyse extracted publication data from a PubMed search using
the following search criteria:

(multiplex immunohistochemistry[Title/Abstract]) OR
(multiplexed immunohistochemistry[Title/Abstract]) OR
(multiplexed immunofluorescence[Title/Abstract]) OR
(multiplexed immunophenotyping[Title/Abstract]) OR
(multiplex immunofluorescence[Title/Abstract]) OR
(multiplex immunophenotyping[Title/Abstract])

Multiplexed Analysis using MILAN
A 3µm thick tissue section of a melanoma tissue microarray was
subjected to multiplexed immunohistochemistry according to
the MILAN protocol as previously described (21). Overall 83
antibodies were succesfully used as have been described here
(23, 125).
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