
Next-Generation Sequence Analysis of Cancer Xenograft
Models

Fernando J. Rossello1, Richard W. Tothill2,3, Kara Britt4,5, Kieren D. Marini1, Jeanette Falzon6,

David M. Thomas5,7, Craig D. Peacock8, Luigi Marchionni8, Jason Li9,10, Samara Bennett6,

Erwin Tantoso11, Tracey Brown6, Philip Chan12, Luciano G. Martelotto1,13*, D. Neil Watkins1*

1Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia, 2Department of Pathology, University of Melbourne, Parkville, Victoria, Australia,

3Molecular Genomics Core Facility, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia, 4Department of Anatomy and Developmental Biology, Monash

University, Clayton, Victoria, Australia, 5 Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia, 6Department of Biochemistry

and Molecular Biology, Monash University, Clayton, Victoria, Australia, 7Department of Cancer Medicine, Peter MacCallum Cancer Centre, East Melbourne, Victoria,

Australia, 8Department of Oncology, Sidney Kimmel Comprehensive Cancer Centre, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of

America, 9 Bioinformatics Core Facility, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia, 10Department of Mechanical Engineering, University of

Melbourne, Parkville, Victoria, Australia, 11 Partek SG Private Limited, Singapore, Republic of Singapore, 12Monash eResearch Centre, Monash University, Clayton,

Victoria, Australia, 13Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America

Abstract

Next-generation sequencing (NGS) studies in cancer are limited by the amount, quality and purity of tissue samples. In this
situation, primary xenografts have proven useful preclinical models. However, the presence of mouse-derived stromal cells
represents a technical challenge to their use in NGS studies. We examined this problem in an established primary xenograft
model of small cell lung cancer (SCLC), a malignancy often diagnosed from small biopsy or needle aspirate samples. Using
an in silico strategy that assign reads according to species-of-origin, we prospectively compared NGS data from primary
xenograft models with matched cell lines and with published datasets. We show here that low-coverage whole-genome
analysis demonstrated remarkable concordance between published genome data and internal controls, despite the
presence of mouse genomic DNA. Exome capture sequencing revealed that this enrichment procedure was highly species-
specific, with less than 4% of reads aligning to the mouse genome. Human-specific expression profiling with RNA-Seq
replicated array-based gene expression experiments, whereas mouse-specific transcript profiles correlated with published
datasets from human cancer stroma. We conclude that primary xenografts represent a useful platform for complex NGS
analysis in cancer research for tumours with limited sample resources, or those with prominent stromal cell populations.
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Introduction

Although the application of NGS technology to cancer research

has led to dramatic advances in the understanding of the genomic

basis of these diseases, the depth and complexity of sequencing

data is negatively correlated to the amount and quality of tumour

specimen used for analysis [1]. In addition, many common

tumours, such as pancreatic cancer, are characterized by extensive

infiltration of stromal elements, thereby reducing the detection

threshold for rare, cancer specific variants [2]. As a result,

common cancers diagnosed by small biopsies are vastly under-

represented in NGS studies, which rely predominantly on

surgically-resected tissue samples.

One approach to overcome this problem is the use of primary

xenograft models, in which small tissue samples can be directly

engrafted, expanded and passaged in immunodeficient mice

without exposure to conventional tissue culture conditions [3].

Although tumour cells are maintained in immunodeficient mice,

we [4], and others [5–7], have shown that they retain important

characteristics of the primary tumour that, importantly, are

irreversibly lost in cell culture [2,4]. Moreover, despite the fact

that the stromal component is mouse-derived, primary xenograft

models have been successfully used for the preclinical investigation

of a variety of cell autonomous and stromal derived signaling

systems of therapeutic relevance to cancer [7].

Based on these data, primary xenografts could represent a useful

platform for NGS analysis when cancer tissue is limiting. Ding et al.

[8], in a study that aimed to identify somatic mutations and

structural variants of basal-like breast cancer, estimated by

pathology techniques the tumor composition to then calculate

and adjust the tumour read number. Based on the pathology

estimates, the authors use a deterministic correction of contam-

ination of tumour by normal read counts, which affects the mutant

allele frequency, and applied it to the primary tumour and

metastasis samples only. It was assumed that due to the low
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mapping rate of host-specific reads to the graft genome, no read

depth correction was required to the xenograft sample.

In our view, the presence of contaminating mouse DNA and

RNA affects the sensitivity and specificity of NGS analysis in these

tumour models which should not be based on cellularity estimates,

but should be accurately and systematically addressed. Addition-

ally, since most current NGS techniques use shotgun-sequencing

methodology, resolution of any potential artifact could be

performed post-hoc during bioinformatic analyses, which unequiv-

ocally identify species-of-origin reads. This issue has been

previously discussed for ultra high-throughput cDNA sequencing

(RNA-Seq) by Conway et al. [9] and Raskatov et al. [10], who

found variable amounts of host-derived sequencing reads. Here,

we prospectively analyzed the capacity of an in silico workflow

designed to definitively assign species-of-origin to NGS reads in

several previously characterized primary and cell line-derived

xenograft models of SCLC, and compared these results with

published datasets.

Materials and Methods

Ethics Statement
All experiments involving animals were approved in advance by

an Animal Ethics Committee at Monash University and were

carried out in accordance with ‘‘Australian Code of Practice for

the Care and Use of Animals for Scientific Purposes.’’

Cells
The SCLC primary xenograft lines LX22, LX33 and LX36

were passaged as previously described [4]. In brief, resected tissues

from chemo-naı̈ve SCLC patients were used to generate primary

xenografts samples. Tumour samples were finely chopped with

sterile razor blades, triturated in 1 x PBS, filtered through a 60 mm

mesh filter, centrifuged and resuspended in 500 mL of Matrigel

(BD Biosciences) at 4 uC. Processed cells were then injected sub-

cutaneously in the flanks of non-obese diabetic/severe combined

immunodeficient mice. Once the P0 tumours reached a diameter

of 1 cm, the mouse was sacrificed and the resected tumour was

divided into sections for snap freezing or serial passage. Xenograft

tumours were prepared for serial passages in vivo as described

above and cells were injected into the flanks of athymic nude mice

in Matrigel. Passaged and snap frozen tumours samples were

routinely characterised for histopathologic and immunohistochem-

ical features of the parent tumour [4].

Authenticated NCI-H209 cell line was purchased from ATCC,

re-derived from a single cell clone using the single cell cloning by

serial dilution (Corning, Tewksbury, MA, USA) and then cultured

in vitro and in vivo as described in Watkins et al. [11]. DNA from

samples was extracted using DNAeasy Tissue and Blood Kit

(Qiagen, Santa Clara, CA, USA) according to manufacturer’s

instructions. RNA was purified using miRNeasy Mini Kit using

QIAzol (Qiagen, Santa Clara, CA, USA) following manufacturer’s

instructions.

Preparation of Sequencing Libraries
Exome and low-coverage whole-genome DNA re-sequencing:

Target DNA (3ug) was firstly sheared using a focal acoustic device

(Covaris, Woburn, MA, USA). DNA fragment libraries for exome

re-sequencing and low-coverage whole-genome sequencing were

constructed from sheared DNA by sequential steps of end-repair,

A-tailing and ligation of indexed lllumina compatible adapter

sequences (TruSeq DNA, Illumina, San Diego, CA, USA). For

exome re-sequencing, PCR amplified fragment libraries were

enriched for exonic DNA by long oligonucleotide hybridisation

capture according to the manufacturer’s protocol (SeqCap EZ

Exome Library v3.0, Roche Nimblegen, Madison, WI, USA). For

low-coverage whole-genome, PCR-amplified libraries were size

selected to capture DNA of 500–700nt length, using an automated

electrophoresis platform (Pippen Prep, Sage Science Inc., Beverly,

MA, USA). All sequencing libraries were quantified using real-

time PCR against a library of known concentration and then

processed for cluster generation and sequencing according to

standard protocols (HiSeq 2000, Illumina, San Diego, CA, USA).

RNA-Seq. total RNA was checked for quality and yield by

automated microfluidic electrophoresis (Bioanalyzer 2100, Agilent

Technologies, Santa Clara, CA, USA) and spectrophotometer

(NanoDrop, Thermo Scientific, Wilmington, DE, USA). Non-

directional RNA-Seq libraries were created according to the

manufacturers protocol (Truseq RNA-Seq Library Prep Kit v2,

Illumina, San Diego, CA, USA). Briefly this method involved

sequential steps of mRNA enrichment from 3ug total RNA, RNA

fragmentation by heating in the presence of divalent cations, a

randomly primed reverse transcription and second-strand cDNA

synthesis followed by preparation of DNA fragment libraries using

Illumina compatible adapters and PCR amplification as previously

described for DNA libraries.

All samples were assessed separately for overall read quality

using FASTQC (http://www.bioinformatics.bbsrc.ac.uk/

projects/fastqc) and low quality reads were filtered and were hard

trimmed using Trimmomatic (average minimum Phred score, 6

consecutive bases, of 20 and a minimum read length of 50nt,

Table S1) [12].

Raw deep sequencing datasets are publicly available in the

National Centre of Biotechnology Information Short Read

Archive (Accession number SRA082685).

Strategy to isolate and identify species-of-origin NGS
reads
The proposed strategy resembles that described by Conway et al.

[9], but differs in several important aspects. First, a primary

alignment to the graft genome, in this case the human genome, is

performed, where reads are divided into graft-mapped and graft-

unmapped reads; second, both graft-mapped and graft-unmapped

read-sets are realigned to the host genome, in this case the mouse

genome, to further identify common graft-host and host-specific

reads respectively; lastly, common graft-host reads are filtered

from the read set obtained in the primary alignment to obtain

graft-specific reads. In this study, the identification and classifica-

tion processes were performed via collecting and comparing the

read ids of the host/graft alignments, producing reads in FASTQ

format. As a result, identified graft-specific reads were re-aligned

to the graft genome.

Subsequent alignments produced three separate aligned data-

sets, i. e., reads that could only be mapped to the human genome,

reads that were exclusively mapped to the mouse genome and

reads that mapped to both genomes. In addition to analysing

RNA-Seq read sets, we further verify this strategy for low-coverage

whole-genome and exome-capture sequencing experiments. A

complete overview describing all the steps included in the

proposed strategy is shown in Figure 1. For each alignment,

mapped and unmapped reads contained in SAM/BAM formatted

files [13] were filtered based on their bitwise flag status using

Samtools [13], a customised Perl script that collected unique read

identities from the aligned/unaligned SAM formatted files and

filtered them from the raw fastq files, [Simon Andrews, 2010,

Seqanswers.com [14]. Available at: http://seqanswers.com/

forums/showpost.php?p = 25302&postcount = 3] and the

cmpfastq_pe software, that compared raw pair-end fastq files

Next-Generation Sequencing and Xenograft Models
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and reported common and unique reads (http://compbio.brc.iop.

kcl.ac.uk/software/cmpfastq_pe.php).

Mapping scores were used to assess the mapping quality of the

processed samples and to further discard multiple-hit reads. As a

general rule, it was assumed that a higher mapping quality means

a more ‘‘unique’’ aligned read and for most of the samples, a high

percentage of the read-pairs had a mapping quality above 20

(Table S2).

Transcriptome analysis
Whole transcriptome analysis of three SCLC primary xeno-

grafts was performed through RNA-Seq using the GAIIX and

HiSeq 2000 sequencing platforms (Illumina, San Diego, CA,

USA). The experiment was paired-end with 100nt read length

(300nt average insert size). The targeted minimum number of

reads per sample was 40 million reads (Table S1).

In order to identify and unequivocally separate graft (human)

and host (mouse) reads, processed sample reads were sequentially

aligned to both graft [complete hg19 human genome (UCSC

version, February 2009)] and host [complete mm9 mouse genome

(UCSC version, July 2007)] genomes using Bowtie-TopHat

[version 2.0.4, segment length 29nt, 1 mismatch in segment

permitted, for maximum sensitivity, coverage search performed

[15,16]. No de-duplication was performed for post-assembly

RNA-Seq analysis.

mRNA quantification for all annotated genes from the human

genome was performed using PartekH software (Partek Inc. (1993)

PartekH Genomics SuiteTM). Reads were normalized using the

reads per kilobase of exon model per million mapped reads

method [17].

A human-specific primary xenograft microarray expression

data-set (GSE15240) [4] was retrieved from the National Center

for Biotechnology Information (NCBI) Gene Expression Omnibus

(GEO) repository [18].

To compare the mouse-specific reads to previously published

cancer stromal gene signatures, a breast cancer associated

fibroblasts dataset [19] was retrieved from the GEO repository

(GSE10797).[18]

For all microarray analysis, gene probes were normalized using

quantile normalization (log base 2 and median polish for probeset

transformation and summarization respectively) and background

correction was performed using the robust multi-array average

method (RMA) [20].

Figure 1. Overview of the steps followed to identify and isolate common and species-specific sequence reads, including gene
identification and pathway analysis. The software components utilized in each step are also specified. Solid lines represent the principal
analytical path followed and dashed lines represent auxiliary steps.
doi:10.1371/journal.pone.0074432.g001
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Comparison of microarray and RNA-Seq gene expression

results was performed using linear correlation (Spearman’s r)

between the log base 2 of the quantified gene arbitrary intensity

units and the log base 2 RPKM as described in Mortazavi et al

[17].

Exome resequencing analysis
Whole-exome analysis of samples obtained from peripheral

blood, NCI-H209 cell line and its derivative xenograft was

performed through whole exome ultra-high throughput sequence

using the HiSeq 2000 sequencing platform (llumina, San Diego,

CA, USA). The experiment was paired-end with 101nt read length

(200bp insert size). The average targeted depth of coverage was set

to 50x (see Table S1 for total number of reads sequenced).

Processed sample reads were sequentially aligned to both graft

[complete hg19 human genome (UCSC version, February 2009)]

and host [complete mm9 mouse genome (UCSC version, July

2007)] genomes using the Burrows-Wheeler Alignment tool

[(BWA), bwa aln algorithm used, seed length of 22nt; maximum

edit distance in the seed of 0 [21].

Single nucleotide variants (SNVs) discovery was performed

using a set of tools included in Picard (http://picard.sourceforge.

net) and GATK [22,23]. First, duplicate reads were removed from

the realigned BAM files using the MarkDuplicates command from

Picard (http://picard.sourceforge.net). Estimated duplication lev-

els are described in Table S3. Subsequently, de-duplicated BAM

files were locally realigned around novel and known indels using

the RealignerTargetCreator and the IndelRealigner walkers from

GATK [23]. Lastly, base quality scores were recalibrated using the

CountCovariates and TableRecalibration walkers from GATK

[23]. This procedure was performed for each of the three samples

analysed.

Raw SNP calls were performed using the UnifiedGenotyper

walker from GATK [23] with a minimum base quality Phred

score of 20, a call confidence threshold of 50 (Phred-scaled) and an

emmition confidence threshold of 10 (Phred-scaled). Raw called

SNPs were filtered using the VariantFiltration walker with the

following parameters: SNP cluster size = 10; Coverage: $ 5;

Qual: $ 50; Strand bias: Fisher’s exact test, $ 60. Sample-specific

novel SNPs, i. e., those not present in the Database of Single

Nucleotide Polymorphisms (dbSNP) (Bethesda (MD): National

Center for Biotechnology Information, National Library of

Medicine. (dbSNP 137: 137; http://www.ncbi.nlm.nih.gov/

SNP/), were annotated and its effect predicted using SnpEff

[24] and the variantAnnotator walker from GATK [23].

Genome visualization was performed using the Integrative

Genome Browser (IGV) [25,26]. Multispecies local alignment

tracks were retrieved from IGV data server.

Whole-genome analysis
A low-coverage whole-genome sequencing of samples obtained

from peripheral blood, H209 cell line and its derived primary

xenograft was performed through shotgun whole genome ultra-

high throughput sequence using the HiSeq 2000 sequencing

platform (llumina, San Diego, CA, USA). The experiment was

paired-end with 101nt read length (200bp insert size). The average

targeted depth of coverage was set to 4x (see Table S1 for total

number of reads sequenced).

Processed sample reads were sequentially aligned to both graft

[complete hg19 human genome (UCSC version, February 2009)]

and host [complete mm9 mouse genome (UCSC version, July

2007)] genomes using the Burrows-Wheeler Alignment tool

[(BWA), bwa aln algorithm used, seed length of 22nt; maximum

edit distance in the seed of 0 [21]. Estimated duplication levels

were found to be marginal and are described in Table S3.

Intra- and inter-chromosomal rearrangements discovery of the

identified human specific reads was performed using FusionMap

[span and split read count threshold of 3 and split minimum

anchor of 4 reads [27]. Detected fusions were plotted against a

circular representation of the human genome (Circos plot) using

Circos [28].

Copy number variations (CNV) and allelic content in genomic

regions were detected using Control-Freec [29]. The peripheral

blood sample was used as a baseline control. Circos plots of the

detected CNV were built using Circos [28].

Results

As shown in Figure 2, the assessed NGS strategies revealed

different proportions of host-specific reads. Exome capture and

RNA-Seq produced the lowest proportion of mouse specific reads,

ranging from 4% to 7%. In contrast, shotgun whole genome

sequencing produced the highest number of reads that uniquely

aligned to the mouse genome, which corresponded to 20% of the

total number of reads (Figure 2). The homologous number of

reads, i.e., those reads that aligned to both the human and the

mouse genome, was found to be similar for all methods, ranging

from 4% (RNA-Seq) to 1.5% (Exome-capture). A complete

summary of the alignments performed is described in Table S2.

Whole-genome analysis
As expected, the sequence depth of coverage of the samples

subjected to low-coverage whole-genome sequencing was above 3

times for all analysed samples (Table S3 A). However, the depth of

coverage of the xenograft sample was severely affected by mouse

contamination and produced the lowest value of the 3 samples

both for mean depth of coverage (3.3 times) and percentage of

reads covered at least 3 times (Table S3 A).

Copy number variation analysis of both the cell line and

xenograft samples produced highly similar results when the

peripheral blood sample was used as control (Figure 3 A). A total

of 578 and 470 somatically acquired copy number alterations were

observed for the cell line and xenograft samples respectively.

These differences were mainly due to the subtle differences in the

depth of coverage of the genomic regions assessed and most of

them correspond to focal copy number gains or losses in the

middle of diploid regions (Figure 3 B). As observed in Figure S1,

both the cell line (Figure S1 A) and xenograft (Figure S1 B)

samples produced highly similar CNV profiles for all the analysed

chromosomes. A detailed CNV profile of both samples can be

found in Datasets S1 and S2. A similar pattern was observed for

beta allele frequency profiles for both sample types (Figure 3 C).

Comparable results could be observed for intra- and inter-

chromosomal rearrangements (Figure 3 A), where over 70

rearrangements for both samples were detected. An example of

inter-chromosomal rearrangements was found between BAGE4, a

candidate gene encoding tumour antigens, and MLL3, a member

of the myeloid/lymphoid or mixed-lineage leukemia (MLL)

family. A complete list of the intra- and inter-chromosomal

rearrangements common to both cell line and the xenograft

samples can be found in Dataset S3.

The data presented above supports our hypothesis that a

thorough CNV and structural variant analysis can be performed

when both the cell line and xenograft samples were used. We

found that when correctly accounting for mouse-specific contam-

ination, the results obtained using uncontaminated cell lines can

Next-Generation Sequencing and Xenograft Models

PLOS ONE | www.plosone.org 4 September 2013 | Volume 8 | Issue 9 | e74432



be accurately reproduced using xenograft samples, with the

additional benefits of the usage of an in vivo model.

Exome sequencing analysis
A mean sequence depth of coverage in the targeted captured

regions in all samples of over 100 times was achieved, with more

than 80% of the bases covered at least 30 times (Table S3 B). In

the cell line and the xenograft samples, 68.5 and 74.7 percent of

the targeted exome regions were covered at least 50 times, with a

mean sequence depth of coverage of 109 and 136 times

respectively. Sequence analysis across all three samples (i. e.,

peripheral blood, cell line and xenograft) detected a total of 53,186

(52,429 known and 757 novel) SNPs. Those variants that were

found in the peripheral blood were considered of germline origin,

and were no further processed for tertiary analysis.

A total of 946 somatic variants, 351 of these novel, were

common to both the cell line and xenograft samples (Figure 4 A).

Of these, 886 were single base substitutions, 28 were insertions and

32 were deletions (Figure 4 B). A complete list of the somatic

mutations detected is described in Dataset S4. Mutation class

analysis showed G.A/C.T transitions were the most common

(33%) followed by A.G/T.C transitions (23%) and G.T/C.A

transversions (20%) (Figure 4 C). Overall, this pattern was similar

to that reported by Pleasance et al [30].The previously described

TP53 splice acceptor disrupt and RB1 C706F point mutation,

characteristic of SCLC, [30], were detected both in the cell line

and xenograft samples.

For the 946 variants common to both cell line and xenograft,

the SnpEff effect predictor reported a total of 1806 (Figure 5 A &

B). For the purpose of this analysis, we reported the effect for all

possible gene transcripts, thus the total number of reported

variants differs from the total number of effects found. The most

represented effects categories, when classified by type, were those

corresponding to introns (721), non-synonymous coding (305) and

synonymous coding (170) (Figure 5 A). When the variant effects

were classified by region, intron and exon regions, as expected,

were the most significantly represented (Figure 5 B). A description

of moderate and high impact SNPs predicted effects for the first

affected transcript is described in Dataset S5.

Sixty-four somatic variants unique to the xenograft were

identified (Figure 4 B). Of these, only 15 were non-synonymous

coding variants. In all cases, the variants were heterozygous, and

Figure 2. Summary of the results produced by the proposed strategy to isolate and identify species-specific NGS reads in human
xenografts. For each read category, the proportion (%) of the total number of reads is specified.
doi:10.1371/journal.pone.0074432.g002
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SnpEff predicted a moderate effect on protein function (Table S4

A). These variants affected gene transcripts of the following genes:

ESPN, KAZN, APEH, MUC20, MUC17, AQP7, ZNF808 and

LUZP4. In order to identify the cause of these discrepancies

between the variants detected in the cell line and the xenograft

samples, the genomic regions surrounding the variants detected

were examined. In order to exclude the possibility that these

variants arose from contaminating mouse sequence, we performed

the following analysis. First, we isolated the sequencing reads

adjacent to the region of interest within a range of 1,000bp (See

Figure S2 for detailed examples). Pairwise local alignments of these

regions between the human and mouse genomes showed that a

global alignment could not have been possible between the

analysed sequencing reads and the mouse genome (Figure S2).

Next, we attempted to align these reads to the mouse genome. No

alignments were produced. These data show that the coding-

region variants unique to the xenograft were of human origin.

Since genetic heterogeneity is now considered a cardinal feature

of many cancer types [31–33], we wondered whether these

xenograft-specific variants could be detected in the original cell

line dataset. Detailed inspection of the sequencing reads and

sequence depth-of-coverage of relevant regions revealed that the

great majority (9 out of 15) of these variants were detectable, but

were below the allele frequency threshold of 0.2 (Figure S3 &

Table S4 A). For variants not detected in the cell line, either the

sequence depth of coverage was below 10 times or the alternative

Figure 3. Copy number variations, inter and intra-chromosomal rearrangements and B allele frequencies of NCI-H209 cell line and
a xenograft tumour derived from it. (A) Circos plot representing copy number variations, inter and intra-chromosomal rearrangements of NCI-
H209 cell line and a xenograft tumour derived from it. Copy number variations (red, gain; green, loss) were calculated based on coverage using the
correspondent peripheral blood as control. Inter and intra-chromosomal rearrangements are represented in blue (inter-chromosomal) and dark blue
(intra-chromosomal). (B, C) Detailed profile of copy number variations and B-allele frequencies of chromosome 1 from the analysed cell line and
xenograft. As described above, the correspondent peripheral blood was used as control for both type of analysis. Copy number profiles are shown in
red (gain), green (loss) and grey (no change). LOH are shown light blue.
doi:10.1371/journal.pone.0074432.g003
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allele nucleotide was not observed (Table S4 A). These data

support the conclusion that the variants unique to the xenograft

arose as a result of clonal expansion from a heterogeneous cell line

population, or new variants arising from spontaneous background

mutations.

A further 74 variants were identified in the cell line, but not in

the xenograft sample (Figure 4 B). Of these, 9 (RHOA, MUC17,

TRIM22, UNC93B1, MAML2, HIF1A, FAM18B2 and GPR64)

resulted in non-synonymous coding region changes with a

predicted moderate impact on protein function (Table S4 B). All

of these discrepant variants were found to be heterozygous (Table

S4 B). A comparison of the sequencing reads and sequence depth

of coverage of these regions revealed similar coverage in both cell

line and xenograft sample (Table S4 B & Figure S4). Using a

similar approach to that taken for the xenograft-specific variants,

we determined that in all but one case, the cell line-specific variant

could be readily detected in the xenograft, but once again were

below the same allele frequency threshold. Since these reads were

identified in a pure human cell line population, we conclude that

cells containing these discrepant variants are represented at lower

frequency in the xenograft, rather than as a result of mouse

contamination or variation in sequencing depth.

The number of discordant variants detected for each sample –

64 xenograft specific versus 74 cell line specific variants – may have

biased the known-to-novel ratio observed in the xenograft (Figure

4 B). This sample ratio is close to 1:1, higher than the observed for

the cell line specific and common cell line - xenograft variants

which is below 1 (Figure 4 B).

The data set from the xenograft sample produced the highest

mean sequence depth of coverage and 75% of the sequenced bases

were covered at least 50 times. The great majority of somatic

variants were detected in both cell line and xenograft, whereas

variants that were uniquely detected to either in the cell line or the

xenograft represented a minor proportion with no significant effect

on translation of mRNA splicing. Taken together, these data show

that exome-capture sequencing in xenograft models yields highly

accurate and reproducible detection of significant coding-region

variants.

Transcriptome analysis
Human-specific transcriptome analysis of three SCLC primary

xenograft models (LX22, LX33 and LX36) showed a strong

correlation (Spearman correlation = 0.75, P,0.001) with a

previously published gene-expression array data set in the same

Figure 4. Somatic variants profile of the NCI-H209 cell line and a xenograft tumour derived from it. Number of known and novel
variants (A) and variant types (B) found to be common to both the cell line and xenograft and those detected only in the cell line and xenograft. (C)
Quantification of the six possible mutation classes.
doi:10.1371/journal.pone.0074432.g004
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tumor models using human-specific cDNA probesets [4] (Figure 6

A), thus independently validating our species-specific strategy.

A gene expression correlation analysis between a recently

published SCLC primary tumors RNA-Seq experiment [34] and

the human-specific RNA-Seq reads of SCLC primary xenograft

models, showed positive correlation between both datasets

(Spearman correlation = 0.68, P ,0.001) (Figure 6 B). Isolated

mouse-specific reads from the RNA-Seq experiment were

compared with a laser micro-dissected human breast cancer

stroma-specific gene expression array dataset [19]. As shown in

Figure 6 C, a positive correlation between mouse-specific RNA-

Seq expression data and the stroma-specific cancer gene signature,

Figure 5. Variants classification by type of predicted effect (A) and genomic region affected (B).
doi:10.1371/journal.pone.0074432.g005
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determined by the expression array analysis of laser micro-

dissected human breast cancer tissue, was observed. As previously

reported [19], genes highly expressed in cancer stroma compared

to normal stroma, such as BGN, COL1A1, COL1A2, COL5A1, FN1,

NID2, COL10A, COL11A1, COL3A1,MMP2, POSTN, SPARC, DST

and THBS2, produced high number of RPKM and positively

correlated with the gene expression array data (Figure 6 C). At the

same time, genes found to be down-regulated for the same

comparison, namely FGF1, IGJ, PTN, MGP, CHI3L1, DMD,

MMP7 and EFEMP1, were found to have low expression levels

(Figure 6 C). Expression levels of FBLN1, FBN1, CFDP1 and NID2

were found to be low, in contrast to what reported previously [19].

The analyses described above convey and support two main

hypotheses. First, that there was a high cross-platform correlation,

microarray versus RNA-Seq, when expression was analyzed in a

previously described model, i. e., a primary xenograft model of

SCLC [4]. Secondly, the positive correlation found between the

previously published SCLC primary tumours [34] and the human-

specific reads plus the positive correlation between breast cancer

stroma-specific gene expression array dataset [19] and the mouse-

specific reads, verifies the main hypothesis of this work where host

Figure 6. Comprehensive correlation analysis between the RNA-Seq and Affymetrix expression array platforms. (A) Comparison of
gene expression detected by RNA-Seq and Affymetrix expression array platforms for identical SCLC samples (mean, n = 3, P,0.01). (B) Comparison of
the gene expression between SCLC primary tumours [34] (Y axis, mean, n = 15) and primary xenografts (X axis, mean, n = 3) (P,0.01). (C) Comparison
of gene expression detected by Affymetrix array of micro-dissected human cancer stroma [19] (Y axis, mean, n = 28) and mouse-specific RNA-Seq
expression data in the SCLC xenograft models (X axis, mean, n = 3) (P,0.01).
doi:10.1371/journal.pone.0074432.g006
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and graft reads can be unequivocally identified and separately

analyzed.

Discussion

To date, complex NGS analyses of cancer have relied on

conventional cell line models, or fresh-frozen surgical specimens.

Although cell lines provide high-quality, tumour-specific RNA and

DNA, the process of adapting to adherent, serum-dependent

culture conditions results in irreversible transcriptional, epigenetic

and genomic changes [4–7], which can limit the interpretation of

NGS studies. Suitable freshly isolated surgical material is limited

by stromal contamination and tissue quality [1], and the fact that

resected cancers become over-represented in NGS studies. In

addition, although complex mathematical modeling can be used to

correct for sample purity and allele frequency in exome

sequencing [2,35], complex tissue samples remain a major

challenge for whole-genome analysis. Our results also suggest that

much larger and more complex stroma-specific gene expression

studies can be undertaken to further validate primary xenograft

models in tumours such as SCLC.

Using an in-silico workflow based on short-read aligners, such as

Tophat-Bowtie and BWA, we have shown that xenograft models

can be used for highly accurate, sensitive and specific NGS at a

whole genome, exome and transcriptome level. Despite significant

mouse contamination in both DNA and RNA analysis, we were

able to derive highly accurate sequence data that was internally

consistent when comparing xenografts to matched cell lines, and

also replicated NGS and array-based analyses of identical cell and

xenograft lines generated independently.

Conway et al. [9] recently described a classification technique

called Xenome. This tool allows a pre-processing and further

classification of high throughput sequencing reads using a k-mer

decomposition of the host and graft reference genome sequences.

Once processed, reads are classified into four categories: reads

originated from the host tissue, reads originated from the graft,

reads that could have been originated from both type of tissues and

reads which origin could not be attributed to either of them [9].

They also described an alternative classification strategy based on

the Tophat splice junction mapper [15]. Firstly, human, mouse

and xenograft RNA-Seq read sets were aligned to the host

genome, then these were subsequently and independently aligned

to the graft genome to finally post-process and classify the aligned

reads into four types: host, graft, both and neither [9]. A method

that simultaneously maps RNA-Seq sequencing reads to a merged

reference combining both the host and graft transcriptomes has

been described by Raskatov et al [10]. The authors argue that a

minimum of 40% of the sequencing reads could be attributed to

host-specific reads. The methodology described in our work could

not identify such a high proportion of host-specific reads and

agrees with what is been previously reported by the studies

described in Conway et al. [9].

Our strategy expands the short-read aligner method [9] and

uses widely used mapping tools, such as Bowtie-Tophat and BWA

for classification purposes. By utilising a short-read aligner

methodology, we successfully validated our strategy using the

three main NGS techniques: RNA-Seq, exome-capture and low-

coverage whole-genome sequence. In spite of being a more

conservative approach than Xenome, i. e., the number of reads

which fall into the both category is higher, our strategy is more

robust when the certainty of the detections made is prioritized.

Additionally, the customized modifications that can be made to

the aligner parameters, such as seed length, number of mismatches

in the seed and minimum mapping quality, could become an

additional advantage supporting the robustness of the methodol-

ogy. Although this approach was previously reported for RNA-Seq

[9,10], the authors did not describe a detailed workflow for the

deep sequencing technologies mentioned above. Our strategy is

based on short-read aligners with the advantage of flexible and

customizable stringency. In addition, our classification/filtering

process can be performed at the aligning stage, avoiding extra

computing and storage requirements.

Rather than being a disadvantage, our data support the idea

that the species-specific tumour-stromal interface innate to

xenograft models allow us to more sensitively and specifically

detect tumour-specific variants without the need for extra depth or

complex algorithms needed to account for human stroma. The use

of primary xenograft models derived from the overwhelming

numbers of patients with inoperable solid tumours may therefore

represent a useful platform for complex and informative NGS

research.

Supporting Information

Figure S1 Copy number variation analysis. Complete

human chromosome profile of the of CLH209 (A) cell

line and a xenograft tumour derived from it (B).

(PDF)

Figure S2 Analysis of xenograft-specific variants. Local

pairwise alignment of the human (hg19) and mouse

(mm9) genomes compared against the sequencing read

alignments of genomic regions surrounding the variants

detected. Representative detected variants are shown for AQP7

(A), APEH (B), MUC17 (C) and MUC20 (D) genes. Genomic

locations for the variants shown are described in supplementary

Table 4 A. In the local pairwise alignments, vertical lines, and the

number above them, represent sequence gaps and its length

respectively; dots represent conserved human-mouse sequences.

Variant position is highlighted by black parallel bars. Nucleotide

residues are shown in red (thymine), blue (cytosine), green

(adenine) and yellow (guanine). Heterozygous variants are

indicated in the depth of coverage track and show both reference

and alternative alleles. Forward and reverse sequencing reads are

shown in pink and blue respectively. Sequence base mismatches

are highlighted with its corresponding nucleotide colour.

(PDF)

Figure S3 Analysis of xenograft-specific variants. Se-

quence depth of coverage and allele frequency compar-

isons between the xenograft and cell line samples. Both

samples were aligned to the human reference genome hg19.

Representative detected variants are shown for AQP7 (A), APEH

(B), MUC17 (C) and MUC20 (D) genes. Genomic locations for the

variants shown are described in supplementary Table 4 A.

Variants position is highlighted by black parallel bars. Nucleotide

residues are shown in red (thymine), blue (cytosine), green

(adenine) and yellow (guanine). Heterozygous variants are

indicated in the depth of coverage track and show both reference

and alternative alleles. Forward and reverse sequencing reads are

shown in pink and blue respectively. Sequence base mismatches

are highlighted with its corresponding nucleotide colour.

(PDF)

Figure S4 Analysis of cell line-specific variants. Se-

quence depth of coverage and allele frequency compar-

isons between the cell line and xenograft samples. Both

samples were aligned to the human reference genome hg19.

Representative detected variants are shown for HIF1A (A),

TRIM22 (B), GPR64 (C) and MAML2 (D) genes. Genomic
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locations for the variants shown are described in supplementary

Table 4 A. Variants position is highlighted by black parallel bars.

Nucleotide residues are shown in red (thymine), blue (cytosine),

green (adenine) and yellow (guanine). Heterozygous variants are

indicated in the depth of coverage track and show both reference

and alternative alleles. Forward and reverse sequencing reads are

shown in pink and blue respectively. Sequence base mismatches

are highlighted with its corresponding nucleotide color.

(PDF)

Table S1 Summary of the total and post QA/QC

number of sequenced reads from each NGS experiment

performed. Control: peripheral blood BL209, Cell line: NCI-

H209; Xenograft: xenograft sample derived from the NCI-H209

cell line. LX22, LX33 and LX33: SCLC primary xenograft lines

LX22, LX33 and LX36. The number of mapped reads for the

xenograft samples are human-specific only. PE: pair-ends.

(PDF)

Table S2 Summary of the alignments statistics of each

NGS experiment performed. LX22, LX33 and LX33: SCLC

primary xenograft lines LX22, LX33 and LX36.Control:

peripheral blood BL209, Cell line: NCI-H209; Xenograft:

xenograft sample derived from the NCI-H209 cell line. The

number of mapped reads for the xenograft samples are human-

specific only. For the exome capture and low-coverage whole

genome analyses of the xenograft sample concordantly paired

reads were analyzed.

(PDF)

Table S3 Summary of the depth of coverage obtained

for the exome capture (A) and low pass whole genome

(B) experiments. Control: peripheral blood BL209, Cell line:

NCI-H209; Xenograft: xenograft sample derived from the NCI-

H209 cell line. The results of the xenograft sample only represent

those reads that were human specific. Depth of coverage was

estimated on whole reads.

(PDF)

Table S4 Table describing sample-specific single nu-

cleotide variants. (A) Xenograft-specific non-synonymous

coding variants. (B) Cell line specific non-synonymous coding

variants. For sample-specific variants, approximate read depth is

shown (reads with MQ=255 or with bad mates were filtered).

Read and allelic depth of the sample were the variant was not

identified were calculated on de-duplicated reads. NSC: non-

synonymous coding variant.

(PDF)

Dataset S1 Detected copy number variations in the

NCI-H209 cell line sample.

(PDF)

Dataset S2 Detected copy number variations in the

xenograft sample derived from the NCI-H209 cell line.

(PDF)

Dataset S3 Inter- and intrachromosomal rearrange-

ments common to both the NCI-H209 cell line and its

derived xenograft sample.

(PDF)

Dataset S4 Somatic variants detected in both the cell

line and xenograft samples.

(PDF)

Dataset S5 SNPs effects common to both the cell line

and xenograft samples (only one transcript of the

moderate and high impact effects are reported.

(PDF)
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