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ABSTRACT 
The critical product planning phase, early in the product development cycle, requires a design tool to 
set engineering priorities, capable of selecting the preferred design concept and setting target levels of 
engineering performance to guide the later product development stages, while considering the needs of 
both the consumer and producer. The Quality Function Deployment (QFD) method was developed to 
transfer customer needs into engineering characteristics; however, limitations have been identified in 
using QFD, which can result in irrational and unrealistic results when used to set engineering priorities 
and target levels of product performance. In this paper, based on the principles of Decision-Based 
Design (DBD), a new design tool called the Product Attribute Function Deployment (PAFD) is 
demonstrated as a decision-theoretic, enterprise-wide process tool to guide the conceptual design 
phase. The PAFD method extends the qualitative matrix principles of QFD while utilizing the 
quantitative decision making processes of DBD to create a new process specifically for translating 
qualitative customer needs into quantitative engineering attributes and making early product design 
decisions. It is built upon established methods in engineering, marketing, and decision analysis to 
eliminate the need for subjective user ratings. In addition, the technical attributes considered are 
expanded beyond those typically considered to include requirements from the producer and regulators. 
The differences between QFD and PAFD are compared and the conceptual design of an automotive 
Manifold Absolute Pressure sensor is used to demonstrate the benefits of the PAFD method. 

Keywords:  Quality Function Deployment (QFD), Decision-Based Design, Conceptual design, Target 
setting, Sensor design, Decision making, Product attribute function deployment (PAFD) 

1. INTRODUCTION 
In the early stages of product design there is a need to set engineering priorities, primarily through the 
selection of a preferred design concept, identification of key product attributes, and establishment of 
performance targets for the artifact or product under design. Because product decisions made in the 
early or conceptual design phase can account for up to 75% of the committed manufacturing cost [1], 
it is essential that these decisions be rigorous and consistent with the objectives of the firm or 
enterprise. A design process tool utilized to guide these critical product planning activities must 
consider the needs of both the consumer and the producer in order to select concepts and set targets 
which will maximize the benefit to the enterprise as a whole. While design freedom is at a maximum 
in this phase, design knowledge is at a minimum, requiring that decisions made in this phase also 
explicitly consider uncertainty.  
 Within the engineering research community, there is a growing recognition that decisions are the 
fundamental construct in engineering design [2]. Traditionally, discipline specific decision-making 
methodologies, utilizing mathematical behavioral models such as those used in marketing (e.g., 
conjoint analysis) and engineering (e.g., differential equations), have been adopted based upon the 
specific needs of the individual discipline. These methods have used domain specific objectives as the 
decision criterion, biased towards either consumer product acceptance or producer performance 
metrics. These methods in isolation cannot achieve the necessary enterprise-level decision process 
required during the product planning phase, which has been acknowledged by the development of 
various process tools to bridge different enterprise domains to support product design activities [3]. 
 Quality Function Deployment (QFD) was developed to bridge the marketing and engineering 
domains using a much simplified, consensus-driven qualitative analyses. This process was developed 
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as a means to link product planning directly to the “Voice of the Customer”, and remains the leading 
tool for setting engineering priorities, determining target levels of product performance through 
benchmarking and, when supplemented with Pugh’s Method [4], selecting a design concept. The 
primary feature of the QFD process is the House of Quality (HoQ) [5], which provides inter-functional 
product planning mapping to link engineering attributes to customer desires, which are ranked in 
importance. In addition to identifying the key engineering aspects in product design, the HoQ has been 
used to document consumers’ rating of competitors’ products and to study the correlation among the 
engineering characteristics. The HoQ utilizes a weighted-sum multi-objective decision criterion, 
entailing technical test measures (benchmarking) analysis, technical importance rankings and estimates 
of technical difficulty to enable a decision maker to set performance targets for a designed artifact. The 
use of the HoQ will be demonstrated in Section 3. Pugh’s Method provides a method to compare 
alternative design concepts against customer requirements, with evaluations made relative to a base or 
favored concept, a process independent from the HoQ analysis.  
 Much literature has demonstrated both successes and issues with the QFD methodology [6]. Based 
on the survey of the literature and our own views, while QFD provides a useful attribute mapping 
methodology, it suffers from several limitations which can lead to sub-optimal or irrational early 
product decisions. Firstly, according to Aungst et al. [7], using only customer and competitor 
information to set targets without consideration of the physics of engineering attribute interactions or 
other product objectives such as market share and potential profit, can result in targets that can never 
be achieved in practice. Several proposed improvements to the QFD have been presented in the 
literature. Aungst et al. [7] have presented the Virtual Integrated Design Method which uses a 
quantitative, rather than qualitative, link between the conventional four HoQ matrices. Brackin and 
Colton [8] have proposed a method in which analytical relations between the engineering attributes 
and customer attributes are created and real values of engineering attributes are searched from an 
appropriate database to ensure targets are achievable. Locascio and Thurston [9] have combined the 
QFD ratings and rankings into a design utility function to determine performance targets using multi-
objective optimization. Although these methods improve upon the target setting methodology of QFD, 
they utilize customer group importance rankings and engineering rankings which have been shown to 
be problematic [10]. 
 In the QFD approach, the importance ranking assumes that all customers’ preferences are the same 
and can be represented by a group utility. But based on Arrow’s Impossibility Theorem (AIT), 
Hazelrigg has shown that utility only exists at the individual, or disaggregate level [10]. Each 
customer has a specific preference, and the demand for a product can only be determined by 
aggregating individual choices. Although the Analytical Hierarchy Process (AHP) was introduced 
[11] to aid in the determination of importance rankings, Hazelrigg [10],[12] has shown through the use 
of AIT that the importance weightings for ranking the importance of engineering attributes can be 
irrational when more than two attributes are ordered. Further, Olewnik and Lewis [13] have 
demonstrated through the use of designed experiments that the HoQ rating scale used in the 
relationship matrix yields results comparable to inserting random variables, or completely different 
scales in its place. Additionally, due to its philosophy, the QFD method is overly biased towards 
meeting customers’ requirements. Prasad [14] presented an expanded QFD methodology called 
Concurrent Function Deployment (CFD) that expands upon the customer attributes to consider other 
corporate objectives, such as cost and manufacturing. Similarly, Gershenson and Stauffer [15] 
developed a taxonomy for design requirements for corporate stakeholders. They consider not only end-
user requirements as in conventional QFD analysis, but also corporate, regulatory and technical 
requirements. These methods still employ conventional weighting and ratings techniques.  
 The limitations above point to the need for a design planning tool which is supported by a rigorous 
decision-making framework to ensure that consumer preference is accurately represented and targets 
set by the process are achievable in engineering design. The Decision-Based Design (DBD) method, 
an emerging design paradigm [2],[16],[17] provides such a desired rigorous decision making 
framework which models design as a decision-making process that seeks to maximize the value of a 
designed artifact through the use of utility optimization. Combining the strengths of DBD and QFD, 
the Product Attribute Function Deployment (PAFD) method was introduced in a previous work [18] as 
a comprehensive product planning process tool for the conceptual design phase, with preliminary 
results of the tool development provided. In this work, the PAFD process is fully developed and 
compared in detail to the QFD methodology. This comparison is conducted to demonstrate the 
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parallels and differences between the two methods, and to illustrate how the PAFD method addresses 
the limitations described in this section which arise when conducting a QFD analysis on a real design 
problem.  

2. PAFD DESIGN ASSESSMENT USING THE DBD FRAMEWORK  
In this work, the DBD framework [2] has been formulated specifically for the conceptual design phase 
of a product or artifact for use in the PAFD method. A key feature of this method is the merging of 
separate marketing and engineering domains, described previously Section 1, into a single enterprise-
level decision-making framework. In the DBD method, a single criterion, V, which represents 
economic benefit to the enterprise, typically profit, is employed as the selection criterion. This single-
objective approach avoids the difficulties associated with weighting factors and multi-objective 
optimization [10]. A utility function, U, which expresses the value of a designed artifact to the 
enterprise, considering the decision maker’s risk attitude, is created as a function of the selection 
criterion. A preferred concept and attribute targets are selected through the maximization of enterprise 
utility. The mathematical formulation of the DBD method, described in the following sub-sections, 
provides insight into the key parameters, attributes, and relationships which must be included in the 
proposed PAFD method to ensure rigorous decision making. 

2.1 Enterprise-Driven Design Formulation 
The DBD approach takes an enterprise view in formulating a design problem and addresses several 
limitations of the QFD method described earlier. In our formulation, utilizing profit, Π, as the selection 
criterion (V) captures the needs of both the consumer and the producer stakeholders, resulting in 
maximum benefit to the enterprise when utility is maximized.  Profit is expressed as a function of 
product demand Q, price P, and cost C, where demand Q, is expressed as a function of customer 
desired attributes A, customers’ demographic attributes S, price P, and time t. Similar to “customer 
attributes” in QFD, A are product characteristics that a customer typically considers when purchasing 
the product. To enable engineering decision-making, qualitative customer desired attributes A must be 
expressed in terms of quantitative engineering attributes E in the demand modeling phase. The E can 
be described as performance functions E(X) of engineering design concepts and variables X through 
engineering analysis, to capture technical trade-off behavior among the attributes. Cost, C, is a 
function of the design concepts and variables, X, exogenous variables Y (the sources of uncertainty in 
the market), demand, Q, and time t. Price, P, is an attribute whose value is determined explicitly in the 
utility optimization process. Based upon these functional relationships, the selection criterion can be 
expressed as: 

( )( ) ( )tQCPtPQV ,,,,,, YXSXE −×=Π=   (1) 

It should be noted that uncertainty is considered explicitly and the objective is expressed as the 
maximization of the expected enterprise utility E(U), considering the enterprise risk attitude: 

( ) ( ) ( )dVVpdfVUUE
V
∫=  :max   (2) 

where V is the single selection criterion in Eq. (2). 

2.2 Modeling Demand using Discrete Choice Analysis (DCA) 
Unlike QFD analysis which may unrealistically treat customers as a “group” with a single, aggregate 
preference, Discrete Choice Analysis (DCA) [19] is used to model product demand by capturing 
individual customers’ choice behavior, in which performance of a given product is considered versus 
that of competitive products. It should be noted that in this formulation, the customers could be either 
individual consumers or industrial customers. DCA is based upon the assumption that individuals seek 
to maximize their personal customer choice utility, u, (not to be confused with enterprise utility, U) 
when selecting a product from a choice set. The concept of choice utility is derived by assuming that 
the individual’s true choice utility u consists of an observed part W, and an unobserved random 
disturbance ε: 

ininin Wu ε+=   (3) 
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While there are a number of DCA techniques popular in literature, Multinomial Logit (MNL) is used 
in this work, resulting in a model in which the coefficients (β) of the observed customer choice utility 
function (W) for the product attributes are identical across all customers. However, heterogeneity is 
modeled by considering demographic attributes S (e.g., customer’s age, income, etc.) in the customer 
choice utility function. Assuming this utility function can be expressed as a linear combination of 
attributes, W follows the form: 

( )SESE ×++= 321 βββW   (4) 

Estimation of the customer choice utility function allows the demand, Q, for a choice alternative i to be 
determined by summing over the market population, N, all probabilities, Prn(i), of a sampled 
individual, n, choosing alternative i from a set of J competitive choice alternatives: 
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The set of choice alternatives J may include both the new designed artifact and the existing 
competitive alternatives available. Additional details on the use of MNL models for engineering 
design applications can be found in [2],[17].  
 While this section describes the mathematical foundation of PAFD using DBD principles, the 
formal process for mapping the various types of attributes at various levels of abstraction to determine 
relationships and interactions is based upon concepts from the QFD method with certain extensions. 

3. PAFD METHOD WITH COMPARISON TO QFD 
In comparing the new PAFD to the existing QFD, both methods are categorized into three primary 
stages as shown in Figure 1. 
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Figure 1. 3 Stages of PAFD and QFD 

In the first stage of both methods, customer preference is quantified: PAFD uses a DCA model to 
express consumer demand for an entire product in competing with other existing products, whereas 
QFD uses a ranking of consumer preferences for specific product attributes to assess consumer 
acceptance of a product. In the second stage, the engineering design is characterized: PAFD utilizes 
preliminary analysis models to capture the costs and technical trade-offs among E (details provided 
later), versus the technical difficulty rating and correlation matrix mapping used in QFD. PAFD 
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explicitly considers engineering attributes resulting from customer (EA), corporate (EC), regulatory 
(ER), and physical (EP) sources [15], whereas QFD is primarily focused upon those engineering 
attributes E resulting from customer desires. 
 The conceptual design of an automotive pressure sensor is used as a case study to demonstrate the 
PAFD methodology, and the differences between PAFD and QFD. The specific example considered is 
to design a standard next-generation Manifold Absolute Pressure (MAP) Sensor for the automotive 
industry. The MAP Sensor measures the air pressure in the intake manifold for fuel and timing 
calculations performed by the engine computer. The customers are industrial customers, composed of 
both automobile manufacturers and engine system sub–suppliers. The targeted market is the mid-size 
sedan segment. Multiple sensing technologies exist for pressure measurement, and each technology 
drives specific corresponding high-level design features, resulting in differing levels of performance 
and cost structure for each design concept. Therefore, before detailed design of the sensor, a decision 
on the conceptual design concept must be made and target levels of product performance must be 
established. A risk adverse attitude is assumed for the enterprise, and the market size is assumed to 
grow by 10%/yr. over the time interval, t, of 4 years considered in the forecast. 

3.1 PAFD Analysis of MAP Sensor 

Stage 1: Understanding MAP Sensor Requirements and Inter-relationships 
A “house” structure is used to accomplish the Stage 1 processes of the PAFD method as shown in 
Figure 2. Similar to the conventional QFD analysis is the deployment of mapping between E and A, as 
well as the collection of engineering attribute levels from competitors’ products (competitive analysis). 
The Engineering Attributes determined in this matrix are the E related to customer desired attributes 
A, identified as EA. Also unique to PAFD, customer demographic attributes S are considered and 
interactions (A×S), later transformed to (EA×S) in demand modeling, are identified to account for the 
heterogeneity of individual customers. This part of the expansion facilitates the construction of the 
DCA demand model to capture the impact of engineering design (engineering attributes) on 
customers’ purchase behavior through estimation of product demand.  
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Figure 2. PAFD House 1 for MAP Sensor 
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 To begin the analysis, key customer desired attributes A and engineering attributes EA are placed 
in the appropriate rows and columns in the same manner as QFD analysis. Different than QFD 
analysis, demographic attributes S (e.g. Vehicle Market Segment) are also identified and tabulated. 
Note that the S for the industrial customers are company-specific attributes, such as the corporate 
location or the specific market niche in which the company competes. As described in Section 2, the S 
account for the heterogeneity of customer choice, i.e. they explain why different customers choose 
different MAP sensors for similar applications. With A, EA, and S identified, hypothesized 
relationships are marked by an “ ” in matrix 1 (unlike QFD, PAFD does not use rating scales) 
identifying the linking of the EA to A, and in matrix 2 identifying the potential interactions among the 
S and A which influence choice behavior, such as the interaction of High Accuracy and Vehicle 
Market Segment.  
 To acquire the choice data necessary to estimate the DCA model, a market study (Stated 
Preference) is conducted in which 40 potential customers are surveyed simply for choice behavior 
among four competitive sensors (A, B, C, Ours), unlike the QFD analysis in which respondents are 
asked to rank-order the performance of each sensor for each A. Also different from the QFD analysis, 
in which customers are treated as a group, the demographic data S for each customer surveyed is 
recorded in the PAFD method. The EA and P of each of the alternatives is tabulated in Table A (Figure 
2), enabling a MNL DCA model to be formulated as a function of the values of EA, P, and S using the 
choice data collected for the four sensors.  
 The model parameters β determined to create a demand model with good fit statistics are 
composed of linear (e.g. Accuracy, Temperature Range), interaction (e.g. Accuracy × Vehicle Market 
Segment) and alternative specific variables (ASV) (e.g. Alternativej × Vehicle Market Segment), with 
alternative specific constants (ASC) to capture inherent preference for each alternative. The results are 
shown in Figure 2, which includes a summary of the β parameters in the grey region (note that not all 
EA enter W as indicated by a , as some parameters are not statistically significant, or are highly 
correlated with other EA). Referring to Eq. (4), the β parameters establish the customer choice utility 
function, W, of each alternative. In particular, each alternative shares a common set of product 
selection attribute parameters, which form the common customer choice utility function: 

( ) ( ) ( ) ( ) ( ) ( )MSPSPRICENFFTTRACW iiiiiiCommon ×+−−−+−= 3.0 9.6001.04.002.08.2   (6) 

The specific customer choice utility functions for each of the competitive alternatives can then be 
determined for use in Stage 3, using the common utility formulation and adding the appropriate 
alternative specific constants (ASC) and variables (ASV): 
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A customer choice utility function can also be developed for Our sensor design: 

( ) ( ) ( ) ( )MSERARWW icommonn 4.29.71.7|5.6 4 −+++−= =OURS   (8) 

Examination of the utility function provides insight into customer choice behavior. The sign of the 
parameter indicates the effect of an attribute upon customer choice utility W, for example increasing 
Price (β = -6.9) of a sensor decreases W, and hence the probability of choice, ceteris paribus. 
Additionally, the effect of S upon utility can also be examined. For example, W and hence the 
probability of choice, of Sensors B, C and Our sensor increases relative to the reference (Sensor A) if 
the customer is located in Asia (AR) or Europe (ER); the greatest increase in W is for Sensor C as 
indicated by the magnitude of the β2 parameters for AR (β = 8.0) and ER (β = 9.5) in the WCn 

expression. To understand the engineering priority of each EA and EA×S in terms of their impact on 
demand, the β coefficients can be normalized as shown in Figure 2 to allow the importance of each 
attribute to be estimated based upon their magnitude. For example, Price is the most important 
attribute (βNORM = -85.6) while Temperature Range is the least important (βNORM = 2.9). 
 With a customer choice utility function available for each alternative, Eq. (5) can be utilized to 
determine the demand for the new design concepts based upon the values of EA and P substituted into 
Eq. (8) during the decision-making phase in Stage 3.  
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Stage 2: MAP Sensor Design Concepts Identification and Characterization 
Stage 2 of PAFD utilizes a “house” structure (House 2) as shown in Figure 3. This stage results in 
preliminary engineering and cost analysis models which are intended to capture the high-level 
relationship between design concepts and both engineering performance and cost, as opposed to use in 
creating detailed product designs. In contrast to QFD, the PAFD analysis explicitly considers specific 
design concepts, while the QFD analysis requires the design characterization to be carried out at the 
engineering attribute level, with rankings of technical difficulty and attribute interactions used in place 
of established engineering and cost analysis methods. 
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Figure 3. PAFD House 2 for the MAP Sensor 

 To begin Stage 2, the EA identified in House 1 are transferred to the E Column in House 2 (Figure 
3) and additional engineering design attributes derived from cooperate, regulatory, and physical 
requirements, such as Common Platform as EC, UL Flammability Resistance as ER, and Housing 
Stress as EP are established to form the complete set of E. With E identified, design concepts and their 
corresponding design features F can be formulated. A design concept is defined as a high–level system 
configuration, composed of multiple subsystems and corresponding key design features F. For this 
problem, two design concepts were identified: Concept 1 utilizes a piezoresistive (PRT) sensing 
element with a micro–machined sensing diaphragm, which senses pressure due to bending of the 
diaphragm, and Concept 2 utilizes a two–plate capacitive sense element, which senses pressure due to 
change in the capacitor plate separation distance. Due to differences in the design of the sensing 
element, the piezoresistive concept is inherently less expensive and results in a smaller package, 
whereas the capacitive concept is more robust to temperature and pressure extremes. 
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 To facilitate preliminary cost and engineering analysis of the concepts, each design feature Fi is 
represented by integer, discrete, or continuous design variables X, such as material type, dimension, 
etc. The X selected are the minimum, high–level set necessary to estimate the cost Ci of each feature 
and to represent the coupling of the design features in the decision-making process to select a preferred 
concept and set targets ET; the specific form and complete set of the Xi will be established in the 
detailed design process. For each design concept, the attribute mapping shown in Figure 3 provides the 
qualitative relationship between the E and X through a mapping of E to F. From the qualitative 
relationship, the quantitative functional relationships Ei= f(X) i are established using preliminary 
engineering analysis. These relationships differ for each concept: for example, concept 1 utilizes the 
piezoresistive sensing element with a resistance output given by the relation [20]: 

)/( EE LLk SpanPressure ∆=  (9) 

where the engineering attribute is Pressure Span, the design variable is diaphragm length LE, and the 
piezoresistive k-factor, k, is a constant. Concept 2 utilizes a capacitive output given by:  

 ( )EEr DA SpanPressure ∆= εε 0   (10)  

where the engineering attribute is Pressure Span, the design variables are the plate area AE, and the 
plate separation distance DE, with absolute and relative dielectric constants, ε0, and εr. 
 After establishing the set of design concepts and specific high-level design features, preliminary 
manufacturing process attributes M are identified for each concept, and mapped to F. For the MAP 
sensor, M such as micro-machining, injection molding, etc., are identified for each design concept, and 
placed in the columns corresponding to the associated design feature F, shown in Figure 3. The M are 
used to estimate processing costs and to identify constraints on X resulting from manufacturing 
process limitations to be considered in the decision-making stage of PAFD (Stage 3), as well as 
ensuring appropriate manufacturing processes are identified for each design feature. Using the 
identified X and M, estimation of the total cost, Ck, for each design concept, k, is estimated by: 

( ) ( ) ( )∑ ++= N
k
F

k
C

kk
D

kk tCtCtQCtQC ,,,),,,( YXYX  (11) 

where ( )tQC kk
D ,,, YX  is the material and processing cost for each design option, N is the number of 

design variables, ( )tC k
C  is the cost of capital, and ( )tC k

F  is fixed corporate overhead cost for each 
design concept. The reason for establishing both preliminary engineering and cost analysis in PAFD is 
to capture the real trade-off behavior of engineering attributes, to ensure design selections resulting 
from the tool are optimal, and target performances are actually achievable. Each concept requires a 
specific manufacturing process, and the different sets of M result in a differing cost structure and place 
different constraints upon the X. 
 Examination of the completed House 2 provides insight into the motivations for the PAFD 
processes. As seen, the technology selection drives specific design features and the corresponding set 
of design variables for a given design concept. For example, the packaging of each sensor is 
fundamentally different: concept 1 uses an injection–molded housing with integral pressure port and 
connector, whereas concept 2 requires a separate port and connector component because of the large 
size and electrical interconnect of the capacitive element. The mapping process identifies the trade-offs 
which must be considered in the design selection process. For example piezoresistive sense element 
thickness is a continuous variable to be determined based on the trade-off among element length, 
manufacturing limitations, and cost; integrated circuit A/D discretization resolution is a discrete 
variable to be determined based on the trade-off between sensor accuracy and cost.  

Stage 3: Design Concept Selection and Target Setting 
Stage 3 of PAFD is conducted by formulating the decision-making problem as shown in Table 1. As 
described in Section 2, PAFD evaluates designs through the maximization of expected enterprise 
utility E(U), using the single selection criterion, V, constructed from the DCA demand modeling (stage 
1), engineering, and cost models (stage 2). Uncertainty is also considered in this problem: the 
Piezoresistive Sense Element Thickness (TE) and Capacitive Sense Element Plate Separation Distance 
(DE) are normally distributed random variables due to known variation in the element manufacturing 
processes. In addition to selecting a preferred design concept and setting performance targets, PAFD 
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like QFD can also aid in setting engineering priority, through a global sensitivity analysis of the E(U) 
function to determine which product attributes should receive the greatest resource allocation during 
the detailed design phase. In contrast and demonstrated in Section 3.2, the evaluation process used by 
QFD is a (human) group consensus decision, in which the multi-attribute decision criterion requires 
synthesis of technical importance, technical test measures, technical difficulty, and attribute 
correlations by the decision maker(s). Additionally, engineering targets are set individually for each 
engineering attribute based upon the best measured performances from the competing products, a 
methodology shown to be potentially faulty in Section 1. 

Table 1. Pressure Sensor Decision-Making Formulation 

Given  
        Mid-Size Sedan Market Size: 1,000,000 [sensors/year] growing at 10% per year  
        Demographic data of targeted industrial customers    S 
Engineering Attributes EA (PAFD: House 1)  
     EA determined as a function of the high-level design options X (E(X)) 
Design Concept (PAFD: House 2)  

Two (2) Design Concepts considered (piezoresistive & capacitive sensing) 
Sources of Uncertainty Y  

Normal Distribution of TE and DE   σ = (0.1) µ 
Cost Model (PAFD: House 2)  
 Cost of each alternative given by Eq. (11). 
Demand Model Q (PAFD: House 1)  
 Obtained from the MNL model of the competitive alternative attribute data. 
Single criterion V  = QP-C (Eq. (1)) 
Find: 

Design Variables X, Target Engineering Levels ET (PAFD: House 1) and Price P 
Maximize: 

E(U), assuming an enterprise risk adverse attitude (Eq. (2)) 
Subject To (PAFD: House 2): 
g(X, E) ≤ 0 TE – 14.0 ≤ 0; DE – 12.0 ≤ 0 :    Constraints from M 
g(X, E) ≤ 0 PS – 80.0 ≤ 0; NF –1400.0 ≤ 0: Constraints from EC and EP 

3.2 Comparison of PAFD and QFD Results 
A QFD analysis is completed for comparison to the results of the PAFD method. Similar to beginning 
the PAFD analysis, the A and the key EA are placed in the appropriate rows and columns of the HoQ 
as shown in Figure 4. The engineering team must rank order the importance of each A, fundamentally 
establishing a “group utility” for each attribute as described previously, and determine a “direction for 
improvement” for each of the EA based on engineering judgment, as shown by the “+” and “–” signs 
preceding each EA. The relationship matrix is then be completed, with the engineering team 
determining the strength of relationship between the EA and A, using a largely subjective evaluation 
based on the experience level of the team members. With the relationship matrix complete, the 
Technical Importance can be calculated for each EA to determine engineering priority for each 
attribute, a higher importance rating indicating higher engineering priority. The “roof” Correlation 
Matrix is completed, with  indicating positive correlation and  negative correlation between 
attributes, and the Technical Difficulty rating is estimated (higher number indicates greater difficulty). 
These analyses can be viewed as highly simplified, empirical forms of the engineering and cost 
analyses explicitly formulated in the PAFD method. 
 To complete the Customer Ratings, a market study is conducted in which several customers are 
surveyed to determine consumer perception of current competitive MAP sensors on the market. The 
respondents are asked to rank order the performance of three competitive sensors (A, B, C), plus our 
current generation sensor (Ours), with respect to each A they have identified, with ranking results 
shown in Figure 4. For example, the customer group evaluation for High Accuracy indicates that 
Sensor B is perceived as having the best accuracy and Sensor A the lowest accuracy. Note that with 
QFD, the customer ranking must be aggregated in order to achieve a single rank order for each A, a 
process shown to be potentially problematic [10]. To complete the QFD analysis, the actual measured 
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performance levels of each engineering attribute are determined for each of the four sensors and 
documented in the Technical Test Measures portion of the HoQ.  
 With the HoQ completed, performance targets for the sensor are determined through a multi-
attribute consideration of the Technical Test Measures, Customer Ratings, Technical Difficulty, and 
Correlation Matrix. The performance target decision is made relative to the current levels of 
performance of Our sensor, in which the values identified in the Technical Test Measures represent the 
best known levels of performance for each E which should be targeted by the new sensor, while the 
Technical Difficulty and Correlation Matrix provide subjective constraints upon performance. Using 
the QFD methodology, the targets are shown at the bottom of the HoQ in Figure 4. It was decided that 
the new sensor should have improved target performances for Accuracy, Pressure Span, and 
Temperature Range, since these have high technical importance, and our current sensor is not 
perceived as the market leader in these areas. Also, it was decided to improve the target for Connector 
Mating Force since it has a low technical difficulty. It was decided not to improve the target for 
Housing Footprint, since we are the market leader, or Natural Frequency due to high technical 
difficulty and low technical importance.  
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Figure 4. Comparison QFD Analysis of MAP Sensor 

 The results of both the PAFD and QFD analyses are shown in Table 2. The PAFD decision results 
in performance targets ET, and values of demand, price, and cost for both Concepts 1 and 2. The 
preferred design concept for this problem is Concept 1, which results in the highest utility for the 
enterprise considering uncertainty (E(U) = 2,085,000 utils), with a risk-adverse attitude assumed by 
the enterprise. The QFD analysis results in performance targets only, which are not associated with a 
design concept, and additionally QFD has no mechanism for determining price P. For the purpose of 
comparison, the unit price of the QFD design is set at the same price ($10.42) as concept 1, the 
preferred design from the PAFD method, and profit and utility estimated using this price. 
 Compared to the PAFD results, the QFD identifies targets based upon the best values of EA 
identified in the competitive analysis, which subsequently leads to a lower value of E(U) of 170,000 
utils. The reason the QFD resulted in such low enterprise utility is that although the estimated demand, 
Q, for a sensor meeting the targets set by QFD is somewhat higher than estimated demand for those 
identified by PAFD, the cost to make such a sensor is significantly higher ($10.34). As described in 
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Section 1, QFD is biased toward meeting customer product desires and does not explicitly consider 
cost, leading to a sensor design with good customer acceptance potential but low expected enterprise 
utility. Additionally, because parameter relationships identified through engineering analysis and 
constraints determined in the PAFD Stage 2 process are not utilized, it is not known with confidence if 
these QFD targets can actually be achieved by either Concept 1 or 2. For the PAFD analysis, the target 
levels identified for the preferred concept reflect the actual achievable levels of EA which maximize 
enterprise utility for this design concept, based upon the constraints imposed in the decision-making 
problem. This is further illustrated by noting that concept 2 has a different set of ET corresponding to 
the maximum enterprise utility for that particular concept.  

Table 2. Comparison of Decision Results–Preferred Concept (shaded) 

 PAFD  (ET) 
Engineering Attribute E Concept 1 Concept 2 

QFD 
(ET) 

Sense Element Accuracy (%) 1.32 1.40 1.0 
Full Scale Span  (kPa) 176.0 201.0 250.0 
Temperature Range (°C) 140.0 140.0 180.0 
Housing Footprint (cm2) 15.3 18.0 14.6 
Natural frequency (Hz) 1400.0 1300.0 1600.0 
Connector Mating Force (N) 40.0 40.0 35.0 
Q: Demand / year (# sensors) 465,000 515,000 541,000 
P: Unit Price (USD) $10.42 $10.63 $10.42 
C: Unit Cost (USD) $8.97 $9.64 $10.34 
Expected (U) (utils) 2,085,000 1,671,000 170,000 

 To set engineering priority using the PAFD analysis, a global sensitivity analysis is conducted as 
recommended previously to study the total effect of individual engineering attributes on the E(U). The 
results of this analysis indicate that the greatest resource allocation should be made to achieving the 
targets for Housing Footprint and Pressure Span, due to the sensitivity of enterprise utility to these 
parameters. For QFD, the Technical Importance measure is used to establish engineering priority, 
resulting in selection of High Accuracy and Pressure Span as highest priority. The difference in 
priority results from the different focuses of the two tools, with PAFD focused upon maximizing 
enterprise utility and QFD focused primarily upon customer product acceptance. In summary, the 
PAFD method has provided a clear conceptual direction and engineering targets necessary to begin the 
detailed design of the MAP sensor; detailed engineering analysis can be utilized to create the specific 
feature designs which meet these targets. 

5.  CONCLUSION   
In this work, the Product Attribute Function Deployment (PAFD) method is presented to offer a 
mathematically rigorous, decision-theoretic process tool for use during the product planning phase of a 
product development program. The need for developing such a method results from a close 
examination of the needs during the conceptual design phase, and the limitations of current methods, 
such as QFD, currently used for this purpose. The PAFD method extends the QFD mapping matrix 
concept to qualitatively identify relationships and interactions of product design attributes, while 
employing the DBD principles to provide rigorous quantitative assessments for design decisions. 
 In addition to presenting the PAFD method, a comprehensive comparison of QFD and PAFD was 
conducted in this work, demonstrating the parallels between the two methods and the improvements 
achieved by utilizing DBD principles in the new tool. The use of single-objective utility optimization 
provides a rigorous mathematical framework for decision making under uncertainty, alleviating the 
difficulties associated with weighting factors and multi-objective decision-making in QFD. The use of 
profit as a single criterion better captures the real design tradeoffs, incorporates the needs from both 
producer and consumers, and leads to setting engineering targets consistent with enterprise objectives. 
Heterogeneity of customers is addressed through the inclusion of demographic attributes S in the DCA 
model, addressing the aggregation issues present in QFD. The subjective ratings and rankings present 
in QFD are replaced with established methodologies in engineering, cost, and decision analysis to set 
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targets for performance which can be achieved in practice. Uncertainty is explicitly addressed through 
the use of expected enterprise utility as the decision criterion.  
 Future research includes expanding the design definition to include enterprise-financial planning 
decisions that have a direct impact on those non-engineering related customer attributes. Further, the 
extension of this method to a complex system, such as an automobile, will be investigated. In such 
designs, qualitative customer-desired attributes may be expressed as a rating or ranking, requiring a 
more complex mapping process to quantitative engineering attributes than currently considered. 
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