
Preprint: Proc. IEEE Intl. Conf. on Comm. (ICC), Apr. 28 - May 2, 2002.

Next Generation Service Creation Using XML Scripting Languages

John-Luc Bakker and Ravi Jain
Telcordia Technologies, Applied Research

445 South Street
Morristown, NJ 07960

Abstract- The next generation of scripting languages for creating
value-added services in converged networks will be based upon XML.
Industry fora like Parlay, JAIN and OSA have developed open
standard Application Programming Interfaces (APIs) to enable service
creation in converged Next Generation Networks (NGN). While
services can be developed in traditional programming languages (e.g.
Java or C++) using these APIs, XML-based scripting languages offer
some advantages. While not as flexible or powerful as a programming
language, scripting languages are typically easier to learn, and are
language and platform independent.

In this paper we describe the architecture and framework
(creation, deployment and execution) of XML-based service scripts in
NGN. We focus on the Service Control Markup Language (SCML)
being developed by the JAIN forum for call control scripts that is closely
tied to the JAIN Java Call Control (JCC) API. SCML is intended to be
part of a family of NGN service scripting languages that include
facilities for user interaction, mobility, and other open NGN API
functions. We compare SCML to the Call Processing Language (CPL)
defined by the IETF and note that SCML offers several advantages.
We also briefly compare it to the requirements that are being developed
by the W3C Voice Browser working group.

I. INTRODUCTION

The next generation of telecommunications networks, for both
public and enterprise environments, will consist of converged
networks, using fixed and wireless, as well as circuit-switched and
packet-switched infrastructure. The key promise of these Next
Generation Networks (NGN) lies not in the ability to interconnect
this diverse technology, or even in the potential cost reductions
obtained by doing so, but the ability to develop and deploy
innovative and lucrative services rapidly and efficiently.

A critical ingredient for rapid service introduction is the
development of open and standard Application Programming
Interfaces (APIs) that span diverse NGNs, allowing 3rd party
application developers to produce new services in a manner
analogous to the development of software in the Information
technology (IT) industry. In the past few years several industry
efforts have emerged to develop such open APIs, including Parlay
[8], JAIN [7], and the Open Services Architecture (OSA) [17].
These efforts are now reaching fruition, with the initial versions of
specifications being released and several equipment vendor
announcements of current or planned products implementing the
APIs (e.g. see presentations at the recent Parlay meetings [8]).

The next step required to make the promise of NGN a reality is to
streamline and rationalize the process of service creation itself. In
the traditional Public Switched Telephone Network (PSTN), service
creation was typically carried out by service providers with
specialized personnel using specialized languages. The
development of the Internet and the rise of the eXtensible Markup
Language (XML) as a language standard have recently prompted
proposals that XML-based scripting languages be used for
telecommunications service creation. Among other advantages,
XML offers a medium that is platform, network and technology

neutral, independent of underlying programming languages, and
readable by machines as well as humans. It is thus promising as a
basis for enabling 3rd party application developers, particularly those
who may not be programmers, to develop NGN services.

Within the area of service creation, a central concern is to specify
and model call control, i.e., the creation, manipulation, termination
and teardown of communications sessions. (Note that while we use
term “call” for simplicity, throughout the paper it refers in general to
a communications session, i.e., not only to two-party voice calls but
more complex sessions like a multimedia multi-party
communications session.) In this paper we describe the architecture
and framework (creation, deployment and execution) for XML-
based scripting of services in an NGN.

Several XML-based call control Markup Languages (ML) have
been previously proposed, including CPML, TML, XTML CPL,
and CallML [1]. A comprehensive survey of these call control ML
proposals is not the purpose or within the scope of this paper.
Instead, we observe that the more mature and interesting of these
proposals are the Call Processing Language (CPL) [3, 4] being
standardized by the Internet Engineering Task Force (IETF) and the
call control ML requirements [2] being developed by the Voice
Browser working group in the World Wide Web Consortium
(W3C).

Our examination of the CPL and VoiceXML activities leads us to
conclude that there are some deficiencies in both these approaches.
In the latter half of this paper we describe an alternative approach
and proposed draft standard language, namely the Service Creation
Markup Language (SCML). SCML is an XML-based NGN
service scripting language currently being developed within the
Service Creation Environment (SCE) Expert Group of the JAIN
industry forum [5]. While the SCE Group currently focuses on call
control aspects of NGN services, our view is that SCML consists of
a family of such languages that need to be developed to model other
essential service aspects, such as mobility, user interaction, etc.
Thus the SCML family contains a Call Control Markup Language
(CCML), among others. (In this paper we will use the term SCML
generically to encompass the markup language for call control as
well as others; when discussing call control aspects of SCML it is to
be understood that CCML is intended.)

Since at the moment the VoiceXML activity for a call control ML
consists only of a requirements document, in this paper we will
largely focus on comparing SCML with CPL. SCML and CPL
have many goals in common and overlapping scope. Where they
differ is the level of abstraction of the underlying telecommunication
network and environment in which they operate.

One of the advantages of SCML over CPL is that SCML follows
closely the architecture and API definitions for call control being
developed cooperatively by the joint industry standards working
group on call control, consisting of representatives and members of
four bodies, namely Parlay, JAIN, ETSI and OSA. In addition, as

we discuss below, SCML is defined at a higher layer of abstraction
than CPL, offers richer functionality, and offers a more modular,
reusable and extensible base for further development of service
creation ML standards, including those for mobility, charging, etc.
We thus argue that SCML will evolve as a “best of breeds”,
satisfying most of the call control requirements being developed by
the W3C Voice Browser working group while offering distinct
technical benefits over CPL.

The rest of this paper is organized as follows,. In the next section
an architecture for NGN is reviewed and a framework for execution
of XML-based scripts is introduced. We briefly describe how the
Parlay and JAIN industry bodies are developing open APIs for this
architecture, focusing on the JAIN call control APIs and their
relation to SCML. In Section III we discuss the use of XML, XML
Schemas and XSL for call control ML scripts. In Section IV we
focus on XML scripting and the creation, deployment and execution
of XML scripts. In Section VI we compare CPL and SCML in
some detail. To make this comparison concrete we consider two
common example services: Voicemail on Busy, and a Wake-Up
Call. In Section VII we conclude with some brief discussion and
description of future work.

II. NGN AND CALL CONTROL ARCHITECTURE

We briefly review the NGN architecture assumed as a basis for
SCML in this paper (see Fig. 1). At the lowest layer the architecture
consists of transport technologies (PSTN, Internet, wireless) and
interworking gateways and hubs (trunking gateways and residential
hubs). The intelligence of the NGN is contained at the next layer in
a softswitch or Call Agent that controls the gateways (using
protocols like MGCP or Megaco) and interfaces to the (Advanced)
Intelligent Network (A/IN) [15] elements such as Service Control
Points (SCP) via signaling gateways. The Call Agent is primarily
responsible for interworking and completing calls or
communications sessions; for value-added NGN services it exposes
an open standard NGN API (e.g. JAIN, Parlay, OSA). In particular
the API provides call control facilities. The NGN services may
execute on the Call Agent itself or on separate Application Servers
(not shown) or the SCP.

Above this layer lies the domain of service creation, which is
normally carried out offline as opposed to the online processing of
calls or services. Services can be created in a SCE with a
programming language like Java, e.g. using JavaBeans [18], or
using a markup language like SCML. The SCE may provide a
library of basic JavaBeans or SCML scripts that can be composed to
create more advanced services, possibly in a hierarchical fashion.
As we discuss later, the scripts can be downloaded and interpreted
or executed either at the Call Agent or at the endpoints e.g. PCs or
smart phones connected to residential hubs or IP networks.

Thus broadly speaking, the architecture (e.g. in JAIN and Parlay)
assumes a layering consisting of signaling, functions or functional
interfaces, and application (or service) logic (see Fig. 2; note that in
Parlay the functional interfaces are called “service” interfaces). The
signaling layer consists, for example, of SIP, MGCP, and ISUP
protocols. These protocols are designed to communicate efficiently
to their protocol peers, not for user friendliness or robustness.
Programming in such a protocol layer involves issues like timing,
authentication, error recovery, etc and is typically complex and
tedious. The functional interface layer abstracts these lower level
details to offer call control, mobility, user interaction and other
functions driven by signaling protocol messages. Thus the call

control function allows calls to be represented and manipulated at an
abstract level in a common (object oriented) model across multiple
network technologies and signaling protocols using a common API.
Finally, applications reside in the applications layer making use of
the various APIs in provided by the functional interfaces layer.

In general, there exist endpoints or end systems (such as phones
or PCs) at the edge of the NGN and what we generically refer to as
“call servers” (e.g. Call Agents, Application Servers or SIP servers)
in the core of the network. End systems can originate calls, and
accept, reject, or forward incoming calls [3]. On the other hand, call
servers can perform of the following operations on a call. They can:

• proxy it: forward the call on to one or more other call servers or
end systems, subsequently calculating what to do with any
responses received.

• redirect it: informing the network of an alternate address for the
incoming call.

• reject it: inform the sending system that the setup request could
not be completed.

• originate it: create a new call through inviting two or more end
user systems in a coordinated fashion.

Service
Beans

XML JAVA Service
Scripts

Service
Creation

Environment

Backbone
Network

TCAP

ISUP/SS7

Residential Hub

Voice/IP

Trunking
Gateway

PSTNVoice/IP/ATM

Connection
Control

SS7
Gateway

SS7
Gateway

HFC
ADSL
WLL

SCP

MGCP

M
G

C
P

NGN API

Call Agent

Application objects
Call Control objects

Service
Beans

XML JAVA Service
Scripts

Service
Creation

Environment Service
Beans

XML JAVA Service
Scripts

Service
Creation

Environment

Backbone
Network

TCAP

ISUP/SS7

Residential Hub

Voice/IP

Trunking
Gateway

PSTNVoice/IP/ATM

Connection
Control

SS7
Gateway

SS7
Gateway

HFC
ADSL
WLL

SCPSCP

MGCP

M
G

C
P

NGN API

Call Agent

Application objects
Call Control objects

Fig. 1: NGN Architecture and SCML Scripts

Typically, call servers support applications that that may involve
charging, user location, mobility, etc., and thus interact with other
systems within the network, e.g. location databases, billing systems,
etc. The following briefly discusses two industry initiatives that
provide APIs to the functions provided by call servers.

A. Parlay

The Parlay group [8] provides 3rd party application developers
with language-independent APIs that allow access to functions (or
“services”) including not only Call Control but Presence and
Availability Management, Policy Management, User Interaction,
Mobility Management, Content Based Charging, and others. Some
of these are shown in Fig. 2. Access to these functions is managed
through a Framework API that provides security and related

functions to expose the NGN infrastructure to 3rd party applications
in a controlled and secure manner.

B. JAIN

The JAIN effort [6, 7] is similar in many respects to Parlay.
Some of the differences are that JAIN (a) provides APIs not only at
the functions layer but also at the protocols layer below it; (b) is not
language independent since all the APIs are specified in Java; (c)
explicitly defines a Service Logic Execution Environment (SLEE)
and (d) defines a SCE. A number of APIs are provided for
protocols such as SIP, MGCP, MAP, and INAP. On top of these
protocols a number of protocol agnostic services are defined: Call
Control, User Interaction, and Mobility Management are targeted to
be essentially Java versions of the Parlay APIs. Similarly, the Parlay
Framework was mapped to the JAIN environment to provide
secured access to the services for third party applications.
Applications running within SLEE, or created by the SCE, can
exploit the JAIN suite of functional as well as lower-layer protocol
APIs and also benefit from other Java APIs.

User
Interaction

Mobility Call
Control Framework

 Interfaces Functional (or “ Service”) Interfaces

SCML script

Functional
Interface

Enterprise or
Application
Server
Domain

Managed IP Network

SSCCPP HHLLRR

Service Provider
Domain

PSTN
Mobile

Network

SCML
interpretor

SS7 SIP,
MGCP ANSI-41

NGN
API

Protocol
API

Fig. 2: NGN Layering and APIs

The basic call control service of JAIN is the Java Call Control
service. Providing an API for call control that covers the needs of
the industry, while remaining focused, is a daunting task. Early in
the process within the JAIN group it was decided to define Java Call
Control (JCC) as a simple API that supports today’s main revenue
generating applications. Java Coordination and Transaction
(JCAT), on the other hand, inherits from JCC and supports more
advanced applications. SCML is being defined as a scripting
language tied closely to JCC. We briefly describe JCC and JCAT
here.

JCC is a call control API that typically supports first-party and
third-party creation and manipulation of multi-party calls, and
common services such as FreePhone (or toll free) numbers, number
translation, call forwarding, originating and terminating call
screening, etc. JCC 1.0 is completed and is being implemented by
several vendors [10]. It aligns with JTAPI [21] and is similar to
Parlay’s Multi-Party Call Control Service (MPCCS); future versions
are expected to align closer with MPCCS.

JCAT [11] is under development within JAIN and is expected to
support a richer class of call control applications than JCC.
Examples of proposed JCAT capabilities are support for various call
transfer flavors, call merging, modeling of terminal capabilities, and
call ‘navigation’. Through the call ‘navigation’ capability, an

application can query the calls that a JCAT implementation knows
of. If a call object is available that satisfies the query, the application
can control this call. For example, it may “barge in” to the call or
into a particular connection, e.g. for call waiting. The JCAT API is
typically deployed on Class 5 switches.

It is expected that soon after completion of the JCAT
standardization work, a call control ML will be derived from SCML
for JCAT.

III. USAGE OF XML

A. XML application creation languages

Languages such as SCML and CPL create applications that make
use of the functions provided by the functional interfaces layer.
Today, XML [12] is commonly seen as the preferred vehicle to
create such applications. Aside from its standardization and
readability by both machines and humans, XML offers several
benefits. XML supports restrictions to its expressiveness that
enables easy validation and determinability. In general, XML
schemas allow the design of languages that can be non-expressively
complete, thereby guaranteeing that the XML interpreter while
using a limited amount of time and resources can execute the script.
Finally, many tools and libraries exist to create, interpret and
validate XML documents.

B. XML Schema

CPL is defined using XML Data Type Definitions (DTD) while
SCML is defined using an XML Schema. XML Schema [13]
represents a more recent specification methodology developed in the
W3C and have several distinct advantages over DTD. In this
section we briefly discuss why they are particularly beneficial for
SCML.

Like DTD, XML schemas are a language for specifying and
constraining the content of XML documents. However, unlike
DTD, XML Schemas are written in XML, thus avoiding the
programmer having to learn yet another notation, and define a set of
well-known basic document elements, thus saving programmer the
effort of defining them. While these features are convenient, for our
purposes schemas have two additional important attributes. Firstly,
XML Schemas are type safe and come with a set of predefined
simple types, where DTD only accepts one type: string. More
importantly, XML schemas allow the programmer to define data
types as well as to restrict, redefine and extend them in a manner
similar to inheritance in object oriented programming languages.
This latter attribute of schemas enables modularity, extensibility and
reuse of SCML Schema. A feature called extension is useful in a
manner similar to adding behavior by using inheritance in an object-
oriented language. This is very important since most NGN APIs,
such as JCC, make extensive use of inheritance. In particular, the
extension package JCAT inherits from JCC and adds richer
functionality.

C. XSLT

The eXtensible Stylesheet Language (XSL) and XSL
Transformations (XSLT) are powerful tools for transforming one
XML document into another. XSL consists of XSLT plus a
description of formatting objects and properties. Through XSLT
[14] higher-lever scripts can be supported to hide recurring XML
sequences that represent common patterns when developing scripts.

One can imagine XSL rules for e.g. Wake Up Call applications.
In this case many of the recurring aspects of specifying a service,
and in particular a Wake Up Call service, are stored in the style sheet
WakeUp.xsl. The higher-level script WakeUp.xml need only contain
very specific information e.g. the name of the announcement server
that reads the “wake up” message to the user, and in fact could be
created by the script writer with the help of a Graphical User
Interface (GUI). The XSLT processor is used to generate the actual
SCML script that will be loaded onto the Application Server or Call
Agent and executed. Thus instances of the XML that supports
“wake up call” class of service allows for easy authoring of such
scripts. This is particularly useful for provisioning and deployment
of services. For instance, the higher-level script need only specify
the parameters specific to a particular user, e.g. phone number,
wake-up time, etc. (see Fig. 3).

WakeUp.xsl

XSLT

WakeUp_Mary.scml

WakeUp_Mary.xml

Fig. 3: Usage of XSLT to generate SCML

IV. SCRIPT EXECUTION AND DEPLOYMENT

A script can run on a call server or (intelligent) endpoint system.
It controls the server’s or endpoint’s functions: proxying (in case of
a call server), redirecting, originating, or rejecting calls. The default
behavior is in effect until processing in the call server completes, or
a script takes over control (and disposition) of that call e.g. in a
manner similar to triggers in A/IN. A script controls the call based
on the information made available through other functional
interfaces and based on settings controlled by subscriber (settings
coded as rules in the script itself).

Typically, telecommunications scripts/applications are associated
with an address, subscriber information, a point in call (e.g. in the
originating and/or terminating portion of a call), and have access to
auxiliary information such as location data through mobility
management servers or an Interactive Voice Response (IVR) unit.
Note that there may also exist applications that are not call-based.
For example, an application that continuously tracks the
whereabouts of end users for administration purposes is not
necessarily activated through call-based conditions. For illustrative
purposes, the remainder of this paper assumes call-based scripts.
However, the concepts discussed in the remainder can easily be
generalized and applied for activation of non-call based scripts.

Fig. 4 shows three phases in the lifetime of a script. In the SCE
phase the script is created by a variety of possible means including
XML tools (e.g. XML or XSL editors, XSLT), direct input using a
general-purpose text editor, an XML add-on to a traditional PSTN
SCE, or by converting Java (or JavaBeans) programs. In the
deployment phase the script is validated for syntax and
executability, and stored in a repository if valid. An offline service
management program can query the repository and activate the
script by downloading it for execution to a specialized XML
processing engine (in this case, an SCML processor) that may have
at its disposal a library of basic scripts. There are two possibilities

here: the SCML processor could reside on the call server itself, or it
could reside on a separate platform (e.g. an Application Server). In
the first case, the SCML processor acts as an interpreter to convert
the SCML instructions to the API exposed by the call server (in this
case, JCC). In the second case the SCML processor can either make
remote calls to the JCC interface (e.g. using Java RMI) or can send
XML messages (via SOAP [22], for instance) to another XML
processor located on the call server; this latter option involves more
XML processing but makes the communication between the
Application Server and the call server language-independent. The
criteria for invoking the script are checked by a criteria checker. The
criteria may consist of an A/IN style trigger or Java event in the call-
processing platform (e.g. JCC supports such events) that is in turn
caused by underlying signaling events. Alternatively, the criteria
may consist of other activation conditions, such as time-based
activation (e.g. Wake Up Call) or activation from other elements
(e.g. Click-to-Dial scenarios or IVR interactions). As the script
executes, it may in turn issue commands to the call server e.g. after
performing a number translation or redirecting a call.

XML Schema

Schema instance

SCML

??ML CCML

inheritance

XML
editor

action

CCML
document

CCML
executor

JCC

Any
protocol

CCML
executor

SIP

storage
Service
control
function

create

store

query

activate

??ML
??ML

KEY

Fig. 4, Script creation, deployment and execution

Note that access by the scripts to the call-processing platform is
expected to be restricted to authorized subscribers only. Subscribers
are supposed to engage in a trusted relationship with the provider of
the services. The Parlay Framework and JAIN Service Provider
API (SPA) provide means to manage and control this access. The
details of such authorization schemes may vary from administrative
domain to administrative domain and are not in scope for this paper.

Scripts can have unwanted interactions within a system and
between systems. Let us discuss the case in which scripts within a
system interact. Assume a script S1 with activation conditions A
and a script S2 with activation conditions B. Assume S1 changes the
conditions such that B is satisfied and, consequently, S2 is invoked
upon termination of S1. S2, however, changes the conditions such
that A is satisfied and, consequently, S1 is invoked again upon
termination of S2. Obviously, the script execution support logic
must monitor for this form of indefinite recursion and take
appropriate corrective and informative actions. Note that it may
very well be the case that the underlying protocols signal such loops.

In general this issue is completely analogous to feature interaction in
A/IN systems and has been widely studied. We assume that
resolution of feature interaction is in general outside the SCE itself,
although an SCE could provide some support if so desired.

V. ANALYZING OPEN CALL CONTROL SCRIPTING SCHEMAS

This section analyzes and compares CPL and SCML in the
context of the architecture and framework given earlier in the paper
and briefly considers the W3C Voice Browser working group
requirements.

A. CPL

At the time of writing CPL is almost fully specified. Currently, a
DTD and accompanying documentation is available as work in
progress material ([3] and [4]). CPL is a non-expressively complete
language; it cannot be used to create arbitrary complex scripts,
thereby limiting the resources a script needs for successful
execution. We now give a brief example of CPL use and discuss
several of its deficiencies. CPL scripts are executed within our
generic notion of call servers; CPL scripts process incoming and
outgoing calls. The capabilities of the call server that executes CPL
are limited; it can proxy, reject or redirect calls. CPL cannot
originate calls towards two or more end users. The capability to
originate a call within a call server is a significant service within
A/IN networks.

The example CPL script in Fig. 5 is a simple script that redirects
incoming calls to voicemail if the callee is busy (in the remainder we
assume a basic familiarity with reading XML scripts). Note that, in
CPL, upon receipt of the incoming call event, the callee’s address is
stored in a global variable. If the callee turns out to be busy, the
location is cleared, changed into the user’s voicemail address
(smi t h@voi cemai l . exampl e. com) , and the call is redirected.
We see that the global location variable can be manipulated through
the <l ocat i on> node.

<cpl >
 <i ncomi ng>
 <busy>
 <l ocat i on
 ur l =" si p: smi t h@voi cemai l . exampl e. com"
 cl ear =” yes” >
 <r edi r ect / >
 </ l ocat i on>
 </ busy>
 </ i ncomi ng>
</ cpl >

Fig. 5, Example CPL Fragment: Voicemail on Busy

Typically, CPL scripts execute within the context of a user agent.
A user agent is an entity that exists in SIP and H.323 networks.
User agents do not exist in present day A/IN networks (in general
the design of CPL is guided by the SIP & H.323 protocol).
Therefore, CPL scripts are not protocol agnostic.

CPL is only activated through call events; it cannot be activated
through non-call related events such as a timer. Hence, CPL cannot
be used to write Click-to-Dial or Wake Up Call services.

CPL works with a call server’s capability to provide location
information of a registered user. It assumes a database that can be
queried for the preferred location where the end user can handle the
call. Additionally, the script can send mail through the <mai l >

node or log events through the <l og> node. The last two nodes are
particularly useful to give the subscriber feedback on script failures.
CPL does not define how to interact with call servers that provide
mobility management information (e.g. forward all calls to
voicemail if the callee is driving in his car in the state New York), or
with information provided by a user interaction system. Hence,
CPL’s architecture does not support all services provided by call
servers as defined earlier.

B. SCML

We briefly discuss SCML here and compare it to CPL.

Note that SCML exists only as a work in progress material. The
description here is based on SCML 0.2.2 and is not intended to
represent the final specification. In the course of standardization
within the JAIN SCE group and through interaction with other
relevant bodies the SCML schema may change. The examples given
in this document are for illustrative purposes only.

As motivated earlier, SCML is defined using an XML Schema
that is derived from JCC. JCC provides an API to pure call control
related capabilities and can support traditional A/IN services as well
as NGN services such as Click-to-Dial, and is independent of the
underlying network. JCC is truly protocol agnostic and can be
mapped on top of SIP [16, 20], INAP, ISUP, and H.323 [16].

<scml >
 <t er mi nat i ng>
 <addr ess- swi t ch f i el d=” t er mi nat i ng” >
 <addr ess i s=” si p: smi t h@phone. exampl e. com” >
 <di sconnect ed causeCode=" CAUSE_BUSY" >
 <r out eCal l connect i onPt r =" conC" >
 <ar gument s>
 <t ar get Addr ess>si p: smi t h@voi cemai l .
 exampl e. com</ t ar get Addr ess>
 </ ar gument s>
 </ r out eCal l >
 </ di sconnect ed>
 </ addr ess>
 </ addr ess- swi t ch>
 </ t er mi nat i ng>
</ scml >

Fig. 6, Example SCML Fragment: Voicemail on Busy

An example script in SCML is shown in Fig. 6 for the Voicemail
on Busy service. In this script the activation criteria are more
elaborate and are registered with the call server. The criteria are the
callee’s address, the fact that it concerns the terminating portion of
the call, and the condition that call setup fails due to a busy callee. If
these criteria apply, the scripts will be executed and the call will be
redirected through specifying an alternative target address. The
arguments XML node may contain more XML nodes, e.g.
redirected address node. If such nodes are not specified, the call
server is assumed to provide the appropriate values; in case such
arguments are given the NIL value, the call server will clear existing
values.

The example in Fig. 7 is included to demonstrate some more
advanced features of SCML. It shows a Wake Up Call application;
an end user is called each weekday morning at 6:00h and she can
briefly recover from waking up while listing to some music. The
script creates a call, routes it or notifies the end-user in case of failure
by sending e-mail. As the script is not activated by an originating or
terminating fragment of call, the scripts has to explicitly reference
the call resources. The XML node <cr eat eCal l > creates a call

resource identified as “wakeupCal l ” and the node
<r out eCal l > routes the call, where the connection routed to
wakeup. com is identified as “wakeupMusi cConnect i on”.

As mentioned before, a simpler script that is converted using XSL
rules could generate the SCML in the Wake Up Call example. The
examples given only demonstrate the call control service. As at the
time or writing only the JAIN JCC API and Reference
Implementation is publicly available [10], the SCML versions of
other services, such as mobility management or user interaction,
have not yet been attempted. Nevertheless, it is the intention to
allow interworking between JCC SCML and other XML schemas
within the telecommunication domains to enable scripting of
feature-rich services.

<scml >
 <i nvocat i on>
 <t i me- swi t ch>
 <t i me f r eq=" weekl y"
 byday=" MO, TU, WE, TH, FR"
 dt st ar t =" 20010101T060000" >
 <cr eat eCal l cal l Pt r =" wakeupCal l " / >
 <r out eCal l cal l Pt r =" wakeupCal l "
 connect i onPt r =" wakeupMusi cConnect i on" >
 <ar gument s>
 <t ar get Addr ess>si p: j ones@bedr oom.
 phone. home. com</ t ar get Addr ess>
 <or i gi nat i ngAddr ess>si p: j ones@
 musi c. wakeup. com</ or i gi nat i ngAddr ess>
 <or i gi nal Cal l edAddr ess
 xsi : ni l =" t r ue" / >
 <r edi r ect i ngAddr ess xsi : ni l =" t r ue" / >
 </ ar gument s>
 <f ai l ed>
 <mai l ur l =" mai l t o: j ones@home. com?
 subj ect =wake%20up%20f ai l ed" / >
 </ f ai l ed>
 </ r out eCal l >
 </ t i me>
 </ t i me- swi t ch>
 </ i nvocat i on>
</ scml >

Fig. 7, Example SCML Fragment: Wake Up Call

C. VoiceXML Call Control

VoiceXML call control only exists as a work in progress
requirements document for a voice browser framework [2]. The
scope of the language is not for building network-based call
processing application. Rather, a voice browser is situated at the
edge of the network executing in an environment that conforms to
the notion of end user system. The document lists call initiation,
VoiceXML interpreter context management, inter-session
communication, conferencing capabilities, and call leg management
requirements.

From the document we can conclude that most of the
requirements are satisfied by the SCML framework and architecture
proposed earlier, except for the requirements related to inter-session
communication. As there exist no call server support for this
capability, there is no SCML planned that satisfies these
requirements.

We also question whether in general call control capabilities, even
for end systems, should be built into a language intended for
interacting with end users. In our view it is preferable to separate

these concerns, and have VoiceXML scripts be able to interact
seamlessly with SCML scripts to provide services.

VI. CONCLUDING REMARKS AND FUTURE WORK

In this paper we have presented the methodology for service
creation using XML-based scripting languages in NGN, covering an
assumed NGN architecture as well as a framework for service
creation, deployment and execution. We have also presented a brief
initial overview of SCML, the XML-based language for call control
currently being developed in the JAIN forum. We have compared
SCML with the capabilities of an earlier language, CPL, as well as
the requirements for call control being developed by the W3C Voice
Browser working group.

We have argued that the SCML approach is superior to CPL in
many respects. SCML is functionally richer, since it allows third-
party call control while CPL does not. Also, since it is related to the
JCC API standardized by the JAIN forum, it is truly protocol and
network independent. CPL as currently defined interacts with call
servers or other network servers that provide mobility or user
interaction functions. In contrast, SCML is intended to work
harmoniously with the suite of APIs defined by the Parlay and JAIN
groups that include a variety of functional interfaces. Finally CPL’s
specification methodology is to use XML DTDs, while SCML is
defined using XML Schemas. The latter provide not only language
conveniences but are type safe and allow the programmer to define,
restrict, redefine and extend data types in a manner similar to
inheritance in object oriented programming languages. Since the
Parlay and JAIN APIs make extensive use of inheritance this last
capability is especially useful.

We have also considered the W3C Voice Browser working
group’s requirements for call control briefly and argue that call
control features should not be added to a language intended for
expressing voice user interaction control.

In further work we are refining the SCML schema and examining
how current XML-based tools can be customized or extended to
support the generation of SCML scripts.

ACKNOWLEDGMENT

We thank Alex Buckley, Philip Ber, Gary Levin, and Stefano
Puglia of Telcordia for useful discussions and information.

REFERENCES

[1] OASIS (Organization for the Advancement of Structured Information
Standards), “The XML cover pages”. See http://www.oasis-open.org/
cover

[2] Porter, B., (ed.) “Call Control Requirements in a Voice Browser
Framework”, (work in progress) April 2001. See http://www.w3c.org/
TR/call-control-reqs/

[3] Lennox, J. and H. Schulzrinne, “Call Processing Language Framework
and Requirements”, May 2000, See http://www.ietf.org/rfc/rfc2824.txt

[4] Lennox, J. and H. Schulzrinne, “CPL: A Language for User Control of
Internet Telephony Services”, (work in progress) November 2000. See
http://www.ietf.org/internet-drafts/draft-ietf-iptel-cpl-04.txt

[5] Sun Microsystems, "JAIN Service Creation Environment (SCE) API
Java Specification Request (JSR) 100", 2001. See http://jcp.org/jsr/
detail/100.jsp

[6] Sun Microsystems, “The JAIN APIs: Integrated Network APIs for the
Java Platform”, June 2001. See http://java.sun.com/products/jain/
WP2001.pdf

[7] Sun Microsystems, “The JAIN APIs”, August 2001. See http://java.
sun.com/products/jain/

[8] The Parlay Group. See http://www.parlay.org
[9] Sun Microsystems, "JAIN Java Call Control (JCC) API Java

Specification Request (JSR) 21", 2001. See http://jcp.org/jsr/detail/
21.jsp

[10] Telcordia Technologies, Inc., "JAIN @ Telcordia", JAIN Reference
Implementations download site, 2001. See http://www.argreenhouse.
com/JAINRefCode/

[11] Sun Microsystems, "JAIN Java Coordination And Transaction (JCAT)
API Java Specification Request (JSR) 122", 2001. See http://jcp.org/
jsr/detail/122.jsp

[12] W3C, “Extensible Markup Language (XML) 1.0 (Second Edition)”,
W3C Recommendation, October 2000. See http://www.w3.org/TR/
REC-xml

[13] W3C, “XML Schema Part 0: Primer”, W3C Recommendation, May
2001. See http://www.w3.org/TR/xmlschema-0/

[14] W3C, “XSL Transformations (XSLT) Version 1.0”, W3C
Recommendation, November 1999. See http://www.w3.org/TR/xslt

[15] IEC: International Engineering Consortium, “Intelligent Network
(IN)”. See http://www.iec.org/online/tutorials/in

[16] Sasaki, H., J.-L. Bakker and P. O’Doherty, “Java Call Control v1.0 to
Session Initiation Protocol Mapping,” http://java.sun.com/products/
jain/wp_articles.html, Jan. 2002.

[17] The 3rd Generation Partnership Project (3GPP) Open Services
Architecture (OSA). See http://www.3gpp.org.

[18] Leinecker, R., et al, JavaBeans Unleashed, Sams, 704pp, 1999.
[19] Jain, R., and F. Anjum, “Java Call Control,” in Java in

Telecommunications, T. Jepsen (ed.), Wiley, 2001.
[20] Jain, R., J.-L. Bakker and F. Anjum, “Java Call Control (JCC) and

Session Initiation Protocol (SIP),” IEICE Trans. Comm., Vol.E84-B
No.12, Dec. 2001.

[21] Roberts, S., Essential JTAPI, Prentice Hall, 672 pp., 1998.
[22] Box, D., et al, Simple Object Access Protocol (SOAP), World Wide

Web Consortium (W3C), W3C Note, 8 May 2000.
[23] Subasinghe, C., and P. O’Doherty, “Java Call Control v1.0 to

H.323 API Mapping,” http://java.sun.com/products/jain/wp_articles.
html, Jan. 2002.

