
NEXT GENERATION REMOTE AGENT PLANNER

Ari K. J6nsson
RIACS

NASA Ames Research Center

Mail Stop 269-2
Moffett Field, CA 94035, USA

phone: +1 650 61342799
fax: +1 650 604 3594

jonsson@ptolemy, arc. nasa. gov

Nicola Muscettola

Recom Technologies
NASA Ames Research Center

Mail Stop 269-2
Moffett Field, CA 94035, USA

phone: +1 650 604 4744
fax: +1 650 604 3594

musSptolemy, arc. nasa. gov

Paul H. Morris

Caelum Research Corporation
NASA Ames Research Center

Mail Stop 269-2
Moffett Field, CA 94035, USA

phone: +1 650 604 4713
fax: +1 650 604 3594

pmorris@ptolemy, arc. nasa. gov

Kanna Rajan
Caelum Research Corporation
NASA Ames Research Center

Mail Stop 269-2
Moffett Field, CA 94035, USA

phone: +1 650 604 0573
fax: +1 650 604 3594

kannaOptol emy. arc. nasa. gov

ABSTRACT

In May 1999, as part of a unique technology vali-

dation experiment onboard the Deep Space One space-

craft, the Remote Agent became the first complete au-

tonomous spacecraft control architecture to run as flight
software onboard an active spacecraft. As one of the

three components of the architecture, the Remote Agent
Planner had the task of laying out the course of action

to be taken, which included activities such as turning,

thrusting, data gathering, and communicating.

Building on the successful approach developed for
the Remote Agent Planner, the Next Generation Re-

mote Agent Planner is a completely redesigned and

reimplemented version of the planner. The new sys-

tem provides all the key capabilities of the original plan-

ner, while adding functionality, improving performance

and providing a modular and extendible implementa-

tion. The goal of this ongoing project is to develop a

system that provides both a basis for future applications
and a framework for further research in the area of au-

tonomous planning for spacecraft.

In this article, we present an introductory overview of
the Next Generation Remote Agent Planner. We present

a new and simplified definition of the planning problem,

describe the basics of the planning process, lay out the

new system design and examine the functionality of the

core reasoning module.

1. INTRODUCTION

The Remote Agent (Muscettola et al. 1998) is the

first complete autonomous spacecraft control architec-

ture to run as flight software onboard an active space-
craft. In a unique experiment in May of 1999, the

Remote Agent was flight-validated onboard the Deep

Space One spacecraft. During this experiment, the

Remote Agent successfully generated complex plans

which included thrusting of the Ion Propulsion System,

slewing and taking pictures. The Remote Agent exe-

cuted the generated plans safely, and correctly handled

a number of injected faults during execution.

As discovered during the development of the Remote

Agent Planner, the spacecraft domain provides a num-

ber of challenges that are typically not addressed in au-

tonomous planning technology development:

Activities are executed concurrently onboard the

spacecraft, so a plan consists of concurrent activity

sequences that can safely be executed in parallel.

Resources, such as power, fuel, data storage, are

strictly limited. A planner must guarantee that

possibly concurrent activities in a plan will not ex-

ceed resource availability.

Activities have complex interactions and con-

straints between them, and any plan generated by

the planner must satisfy all constraints and take all
interactions into account.

• Activitydurationisoftenflexible.A plannermust
thereforebecapableofreasoningaboutactivities
thatonlyhaveboundsontheirduration.

Tomeetthesechallenges,theRemoteAgentPlan-
nerwasbasedonanapproachtoplanningthatdeparts
fromthemoreclassicalplanningapproaches(Bylan-
der1994)in anumberof ways.(1)Theplannerrea-
sonsaboutparallelactivitysequences,eachof which
representsthechangingstateofsomesystemattribute.
(2)It canreasonaboutactivitiesthathaveflexibledu-
ration,whiletakingintoaccountquantitativetemporal
constraintsbetweenthem.(3)Thegoaloftheplanneris
nottogenerateafixedsequence,butrathertogenerate
aplandescriptionthatissuitableforexecution.(4)The
plannerhandlesarichactionrepresentationlanguage
thatcandescribethecomplexactivitiesof real-world
systems.Thislanguageisalsouniquein thatit elim-
inatesthesyntacticandsemanticdistinctionbetween
actionsandsteady-states.(5)Theplannerallowsfor
astructureddomaindescriptionlanguagethatissuffi-
cientlyexpressivetodescribetherulesandinteractions
incomplexreal-worlddomainssuchasspacecraft.

Theapplicabilityofthisapproachtoreal-worldplan-
ningproblemswasclearlydemonstratedintheRemote
AgentExperiment.Nonetheless,workcontinuesonthe
developmentoftheapproach,bothin termsoftheun-
derlyingplanningframeworkandintermsoftheimple-
mentedplanningsystem.TheNextGenerationRemote
AgentPlanneristhenextstepinthisdevelopment,pro-
vidingasimplerandclearerdefinitionfortheplanning
framework,andanenhanced,modularimplementation
oftheplanningsystem.

Thesimplifiedplanningframeworkis deriveddi-
rectlyfromtheframeworkunderlyingtheoriginalRe-
moteAgentPlanner.It isjustasexpressiveastheorigi-
nalframework,buthasbeensimplifiedbyunifyingcon-
ceptsandsimplifyingtheproblemspecifications.The
implementedplannerisalsobasedontheoriginalplan-
ner,buta numberof interestingenhancementshave
beenmade.Firstof all,it isbasedonanewmodular
systemdesign,aimedatmakingiteasytomodify,main-
tainandenhancethedifferentcomponentsthatmakeup
thesystem.Secondly,theinterfacethatthecoresys-
temprovidestothetop-levelplannersearchenginehas
beensignificantlysimplified.Whereastheoriginalsys-
temwaslimitedtobacktrackingsearch,thenewframe-
work,inconjunctionwiththesimplifiedtop:levelin-
terface,makeit possibletoutilizeother,possiblymore
efficient,searchtechniques,suchasrepair-basedsearch
anddependency-directedsearch.Third,thenewsystem
includesanewconstraintreasoningmodulethatallows
arbitraryproceduralconstraintstobeused.Thisspeeds
uptheconstraintreasoning,whichisacrucialpartof

theplanningprocess,andeliminatespreviouslimita-
tionsonthesetofconstraintsthatcanberepresented.

In thispaper,wedescribethesimplifiedplanning
framework,andgiveanoverviewof thenewimple-
mentedplanningsystem.Wefirstpresenttheplanning
frameworkinaninformalmanner.Wethendescribethe
approachusedtosolvetheplanningproblems,andgive
anoverviewofthenewplanningsystem.Wecontinue
byprovidingsomedetailsaboutthenewconstraintrea-
soningmechanism,andconcludebylookingatwhat
hasbeendoneandwhatisontheagenda.

2.THEPLANNINGFRAMEWORK

Inthissection,wewill describethesimplifiedplan-
ningframework,onwhichtheNextGenerationRemote
AgentPlannerisbuilt.Theplanningframeworkdefines
theclassofplanningproblemsbeingsolved,i.e,what
theworldlooksliketotheplanner,andwhatconstitutes
avalidplan.

Letusstartbylookingatwhattheendresultof the
planningprocessshouldbe,i.e,whatconstitutesaplan.
Consideringtheplanneraspartof theRemoteAgent
system,acompletedplanisaprogramorarecipefor
whatactivitiestheRemoteAgentExecutiveshouldper-
formandwhatstatesshouldbemaintained.In clas-
sicalflightsoftwaresystems,sucha planconsistsof
time-stampedtasks,eachto beexecutedat thepre-
determinedtime.Theproblemwiththatapproachis
thatit requiresanexplicittradeofftobemadebetween
robustnessandefficiency.If thetimeallocatedtoatask
isclosetotheestimatedexecution,anydelaywill re-
sultin failure.However,if thetimeallocatedto the
sametaskismuchmorethantheestimatedexecution
time,thentimeiswasted.Toresolvethisproblem,the
RemoteAgentiscapableofhandlingtemporalflexibil-
ity in timepointsdescribingtransitionssuchasgoing
fromtheenginethrustingtotheenginebeingoff.This
meansthatthestartofonetaskcanbetiedtothecom-
pletionofanothertask,minimizingtheeffectofanyde-
lays,whilemaintainingtherobustnessoftheplan.The
endresultofthisis thatthegeneratedplanisdefined,
notbyfixedtimesfortransitiontimepoints,butrather
byboundsonthosetimepointsandtemporalconstraints
betweenthem.Figure1showswhatasimplified,small
planmightlooklike.

Inordertodefinetheplanningframework,wemust
nowspecifywhat"activities"are,whattemporalcon-
straintsareandwhatconstitutesavalidplan.Sincethe
exactsetofactivitiesandruleswilldependontheenvi-
ronmentinwhichtheplanneroperates,theplanneruses
adescriptionoftheactivitiesandrulesineachenviron-
ment.Suchadescriptioniscalleda domain model, as

lth st a 0 of, t

/ ,eaSy picture ast
cA RA

[point(a,d) _ pointAt(ast)]

ATTITUDE

Figure 1: A simplified plan showing activities for en-

gine, camera and attitude. Arrows show temporal con-

straints between transition timepoints.

it models the domain in which the planner is operating.

Describing the planning framework is therefore largely

a question of defining what a domain model is.

Many real-world systems, including spacecraft, can

naturally be described in terms of components that at

each point in time are in a certain state or performing a

certain activity. For example, at any point in time, the

attitude system can either be holding a specific attitude,

or turning from one attitude to another. This natural ap-

proach to modeling real-world systems is mirrored in

the planner, which plans by reasoning about how the

states of such components can change over a given pe-

riod of time. To generalize this, the basic concept in the
domain model is an attribute which describes a part of

the world that can change over time, e.g, the state of a

spacecraft system component.

To specify an attribute, the set of possible val-

ues (representing states or activities) must be given.
Since states and activities are often fairly complex,

the attribute values are described in terms of predi-

cates that can have multiple parameters. For exam-

ple, the attribute value describing the state of hold-

ing a constant attitude must have the pointing coor-

dinates as parameters, resulting in a predicate of the
form constantPointing (a, d), assuming equa-
torial coordinates. 1

A predicate is defined by a unique predicate name, a

sequence of parameter domains and optionally a set of
parameter constraints, which limit the set of valid pa-

rameter value combinations. For an example of a pred-

icate, let us consider an attribute describing the amount

ITechnically, these are not predicates, as they do notevaluate to
true or false by themselves. However,they canbe viewedas shortcuts
forthe predicates representing that a given attribute has that particular
compound value.

of data stored on the onboard data recording mecha-

nism. A predicate describing data being recorded, aptly
named record, has four parameters; the amount of

data at the beginning of the activity, the rate at which

the data is being collected, the duration of the activ-

ity, and the amount of data at the end. Each parameter

takes a value from a given domain; for example, the

start-data and the end-data parameters have values be-
tween 0 and M, where M is the maximum data storage

capacity. Obviously, not all combinations of the pos-

sible parameter values give rise to a valid record activ-

ity description. Therefore, the final component of the

predicate definition is the constraint that for any instan-

tiation record (s, r, d, e), the parameters must sat-

isfy s + rd = e.

To structure the domain model, attributes are ar-

ranged together as components of model objects, which
in turn are instances of model classes. This means that a

model class is essentially a set of named attributes. For

example, a class describing engine objects might have a

fuel level attribute, an engine state attribute and a thrust

attribute. The model objects, such as a specific engine,
are then instances of these classes. This allows the same

class definition to be used for multiple instances, e.g, in

a spacecraft with multiple engines.

Having seen how the predicates describe the values
that each attribute can take, let us now turn our attention

to the interactions between different attributes. This in-

teraction is the main complicating factor in real-world

systems, as many configurations and sequences are ei-

ther not possible or not safe. For an example of such

interactions, let us consider a spacecraft that has an

engine and a camera. Since the engine thrust causes
vibrations, the camera cannot be taking pictures dur-

ing the times the engine is thrusting. This leads to the
constraint that whenever the camera is taking pictures,

the engine must be off. Rephrasing this slightly, the

constraint states that any continuous temporal interval

where the camera is taking a picture must be contained

within a continuous interval where the engine is off.
In order to be able to describe this containment and

other relations between intervals, the planner uses quan-

titative temporal relations. There are twelve possible

relations that come in pairs where one is the inverse of

the other. The six temporal relations classes are:

• before, after

• startsBefore, startsAfter

• endsBefore, endsAfter

• startsBeforeEnd, endsAfterStart

• contains, containedBy

• parallels, paralleledBy

Quantitative bounds can be placed on the distance be-

tweenanytwotimepointsinvolvedin theintervalre-
lation.Forexample,"before[10,20]"indicatesthatthe
firstintervalmustendatleast10andnomorethan20
timeunitsbeforethesecondonestarts.

Tospecifyrules,suchastheoneinvolvingtheen-
gineandcamera,weuseaconstructcalleda config-

uration constraint. In principle, a configuration con-

straint is defined for each possible instantiation of a

predicate. Thus, each configuration constraint consists

of a predicate instance (attribute value) v and a set of

pairs {(Ta,V1),..., (rk,Vk)}, where ri is a temporal

relation and V/is a set of instantiations of a predicate.

The semantics of such a constraint are that for any in-
terval I where an attribute has the value v, there must,

for each i E {1,..., k}, be an interval Ji where an at-

tribute has one of the values in Vi and the interval pair

(I, Ji) satisfies the temporal constraint ri.

For an example of such a configuration constraint,

let us write up the one for a camera taking a picture of

a specific asteroid. In textual form, the configuration

constraint can be specified as follows:

(camera == picture(asteroid))

containedBy(engine == off)

containedBy(attitude == pointAt(asteroid))

before[0,0](camera == ready)

after[0,0](camera == ready)

The "containedBy" relations specify that each of the

engine-off and point-at-asteroid intervals must start no

later than at the start of the picture-taking interval and

end no earlier than when the picture-taking interval
ends. 2 The "before[0,0]" and "after[0,0]" relations

enforce that camera-ready intervals must immediately

precede and follow the picture-taking interval. Figure
2 shows a graphical representation of this configuration
constraint.

It should be noted that although configuration con-

straints are conceptually defined for each predicate in-

stantiation, in practice, they are specified in the form

of configuration constraint schemata. Such schemata

specify patterns rather than instantiated attribute values,

thus collapsing large sets of constraints into a single
schema. The constraints are then instantiated from the

schemata whenever sufficient information is available

to determine that they are applicable to a given interval.

3. THE PLANNING PROCESS

The Next Generation Remote Agent planning pro-

cess is based on representing and reasoning about the

2Not displaying the bounds is short-hand for the distance bounds
being [0, co].

engineOff

00

['] =I picture(x)

_pointAt(x)

Figure 2: A graphical representation of a configuration
constraint. The links indicate temporal constraints that

limit the distance from one timepoint to another.

possible developments of each attribute over the time

period for which the planner is planning. The goal of

this reasoning process is to generate a plan consisting of
a network of transitions between attribute values, such

that all configuration constraints are satisfied.

The approach used by the planner is to generate and

reason about structures called tokens. Each token rep-
resents a restriction on the set of values that an attribute

may take over a specified temporal interval. A value to-

ken is a special type of token, having the additional re-

striction that the attribute must maintain a single value

throughout the associated interval. Other types of to-

kens are used in the RA planner, such as constraint to-

kens which limit the attribute value to a given set, but do

allow the attribute value to change during the interval.

However, for clarity we will only consider value tokens

in this paper. From here on, any reference to a token
should therefore be read as referring to a value token.

The planner utilizes variables to represent the differ-

ent elements of a token. This allows the planner to rea-

son effectively about tokens and their interactions. As a
result, a token consists of:

• A predicate name

• A variable representing the start time

• A variable representing the end time

• A variable representing the duration

• A set of parameter variables, one for each pa-

rameter to the predicate

In addition to the variables, any applicable parameter
constraints are associated with a token, and so is a tem-

poral constraint enforcing that the sum of the start time

and the duration is equal to the end time.

Other temporal constraints may then link start and

end timepoints from different tokens. These can stem

fromconfigurationconstraints,orbeinstantiatedaspart
of theplanningprocess.Takenall together,thevari-
ablesandtheconstraints,bothtemporalandparameter,
formanetworkof variableslinkedbyconstraints,i.e,
a constraint network. The constraint network is a dy-

namic entity, as variables and constraints can be added

and removed throughout the planning process. The con-

straint network plays an important role in this approach

to planning, since any plan which gives rise to an incon-
sistent constraint network cannot possibly be extended

to a valid plan.

The planner uses timelines to represent and reason
about the set of possible developments for attributes.

For each attribute of each domain object, the planner

has exactly one timeline. The reason for utilizing such

a specialized construct is that there is a strong relation

between tokens that apply to the same attribute of the

same object, i.e, the same timeline. Consider any two

tokens for the same timeline, each describing a set of

valid attribute values for a temporal interval. If the sets

of attribute values do not overlap, then the two tokens

cannot overlap in time, i.e, one must come before the

other. Conversely, if any two tokens necessarily over-

lap, then they must describe the same interval having
the same attribute value. Conceptually, a timeline con-

sists of a sequence of timepoints, each representing a

possible transition from one attribute value to another,
i.e, the start or end of a token. The interval between

any two adjacent timepoints is called a slot. During the

planning process, a slot will either contain one or more

codesignated tokens, or it will be empty.
A set of tokens, along with the associated parameter

variable domains, temporal constraints and timelines,

describes a partial plan. The goal of the planning pro-

cess is to modify this partial plan, until it is a complete

and valid plan. The key observation behind this process
is that for any given partial plan, there are only four re-

quirements that can prevent a partial plan from being

complete and valid:

1. Parameter variables must be assigned values

2. Tokens must be scheduled onto timelines

3. Configuration constraints must be satisfied

4. Underlying constraint network must be consistent

Any violations of the first requirement can be ad-

dressed by selecting a value to assign to each unas-

signed parameter variable. The second requirement
can be enforced by selecting a suitable (not necessar-

ily empty) slot for each uninserted token, and insert the

token there. Depending on whether the slot is empty
or not, the token will be scheduled between two other

tokens or codesignated with a previously scheduled to-

ken. The third requirement can be satisfied without any

selection criterion. The simplest approach is to instan-

tiate any tokens required to satisfy a configuration con-
straint, as soon as a token is inserted on a timeline and

all parameter domains have been grounded. If the token
is later removed from a timeline or the parameter do-

mains are relaxed, then the instantiated tokens are also

removed. Finally, if the constraint network is found to

be inconsistent, one or more constraints and value as-

signments can be removed.
Needless to say, the above methods for enforcing

the four requirements interact with one another, one

fix causing another break. The process of navigating
through these operations is called search, and it can

be a complex and expensive process. However, in this

framework, there are only three relatively simple oper-

ations that require decisions to be made, namely:

• Insert a token on a timeline

• Remove token from timeline

• Modify domain of variable, which includes as-

signing single values

Although having a simple set of operations does not

by itself reduce the cost of searching, it does provide

a great deal of flexibility in how the search is done.
However, the resulting flexibility may lead to signifi-
cant reductions in search costs, as more effective search

techniques can be brought to bear.

4. THE SYSTEM MODULES

One of the key goals of this work is to design and

implement a flexible, extendible and portable planning

system that can serve as a research framework for fur-

ther development of autonomous planning and reason-
ing techniques, while also providing the core for future

applications of the Remote Agent Planning technology.

The new system is written in C++, to provide structured

programming, fast execution and portability. As of May

1999, the redesign is complete, the implementation is

almost complete and testing is under way.

The new implementation is based on a careful object-

oriented modular design, which allows modules to be

easily replaced, improved and tested. Figure 3 shows
an overview of the main modules and the relations be-

tween them.

The constraint network manager is the constraint

reasoning module, responsible for handling the dy-
namic constraint network described above. The main

responsibilities are:

• Add and remove variables.

• Add and remove constraints.

• Manage and reason about variable domains.

I
1Network

Manager

I)

I Model]Manager

Figure 3: An overview of the key modules in the Next

Generation Remote Agent Planner.

• Inform about local and global consistency.

• Provide heuristics for variables and values.

The constraint network manager utilizes the temporal

network manager for handling the temporal variables

and the temporal constraints that connect them. This is

done to allow more efficient algorithms to be applied to

the computationally simpler temporal network (Dechter
et al. 1991). The constraint network also uses external

constraint procedure for representing constraints. Such

external procedures can represent any constraint, rang-

ing from simple arithmetic equalities to the complicated
feasibility evaluations. The design and capabilities of

our constraint reasoning framework are discussed fur-
ther in the next section.

The model manager handles all the information re-
lating to the domain model. As a result, it serves a dual

role; as the input module responsible for setting up the

domain model, and as an information module responsi-

ble for providing information about the domain model.

To facilitate the model manager's role as an input

module, it has a well-defined input interface that can
serve as the single interface for the various different

ways in which a model can be specified. As a result,

it can be connected to a parser for reading domain de-

scriptions from input files, just as well as it can be con-

nected to a graphical user-interface for building models
interactively.

In its role as an information module, the model man-

ager is responsible for effectively responding to queries

about the domain model. This includes providing in-

formation about the hierarchy of domain classes, the

attribute definitions and the predicate definitions. How-

ever, most of the work done by the model manager is in

providing information about configuration constraints.

As the constraints are described by configuration con-

straint schemata, the model manager can map any given

set of attribute values into the applicable configuration
constraint instantiation. Furthermore, to facilitate incre-

mental reasoning, it can also determine what changes

occur in the applicable configuration constraints, given

any two sets of attribute values.

The token network manager handles the top-level

planning operations, thus providing the interface that

the search engine will use. Its main responsibilities are

the following:

• Initialize timelines and tokens according to the do-

main model and the set of goals to be achieved.

• Add/remove temporal constraints between token

timepoints.

• Insert and remove tokens from timelines. This in-

cludes inserting into empty slots and codesignat-

ing with existing tokens.

• Provide access to parameter variables in tokens so

that their domains can be modified and assigned
values.

• Automatically generate and eliminate tokens in re-

sponse to applicable and instantiated configuration
constraints.

• Determine consistency and validity for the current

partial plan.

Finally, on top of the token network manager, there
is a search engine that controls the planning process.

As mentioned above, only a small set of operations is

required to modify the pariial plan during the planning

process. The role of the search engine is to control the

application of these operations, with the goal of finding

a valid and complete plan.

Recall that the only required operations were the

ability to modify a parameter variable domain and the

ability to insert and remove tokens from timelines. Any
of these operations can be undone by performing an-

other operation from the set. For example, assigning

a single value to a variable can be undone by modi-

fying the variable domain to have the set of values it

had before. More importantly, the semantics of the op-
erations guarantee that the effect of undoing an opera-

tion is is the same as not performing the original op-

eration. This holds regardless of what has been done
in between, which is exactly what allows us to utilize

non-chronological methods in the search engine.

Theaddedflexibilityavailabletothesearchengine
opensa numberof possibilitiesin makingtheplan-
ningprocessmoreefficient.In otherdomains,vari-
oussearchengineshaveproventobeeffectiveatsolv-
ingdecisionproblemssuchasplanning,evenin real-
worlddomains.Among the many candidate search

techniques that may prove applicable to this planning

framework are dependency-directed search (Stallman

& Sussman 1977), limited discrepancy search (Har-

vey 1995), relevance-bounded search (Bayardo Jr. &

Miranker 1996), iterative sampling (Langley 1992),

heuristic-biased sampling (Bresina 1996) and repair-

based search (Minton et al. 1990).

5. THE CONSTRAINT REASONING SYSTEM

The Next Generation Remote Agent Planner is based

on a redesign of the existing RA planner and thus in-

herits a number of existing solutions and algorithms.

However, a completely new framework has been devel-

oped and implemented for doing the constraint reason-

ing. The new constraint reasoning framework is very
general, as it can reason about any set of variables and

constraints. At the same time, it is also quite efficient

as it combines efficient internal reasoning methods with

fast external special-purpose procedural methods.
A constraint network consists of a set of variables,

each taking values from a given domain, and a set of

constraints connecting the variables. Formally, a con-

straint is a relation that specifies which combinations of
values are allowed for the set of variables in the con-

straint's scope. However, this is not how constraints
are specified in practice, as listing the allowed combi-

nations requires excessive amounts of space. As a result
of this, constraints are typically specified using special-

purpose constraint descriptions that the constraint rea-

soning system can understand. In this system, for ex-

ample, temporal constraints are specified by noting the
two variables and the bounds on the distance from one

to the other. The problem with this approach is that al-

though it is very efficient and easy to use, it limits the

set of constraints to those specifiable in this descrip-

tion language. To solve this problem, without incurring

significant efficiency penalties, the Remote Agent con-

straint network manager can handle external constraint

procedures.

A constraint procedure is a program that that is ap-

plied to a set of variables, the scope of the constraint.
The procedure implements a mapping that maps each

variable domain to a subset (although not necessarily a

strict subset) of that domain. In other words, the proce-

dure reduces the set of possible value assignments for

the variables, by eliminating values from the domains.

To see how this defines a constraint, let us consider ap-

plying the procedure to a set of domains where each

domain has only one value, i.e, a variable assignment.

The procedure can then either map the set of domains

to itself (indicating that this is a valid assignment to
the variables) or reduce one or more domains to the

empty set (indicating that the given assignment is in-
valid). A procedure therefore implicitly defines a set

of allowed value assignments for the variables in the

scope; in other words, it defines a constraint. The only

restriction placed on a constraint procedure, in order tO

make it useful for constraint reasoning, is that it never

eliminate any allowed assignments when reducing the
domain sets.

The key reasoning task in a dynamic constraint rea-

soning system is to try to prove the network consistent
or inconsistent. This is done by applying a technique

called propagation, where information about possible

and impossible solutions is propagated between vari-
ables, through the constraints. In general, correctly de-

termining consistency is NP-complete and will there-

fore have a worst-case complexity that is exponential

in the number of variables. As a result of this, dynamic

constraint reasoning is typically done with limited prop-

agation techniques like maintaining arc-consistency.

In its simplest form, arc-consistency guarantees that

for each value in the domain of a given variable, any

single other variable can be assigned some value from

its domain, without directly violating a single con-

straint. Maintaining arc-consistency is therefore the

process of eliminating any values that do not satisfy the
above condition. This can be accomplished with algo-

rithms that have low-order polynomial complexity. The

tradeoff is that inconsistencies may remain undetected,

as there is no guarantee that three or more variables
can be assigned values without violating a constraint.

However, the fact that inconsistencies may remain un-

detected is not a problem in this planning framework.

The reason is that any uninstantiated variables are even-

tually assigned single values, and in that situation arc-

consistency is sufficient to determine the overall consis-

tency correctly.

As in most other dynamic constraint reasoning sys-
tems, a propagation algorithm is the core of the con-

straint network manager. The algorithm we have de-

veloped is based on maintaining arc-consistency, but

it has been extended so that it can take advantage of
other methods that also eliminate values from vari-

able domains. The advantages of this extension are

twofold, First, it allows the propagation to directly take

advantage of the procedural constraints, which can of-
ten eliminate values faster and more effectively than

the arc-consistency maintenance. Secondly, the prop-

agationmethodcanbeaugmentedwithotherefficient
propagationalgorithmssuchastheonethatperforms
thepropagationwithinthetemporalsubnetwork.

Theresultof all thisisnotonlyanefficientframe-
workforperformingconstraintreasoning,butonethat
caneasilybeextended.Constraintprocedurescan
bewrittenseparatelyandsimplyaddedtothesystem,
withoutanymodificationto theconstraintreasoning
mechanism.Inadditiontothat,specializedtechniques
forhandlingcertainpartsof thenetwork,e.g,thetem-
poralsubnetwork,canbeaddedintotheconstraintnet-
workmanagerwithminimalchanges.

6.CONCLUSIONSANDFUTUREWORK

In thispaper,wehavepresentedanoverviewofthe
NextGenerationRemoteAgentPlanner,thenextstep
inthecontinuingevolutionoftheRAPlanner.Thenew
planningsystem,withthesimplifiedframeworkand
a modularandflexibledesign,providesasolidfoun-
dationforfutureapplicationsinautonomousplanning
for spacecraft,anda frameworkfor furtherresearch
intothemanyaspectsofautonomousplanningforreal-
worldsystems.

ThedevelopmentoftheRemoteAgentplanningsys-
temisongoingwork,asnewchallengesariseandbetter
reasoningtechniquesaredeveloped.Thisgivesusboth
clear near-term goals and a number of interesting re-

search venues for future work. As of May 1999, the

planning framework definition and the modular system

design have been completed. The system implementa-

tion is close to completion and testing is already under-

way. Aside from concluding the main system tests, the

near-term goals include the development and study of

different search engines for driving the planning pro-
cess. For the longer-term goals, there are too many in-

teresting research questions and application opportuni-

ties to list them fully in this paper. However, regardless

of which goals are pursued, this new system will pro-
vide a solid foundation for both further research into au-

tonomous planning techniques and future applications

of the Remote Agent Planner.

REFERENCES

Bayardo Jr., R. J. & D. P. Miranker (1996). A complex-

ity analysis of space-bounded learning algorithms
for the constraint satisfaction problem. In Pro-

ceedings of the Thirteenth National Conference on

Artificial Intelligence, pages 298-304.

Bresina, J. (1996). Heuristic-biased stochastic search.

In Proceedings of the Thirteenth National Confer-

ence on Artificial Intelligence.

Bylander, T. (1994). The computational complexity of

propositional STRIPS planning. Artificial Intelli-

gence, 69:165-204.

Dechter, R., I. Meiri, & J. Pearl (1991). Temporal con-

straint networks. Artificial Intelligence, 49:61-95.

Harvey, W. D. (1995). Nonsystematic Backtracking
Search. PhD thesis, Stanford University, Stanford,
CA.

Langley, P. (1992). Systematic and nonsystematic

search strategies. In Artificial Intelligence Plan-

ning Systems: Proceedings of the First Interna-
tional Conference, pages 145-52. Morgan Kauf-
mann.

Minton, S., M. D. Johston, A. B. Philips, & P. Laird

(1990). Solving large-scale constraint satisfaction

and scheduling problems using a heuristic repair

method. In Proceedings of the Eighth National

Conference on Artificial Intelligence, pages 17-
24.

Muscettola, N., P. P. Nayak, B. Pell, & B. William

(1998). Remote agent: To boldly go where no ai

system has gone before, ai, 103(1-2):5-48.

Stallman, R. M. & G. J. Sussman (1977). Forward rea-

soning and dependency-directed backtracking in a

system for computer-aided circuit analysis. Artifi-

cial Intelligence, 9:135-96.

