
OMICS A Journal of Integrative Biology
Volume 7, Number 4, 2003

© Mary Ann Liebert, Inc.

Next Generation Simulation Tools: The Systems Biology

Workbench and BioSPICE Integration

HERBERT M. SAUR0,1•
2 MICHAEL HUCKA,2 ANDREW FINNEY,2

CAMERON WELLOCK,1 HAMID BOLOURI,2·3 JOHN DOYLE,2
and IDROAKI KITAN04

ABSTRACT

Researchers in quantitative systems biology make use of a large number of different soft

ware packages for modelling, analysis, visualization, and general data manipulation. In this

paper, we describe the Systems Biology Workbench (SBW), a software framework that al

lows heterogeneous application components-written in diverse progranuning languages and

running on different platforms-to communicate and use each others' capabilities via a fast

binary encoded-message system. Our goal was to create a simple, high performance, open

source software infrastructure which is easy to implement and understand. SBW enables

applications (potentially running on separate, distributed computers) to communicate via a

simple network protocol. The interfaces to the system are encapsulated in client-side libraries

that we provide for different programming languages. We describe in this paper the SBW

architecture, a selection of current modules, including Jarnac, JDesigner, and SBWMeta

tool, and the close integration of SBW into BioSPICE, which enables both frameworks to

share tools and compliment and strengthen each others capabilities.

INTRODUCTION

T
HE APPLICATION oF MATHEMATICS and computer science to understanding biochemical networks has a

long history, going hack in fact to the initial development of computers in the 1930s and 1940s (Chance

et al., 1962; Burns, 1971). More recently and especially since the development of high-throughput data col

lection and the completion of the human genome project, there has been a renewed and vigorous interest

in understanding the dynamic aspects of cellular networks (Endy and Brent, 2001; Rao and Arkin, 2002;

Tyson et al., 2003). Although it has been appreciated for many years that cellular networks were dy"llamic,

intricate control systems, the molecular biology revolution of the last 30 years, with its focus on DNA and

protein structure, has taken center stage in mainstream biology at the expense of other studies. It is only in
the last few years that "quantitative systems biology" is finally becoming a mainstream topic in biology.

One of the important techniques at the disposal of the quantitative systems biologist is computer model-

11Keck Graduate Institute, Claremont,. California,
2Control and Dynamical Systems, California Institute of Technology, California.
3Institute of Systems Biology, Seattle, Washington.
4ERATO Kitano Symbiotic Systems Ptuject, Jingumae Shibuya~ku, Tokyo, Japan.

355

SAUROET AL.

ling. This involves constructing kinetic models of the biochemical reaction networks, incorpo~~ting network

as well as kinetic information. The models can vary in size from very small models compnsmg o~y two

reaction steps to whole cell models incorporating hundreds of reaction steps. The models are stud1ed by

computing the time-course behavior or the steady state. By thes~ means, _hypotheses can be tested, new hy-

potheses developed and a general understanding of the network s behaviOr developed. .

Almost from the earliest days of simulation, it was realized that developing the necessary mathematical

models was tedious and error prone. As a result, specialized software was developed to help users input the

models into the computer. This involved allowing users to enter reaction networks in a familiar form, of

ten as a list of reactions and kinetic laws. This approach has been followed ever since. Interestingly, though

perhaps not surprisingly, the software tools themselves have tended to progress in step with technological

developments. In the early years of modelling, tools took a script-based approach to specifying models

(Garfinkel, 1968; Park and Wright, 1973; Fell and Sauro, 1990; Sauro and Fell, 1991). With the beginning

of the widespread use of graphical user interfaces in the 1980s, simulation tools took a marked change in

direction. Instead of specifying models using text-based script files, users could now specify models using

much friendlier GUI-based user interfaces. The most famous of this new generation was and still is, Gepasi,

developed by Pedro Mendes (Mendes, 1993). The development of Gepasi began a new episode in software

development, which continues to the present day, and there are now numerous tools available that take a

similar approach.

Easier yon use, GUI-based simulators tend to be less flexible compared to script-based tools. In fact many

general~pnrpose commercial simulation tools are script based for this very reason (e.g., Mathematica, Mat

lab, MathCAD). As a result, script-based tools have continued to be developed, the most advanced exam

ple of this being Jarnac, which incorporates a full programming language as well as extensive libraries for

numerical analysis. In more recent years, a second generation of GUI-based tools has also emerged that

take tbe user interface to an even more visual leveL That is,. models in the form of networks are drawn on

a canvas and the diagrams converted into a mathematical representation for simulation. Examples of such

tools include JDesigner, CeUDesigner, and KinCyte. At the last count, there were over 33 different pack

ages for simulating cellular networks. This proliferation of tools has resulted in a variety of capabilities and

interfaces. However, though welcome in many respects, this proliferation has resulted in two unwelcome

side effects:

l. Each tool uses its own format, often undocumented, to store models. The result is that a model saved in

one tool cannot be loaded into another. This obviously hinders the free exchange of models from one

tool to another.

2. The second problem is that. many of the tools duplicate each other's capabilities. Writing simulation tools

takes time, and many of the projects are short-lived, which means that the authors are unable to develop the

tools much further than basic functionality. As a result, many of the tools provide similar functionality.

Unlike other StJftware development communities, there is little tradition of code reuse in the system bi-

ology community. As a result, the community has seen much duplicated effort and little true novelty.

The first problem, that of model exchange, has been addressed by introducing a standard format for all

tQol writers to employ. This standard is called Systems Biology Markup Language (SBML) (Hncka et al.,

2003). Along with CellML (Hedley et al., 2001), the introduction of a standard format is beginning to make

a significant impact on tools writers, and the majority of the most widely used tools now employ SBML

as a me~ns to exchange models.

s«.ond . il'i more difficult to address, that is how to encourage code reuse in the community. Our

attempt to resolve . has been to develop a software framework called fhe System Biology Workbench.

The workbench allows different tools to expose programmatic functionality to other tools. This means that

a developer can now build on pre\tious work withottt having to understand in detail the often intricate in

t~mal . of Qther tools. All a de\'eloper need know is the interface that the tool exposes. Thus, a par

ticular tool may expose a time~dependent simulation interface from a simulation tool, another tool devel

oper~&~er ~an.~vent _ano~er simulation tool-.:-can exploit this capability and develop a new tool that

cnn t:t'lll) out addtMnal ftmctions. The workload for the second developer is greatly reduced, and they can
instead concentmte on nove! functionality. ·

356

NEXT GENERATION SIMULATION TOOLS

BioSPICE takes a very similar approach, so much so that both SBW and BioSPICE are becomino

closely integrated. Like SBW, the goal of the BioSPICE project (BioSPICE, 2001) is to create an ope;

source framework and toolset for modelling dynamic cellular network functions. The hope is that this

will develop a user community committed to using and extending the tools. Clearly, the SBW project

h~s considerable ov~rlap with the BioSPICE project. We are currently developing a software bridge that

Will allow modules m both SBW and BioSPICE to communicate with each other. At the moment, SBW

and BioSPICE are to a large extent complimentary in functionality; whereas BioSPICE is more data

centric, SBW' s emphasis is on analysis. As a result, SBW can provide a range of ready-made modules

to the BioSPICE program, including simulators, both stochastic and deterministic, model buiding tools,

network analysis tools (based on META TOOL [Pfeiffer et al., 1999]), and as part of the BioSPICE pro

gram, tools for optimization and bifurcation analysis. Such a bridge would therefore clearly benefit both
communities.

A number of documents have been published in the past on SBW (Hucka et al., 2002), but none have

focused on the internal workings of SBW or on some of the applications that we have developed in con

junction with SBW. In this paper, we will focus on these issues. In particular, we will describe the data

structures and the mode of operation of SBW, tools such as Jarnac, JDesigner, and Metatool, and how SBW

will be integrated into BioSPICE.

MATERIALS AND METHODS

The Systems Biology Workbench is a computational resource sharing framework. It allows applications

to communicate with each other efficiently and without loosing their identity. Applications can be written

in a variety of different languages and can run on different operating systems across the internet. The en

tire workbench is open-source and vendor independent. SBW was designed to offer excellent performance

and be geared specifically towards scientific applications.

SBW architecture

In setting out the requirements for SBW, the following items were our highest priority:

• Simplicity: The framework must be simple enough that interested developers can use it in their pro-.

jects with a minimum amount of learning and coding effort. We considered here the full .range of de

velopers, from experienced to novice.

• Peiformance: Since SBW will be used for scientific work, performance was an important issue. Mov

ing data from module to module has to be efficient.

• Component modularity: As new tools and methods are developed, it must be possible to implement

them as modules that can be hooked into the existing framework without having to modify the frame

work itself.

• Language interopetability: The framework must support the interaction of modules written in differ-

ent programming languages.

• Free distribution: All :interested users must be able to obtain both SBW and its source code fo:r free.

Any sofuvare that is incorporated into S.BW and distributed with it, such as GUI widgets or object li

braries must itself be free of licensing fees or restrictions on redistribution. (This is only a require

ment o~ SBW itself, and not on modules built for SBW or other software developed nsing S~W.) ..

• Portability: The framework must be portable to Microsoft Windows (NT, 2000. XP) and Unux liU-

tially, and clearly be portable to other platforms in the tu:nre: .· ..
• On-demand plug-in loading: Modules that implement parttcnlar capabdtUes should not ha:e to be pre~

loaded into SBW every time it is started; instead, the system shoul? be data-- and .task-dnven and •

na:rnically load modules on an as-needed basis. This helps keep the SIZe of the rumimg system to a illlll~

imum. d
• Support for distributed compUting: The user should have control over where proce.'l!ses are execute·

and the ability to interact ~i.th remote services.

357

SAUROET AL.

Given the requirements above, the question then arose, what software technology should we employ to

build the framework. Some of the requirements immediately eliminated certain existing frameworks, in

cluding DCOM because it is limited to Microsoft Windows platforms, and Java JNI and Java RMI because

this would limit the framework to Java.

Other frameworks such as XML-RPC (Winer, 2001) or SOAP (Box et al., 2000) were also unsuitable,

because these frameworks did not meet our performance criteria. Some recent studies in particular (Olson

and Ogbuji, 2002) indicate that SOAP and XML-RPC are orders of magnitude slower compared to CORBA

or simple socket transmission.

CORBA was another possibility (OMG, 2001). However, CORBA is notorious for being difficult to mas

ter and requires highly skilled programmers to work with. Hence, CORBA was not in line with our first

requirement, that of simplicity. Since the development of SBW, Microsoft has released .NET, which in

some limited respects is similar to SBW. The .NET framework has many of the desirable features we sought

in the requirements; however, it has an uncertain future due to its availability on only a single platform, al

though there is now an open-source, platform independent variant called Mono.

Since we couldn't find a suitable existing framework that satisfied all our requirements, it was decided

to develop our own. During the period when we were considering the design, peer-2-peer technologies were

becoming a fashionable and useful mode of communication (Oram, 2001). Peer-2-peer possessed many of

the attributes that were attractive to us. The three main features that stood out were simplicity, performance,

and language independence. Most peer-2-peer frameworks were characterized by binary transmission of

data over simple TCPIIP sockets. In addition, they were also characterized by simple APis, which helped

ensure their rapid take np by third-party developers as witnessed by the plethora of peer-2-peer clients. As

a result of these observations, it was decided to base SBW on a binary messaging passing architecture over

TCPIIP sockets.

Architecture. SBW uses a broker-based, message-passing architecture that allows dynamic extensibility

and configurability. Software modules in SBW interact with each other as peers in the overall framework.

Modules are started on demand through user requests or program commands. Modules are executables which

have their own event loops and all remote calls run in their own threads. As shown in Figure 1, interac

tions are mediated through the SBW Broker, a small program running on a user's computer. The Broker

enables locating and starting other modules and establishing communications links between them. Com

munication is implemented using simple TCPIIP sockets, which are fast and lightweight, with a straight
forward programming interface.

Broker~based architectures are a means of structuring a distributed software system with decoupled com

ponents that interact by remote service invocations. In SBW, the remote service invocations are imple

mented using message passing. Because interactions in a message-passing framework are defined at the

level of messages and protocols for their exchange, it is easier to make the framework neutral with respect

to implementation languages and platforms: modules can be written in any language, as long as they can

Module Three

FIG. 1. C?nne~tio~ between broker, modules, and binding libraries. Packing and unpacking of messages is handled
tiw banding libraries.

358

NEXT GENERATION SIMULATION TOOLS

se~d, receive, and process appropriately structured messages using agreed-upon conventions. The organi

zation of SBW means that modules can be easily exchanged, added, or removed, even at run-time, under
user or program control.

We strove to develop an API for SBW that provides a natural and easy-to-use interface in each of the

different languages for which we have implemented libraries. By "natural," we mean that it uses a style

and features that programmers accustomed to that language would find familiar. For example, in Java, the

high-level API is oriented around providing SBW clients with proxy objects whose methods implement the

operations that another application exposes through SBW.

An SBW module provides one or more interfaces or services. Each service provides one or more meth

ods. Modules register the services they provide with the SBW Broker. The module optionally places each

service it provides into a category. By convention, a category is a group of services from one or more mod

ules that have a common set of methods.

Supported languages and operating systems. One of the key advantages of SBW is its language and OS

neutrality. At this point in time, we have support for Windows and Linux operating systems (MacOS is

scheduled for future development). The languages we support, through language bindings, include Java, C,

C++, Delphi, C#, VB.NET, Python, and Perl. There are developments currently underway to create bind

ings for Matlab and Mathematica.

Capabilities. Here we summarize the capabilities of SBW:

• Dynamic service and module discovery: The SBW Broker keeps track of modules, services, and ser

vice categories, and provides facilities for a module to learn about them.

• Remote method invocation: The bread and butter of SBW is enabling one module to invoke a service

method in another module. If necessary, the SBW Broker will automatically start an instance of a mod

ule whose services are requested.

• Data serialization: Method invocations involve sending messages between modules, with arguments

and data packed into message streams. For some languages such as Java, Delphi, C#, VB.NET, Perl,

and Python, the SBW library provides proxy objects that hide the message-passing, so that. to client

programs, remote services appear as local objects whose methods can be invoked like any other ob

ject method in that language.

• Exception handling: SBW provides facilities for dealing transparently with exceptional conditions.

• Event notification: Certain events in SBW, such as the startup or shutdown of an instance of a mod

ule, are announced to all modules upon their occurrence.

• Module, service and method registration: Modules that are not running but wish, nevertheless, to ad

vertise their services can do so by registering with the broker. This is accomplished by running the

module once, in a special mode. The registration facilities allow a module to record with the Broker

the services that the module provides, the command that should be used to start up the module on de

mand, and other information. The SBW Broker stores this in a disk file, so that the information pro

vided by modules is persistent between start-up and shutdown of the modules and the Broker.

Messaging protocols. At the heart of SBW is the messaging protocol used to exchange information be

tween the different modules. For efficiency reasons, messages that are exchanged between modules are sim

ple sequences of binary data. For each programming language, there is a language binding library that takes

care of much, if not all, of the housekeeping necessary to operate through SBW. including connection and

transmission of data. In addition, issues such as little and big-endian byte ordering need not concern the

. developer as this is taken care of automatically by the binding libraries. Each binding also provides the nec

essary message packing and unpacking logic and exposes functionality in the form of an easy-to-use API

(Fig. 1).

AU modules that make a connection to the SBW Broker are assigned a nnmeric identifi.cation handle.

The handle is generated when a module makes its initial connection with the SBW broker or when SBW

starts a module and makes a connection. The Broker itself has its own publicly reserved handle that

359

SAUROET AL.

Data Payload

FIG. 2. Structure of the semi/call message.

modules to make requests to services provided by the Broker. When a module wishe~ to com_municate ~o

another module it does so by sending a message through the Broker. The message w1ll contain the desti~

nation module handle that the Broker will use to route the message onto the appropriate module.

There are four basic message types: messages that represent blocking calls to methods in other modules

or to the broker itself, messages that represent non-blocking calls to methods in other modules or the bro

ker itself, messages that represent replies to earlier messages, and messages that represent error conditions

as a result of poorly formatted messages or exceptions that occur in modules.

Call and send messages. These messages come in two varieties, send (non-blocking) and call (block

ing). Both types of message have the same internal structure. What distinguishes the two is the value of the

message type byte (Fig. 2).

The fields in a callJsend message have the following meanings:

Length: Length of the message in bytes, including the length integer itself.

Destld: A handle which indicates the destination module for this message.

Type: Indicates whether the message is a call, send, reply or an error condition.

U!D: A unique identifier associated with this message. A corresponding reply will have the same UID

(Unique identifier) and can be used to match a reply to the original sender.

Srcld: A handle which indicates the source module for this message.
Serviceld: Indicates the required service.

Methodld: Indicates the particular method in the service.

Data payload: A data payload containing the arguments required by the method,

Reply messages. A reply message is sent in response to a call message. Its sole purpose is to deliver raw

data to the recipient as a result of a method call The format of the first 13 bytes of a reply message is iden

tical to a calling message except that the type byte is set to the reply message type. All remaining data in
the reply message is composed of data returned by the call (Fig. 3).

Errt)r tnessages. Error messages are sent in response to an error condition originating either as a result

of a badly formatted message or as a result of an exception in the method which was meant to service the

message. The error byte is a byte to indicate the type of error, these are defined in the developer docu
mentation at the main SBW web site (Fig. 4).

Datat}pes

In the previou.<> section, we described the structure for the four different SBW messages types. The call

and send messages :include an optional data payload, which may be required by the recipient. Likewise, a

Header: 13 bytes
Variable Length

Data Payload

FIG. :3. Structure of the reply message.

360

NEXT GENERATION SIMULATION TOOLS

Header: 14 bytes Variable Length

Readable Error Detailed Error
Message Message

FIG. 4. Structure of the error message.

reply message may also include a data payload for the recipient. Iu order for data to be easily exchange

able between modules, we needed to decide on a collection of defined data types. Obviously, it would not

be possible to imagine every possible type of data type that a module might wish to package and send to

another module; therefore, we devised a set of data types, of sufficient generality, from which any other

data type could be constructed. In the first version of SBW, we defined seven basic data types. Five of these

are fundamental data types, such as byte, Boolean, integer, double, and string. The remaining two are struc

tured data types that provide the most flexility; these include arrays and lists (Table 1).

Byte. Bytes start with a byte code (dtByte) indicating a byte type. This is then followed by an 8-bit byte

value.

Integers. Integers start with a byte code (dtlnteger) indicating an integer type. This is then followed by

a signed 32-bit integer value in Intel-byte order that has the range -2147483648 to 2147483647.

Double. Double values start with a byte code (dtDouble) indicating a double type. This is then followed

by a floating-point value stored in standard IEEE standard 754 double 64-bit format-that is, 1-bit sign,

11-bit base 2 exponent, and 52-bit fraction in Intel-byte order (Fig. 5).

Boolean. Boolean values start with a byte code (dtBoolean) indicating a Boolean type. This is then fol

lowed by a further byte indicating the value of the Boolean. A byte value of zero indicates False, and a

value of oue indicates True.

String. String values start with a byte code (dtString) indicating a string type. This is then followed by

an unsigned 32-bit integer denoting the number of bytes in the string. The remainder of the data consists

of the sequence of characters that make up the string. Note that the string is also null terminated (Fig. 6).

Arrays. Arrays are multi-dimensional objects of arbitrary size containing homogeneous data. Arrays start

with a header made up of one byte indicating the data type stored in the array, and an integer indicating

the number of dimensions, followed by a sequence of integers, one for each dimension, denoting the num

ber of elements in each dimension. The heade:r is therefore (2 + 4 + 4d) bytes long, where d equals the

number of dimensions of the array. Array access can be optimized at the module if it is known that the data

Data type

Byte

Integer

Double

Boolean

String

Array

List

Type code

dtByte

dtlnteger

dtDouble

dtBoolean

dtString

dtArray

dtList

TABLE 1. DATA TYPES

361

Simple Byte

32 hit integer

Description

IEEE 754 double 64 hit format

Byte indicating true or false (0 represents false)

Sequence of cbantcters, the first unsigned integer

indicates the length of the string

Homogeneous array of data (n dimensional)

Heterogenous. nested list structure

SAUROET AL.

Length: 9 bytes

Double iEEE 754
(64-bit)

FIG. 5. Integer and double data types.

type has a fJXed size. This is especially the case for simple types such as integers ~nd doubles. In these

cases, the application can carry out block copies of the data in order to greatly 1mprove performance

(Fig. 7).

Lists. Lists are recursively defined structures for storing heterogeneous data. This means that lists can

be used to store other lists which allows complex relationships to be represented. .

A list is a much simpler structure that an array. A list starts with a list type byte, followed by a 32-b~t
integer indicating the number of items in the list. Each item in the list can be any of the data types preVI

ously described, including a list (Fig. 8).
For example, the following are legal list structures:

[1, 2, 3, 4]

[1, "ATP", 3.1415, {1, 2, 3} l
r I "Sl", "S2", "S3", [4, s, 6 1 1. "k1", "k2" 1
[["Jl", [["XO"], ["Sl"]], "klSI"], ["J2", [["Sl", "S2"], ["S3" J }, "k2S2"],]

Note the nested lists in the third and fourth examples.

Evettt s~tpport

SBW supplies a number of special method calls to modules that are sent when certain events occur. These

include the following:

void <mModuleShutdown(Module module): This method on the listener is called every time a module in

stance somewhere in the SBW system disconnects from the SBW Broker. The module passed to the

method represents the module instance that has just shut down.

void onModuleStart(Module module): This method on the listener is called every time a module instance

starts up or connects to the SBW Broker. The module passed to the method represents the module in

stance that has just started.

t~oid onRegistratiottChange(): This method on the listener is called whenever a registration change for a

module occurs in the SBW Broker. Registration changes are a module registering itself with the Broker,

a module registering a service with the Broker, or a module being unregistered.

Sfmple exarnple

Having described in some detail the internal structures and design of SBW, it is now worth showing a

simple example to illustrate how it might be used. The following example shows how to set up a module

Variable Length

FIG. 6. Boolean and string data types,

362

NEXT GENERATION SIMULATION TOOLS

Length: 2 + 4 + 4d bytes

Number of Elements
in nth dimension

32-bit

Dimensions are stored row by row

d rows
deep

.._I E_le_m_e_nt_i..~...I_EI_em_e_n_t2-'I'-E-Ie_m_e_nt_3..t...l _______ --ll Row One

I Element i I Element 21 Element 31 Rowj

FIG. 7. Array data type.

which provides two math services, trig and log, and another module which uses these services. The code

is shown using Java but similar code would apply to other languages.

We first declare the classes which represent the services that the module is going to provide. In this case

we will provide two services, one that offers basic trigonometric functions, and another that provides ba~

sic logarithmic functions.

class TrigClass {

}

public double sin(double x) throws SBWApplicationException {

return Math.sin(x);

}

public double cos(double x) throws SBWApplicationException {

return Math.cos(x);

}

class LogClass {

}

public double log(double x) throws SBWApplicationException {

return Math.log(x);

}
public double exp(double x) throws SBWApplicationException {

return Math.exp(x);

}

In the main program, we create a new instance of an object that represents the object that other modules

will see. Into this object, we register the two services that we wish to provide. Finally, we call the nm

length: 1 + 4 bytes

. First Data Element Second Data Elemenf ···I nth Data Elements I
32-bit

The size of each data element is data type dependent

Data elements can be any offhe standard types, byte, boolean, lntager,

double, string, arrays and lists

FIG. 8. List data type.

363

SAUROET AL.

method of the module object, which initiates the connection to the SBW bro~er .. O~ce the broker rece!:s

the connection request, it transmits a startup event to all connected modules mdicatrng ~at at~e;thmo de
is available. At this point, modules may now interrogate the new module and use the semces a e mo -

ule provides.

Modulelmpl module= new Modulelmpl("edu.caltech.math", "math", ModuleimpLUNIQUE);

module.addService("Trlgonometry", "trig functions", TrigClass.class);

module.addService("Logarithmic", "log functions", LogClass.class);

module.run(args);

The argument args in the run method is the command line argument that inv~ked the module. If a remote

module wishes to use the services provided by math, it would use the followmg code:

Interface ITrigService {

}

double sin(double x) throws SBWException;

double cos(double x) throws SBWException;

Interface ILogService {

}

double log(double x) throws SBWException;

double exp(double x) throws SBWException;

Module module= SBW.getModulelnstance("edu.caltech.math'');

II Get the individual services

Service trig = module.findServiceByName("Trigonometry");

Service log= module.fmdServiceByName("Logarithmic");

II Create proxy with this interface and call it:

lTtrigService trigService = trig.service.getServiceObject(ITrigService.class);

1LogSen>ice logService = log.service.getServiceObject(ILogService.class);

Double result;

Double x = 12.2;

result= trigService.sin(x);

result = logService.log (x);

The first two sections declare interfaces of the services that will be used. In this case, the services are hard

coded, but SBW also alloVi'S runtime reflection on a remote module and thus allows methods and services to

be dynamically if need be. Under lava. the easiest approach to access remote services is to use interfaces.

Once the interface.~! have been declared, a call is made to obtain a handle of the module. If the module

hall been registered with the Broker hut is not currently running, this call will cause the module to be au

tomatically started up.
Finally, the objects representing the individual services are created using the getServiceObject method

call. Last but not least, the methods are called through the service object returned previously.

Thus, it only takes a lines of code to access and can remote methods. For more details of the API. the

reader is referred to the API manual available on the SBW web site. Note that services and methods on remote

modules are available via a number of interactive scripting tools, in particular Python and Perl. In these

cases, is e'!r'W simpler. as the scripting tools wiU automatically wrap remote services into Python and

Perl objects. under P}'thon, to acca-ss the trigonometric method. sin, only requires a single line:

NEXT GENERATION SIMULATION TOOLS

print edu_caltech_math.Trigonometry.sin (30.0)

The BioSPICE/SBW bridge

One of BioSPICEs' main interfaces is based on the Netbeans IDE. This has enabled the developers of

BioSPICE to implement a data flow GUI that allows users to direct data from one module to another through

a GUI interface. This allows users to chain a series of processes in whatever fashion suits their needs. The

BioSPICE modules themselves are made accessible to the Netbeans IDE either via OAA (Open Agent Ar

chitecture) or directly into the Netbeans IDE itself.

Work is nearing completion to construct a software bridge between SBW and OAA, which will enable

clients of either system to access the services provided by the other system. These services will be made

to appear as native services, identical to any other. This is made possible by a special generic translation

layer.

OAA is based on a Prolog programming model and is organized in terms of agents that provide specific

functions. Parameters are untyped and may be numbers, strings, lists, and several other Prolog-specific data

types. Prolog functions do not have return values; rather they use a system called "unification," wherein

unbound variables are replaced with results. For example, to get the sum of two numbers in Prolog, one

might call a function as follows:

sum(2,5,X)

and get the result

sum(2,5,7)

SBW, in contrast, uses a more common model for methods, which take typed parameters and have a sin

gle typed result, that is,

int sum(int,int)

The bridge handles the conversion of the method signatures between OAA and SBW automatically. If there

was a method in OAA such as get_some_data_3 (the name, 'get_somec...data, 'and three parameters), this

would be translated into an appropriate SBW method signature:

get_some_dataO

The most recent version of OAA provides for typed, directional parameters. If get_some~data_3 had two

input parameters of integer type, and one output parameter of double type, then the SBW method signature

would be as follows:

double get_some_data(int,int)

In the other direction, an SBW method such as

mt get_jnst_an_int(int)

would be translated by the bridge into an OAA method get.Just_an_int_2-the second parameter is just the

SBW function's return value.
Incompatible data types are mapped whenever possible to equivalent types. As an example, arrays, which

are used by SBW, are not recognized in OAA. These are translated into lists or lists-of-lists, which OAA

can handle. Services in SBW appear as separate agents in OAA, and agents in OAA are represented as ser

vices of a single module (the "oaabridge") module in SBW (Fig. 9).

APPLICATIONS

In this section. we will describe an application of SBW that utilizes three SBW-compliant tools: Jarnae,

IDesigner, and METATOOL.

365

Jarnac

OAA Facilitator

/l
88

~

~

" •
~

I,.. n- l ... _,

SAUROET AL.

SBW Broker

~/'---!---'\
8 0 ·:~}

FIG. 9. Structure of the BioSPICE/SBW bridge.

Jarnac is a script-based simulation tool that can operate either interactively via a consol~ ~indow or. as

a simulation server for SBW. Details of Jarnac can be found in Sauro (2000). Here we will JUSt descnbe

the SBW interface.
The Jarnac SBW interface supports four services: modelServices, msim, mat, and asim. asim is used to

interface to the SBW GUI, details of which can be found at the SBW website (www.sbw-sbml.org). The

interface provided by msim is more extensive than asim and is the one described here.

msim supports multiple simulation instances; that, is more than one simulation can be active at any ~ne

time. All the methods in msim require a model handle to indicate the current model instance. Model m

stances can be created and destroyed through the modelServices service. msim provides a range of meth

ods to control, interrogate, and simulate either continuous (ordinary differential equation based), or proba-

bilistic (based on the Gillespie method) models. ·

Models are loaded into a model instance in the form of SBML Level 1 (Hucka et al., 2003) via the

load_SBMLO method. A range of access methods are provided to interrogate the currently loaded modeL

For example, remote modules can request the number of reactions, the rates of change of species, and the

reaction velocities. In addition, methods are provided for a remote application to access the model equa

tions, including the list of differential equations, the rate law expressions (both in infix format), and the list

of any conservation laws in the model. Methods are also provided to allow a remote application to modify

parameters and initial conditions. Finally, there is a range of analysis methods, including time course sim

ulation, Gillespie stochastic simulation, steady-state analysis, sensitivity analysis, and specialist informa

tion such a.'> the Jacobian matrix.

The remaining service, mat, supplies two matrix-related methods: one method to compute the eigenval

ues for a matrix and a second method to compute the inverse for a matrix.

Jamac can be nm in two modes, either interactively, where a user has access to the model capabilities

through a console window and via the SBW interface, or in server mode, where Jamac runs invisibly as a

background service. The only way to access Jarnac in server mode is via the SBW interface.

Note that we provide a GUI-based browser tool that allows a users to inspect the services and methods
available ftom a particular module.

JDesigner

• ~J?esigner is a :node!. design tool for editing biochemical networks visually. It has no simulation capa

bdtttes. bnt 11 can mterface to the Jarnac SBW interface. Unlike Jamac or SCAMP (Sauro and Fell,

1991; Sauro, 2000), ~here models are entered in the form of a script describing the chemical reactions and

rate under IDestgner, models are entered visually as reaction networks. JDesigner stores models in

t?e . ~fSBl¥11: Level 1 (B~cka et ~·· 2003} with specific annotation added to support layout informa~
Uon •. Detttds tlus and other information on JDesigner can be found at the website (www.sys-bio.org).
Figure lO illustrates a basic screen shot from JDesigner.

366

NEXT GENERATION SIMULATION TOOLS

_i(__ ::;: _______ -:-_____ ._-=-~~-~-- ;d~->,---~~~

Cl ~ liil 1%1 %
New Open Save Save As New

___ ~YSIS ___ 'lit~~-- _~iil~----_~mdo-~ tl~p ---- . -~ -~~ -p~:· ~ ··~

....

:l
U,l!>1

FIG. 10. JDesigner, illustrating a model of glycolysis taken from Pritchard and Kell (2002).

Interaction of JDesigner with Jamac, or any other compatible simulator, is automatic. Figure 11 illus

trates a simulation displayed by JDesigner but actually carried out by Jamac via SBW.

SBWMetatool

META TOOL (Pfeiffer et al., 1999) is an application developed by Stefan Shuster, Thomas Pfeiffer, and

more recently by Ferdinand Moldenhauer and Juan Carlos Nuno (www.bioinf.mdcberlin. de/projects/meta

bolic/metatooll). Its primary task is the determination of elementary modes (Schuster et al., 2000), but it

also has a variety of other functions, including null space computation and conservation analysis. It easily

runs on Linux or Windows, or for that matter any platform that can compile standard C code. META TOOL

generates a multitude of .information, including, but not exclusively, the null space of the stoichiometry ma

trix, conservation relations, and whatMETATOOL was specifically designed to generate, elementary modes.

Generating elementary modes is a non-trivial exercise, and other packages, such as the interactive simula

tor, Jarnac (Sauro, 2000), employ META TOOL for this task.

To make METATOOL available to SBW, we wrote a small controlling application that has an interface

to SBW and controls the .running ofMETATOOL.

367

Time Courll!); Simulation CofiiTol

Tim<> End ,;;::;;:: ..• ····•'

Nun.,.nll f'ms:

I E<i;(Jut~W I
tloc'll<lllt .. _

'it
·g:
j
:'iS·
:~

r~~st.~~~~~~'"·-~~~·~-4 1 -~

~
\{

~

T

'b

SAUROET AL.

Jtepressikd-or Model

'!?llii~.,.mw.:s~V".m

~~~op_m.'~~l 

FIG. U. JDesigner and Jamnc working together to carry out and display the results from a simulation. The model 

was taken from Eio\vitz and Leibler (2000), which illustrates a synthetic oscillatory circuit that was constructed in Es• 

cl!ericllfa ct1li. 

Figure Ulu:strates the interaction of META TOOL with JDesigner. JDesigner acts as the model ed-

itor from which users can initiate simulation and METATOOL analysis. The figure illustrates two 

The lower panel shows the SBWMetatool interface; this displays all the elementary 

that META TOOL fonnd for the displayed model (Calvin Cycle). Note that one of the elemen~ 

modes in the lower panel is highlighted. The main canvas shows the Calvin reaction network, and 

the elementary mode is displayed on the reaction network by highlighting the appropriate re~ 

actions. This a user to easily visualize each elementary mode in turn. The example illustrates 

abnity of SBW to combine two unrelated applications (JDesigner and METATOOL) and deliver 

completely new functionality. The other point to make is that MBTATOOL was not modified in this 

project; we only wrote a small separate SBW~based module that could control the running of META~ 
TOOL. 

368 



NEXT GENERATION SIMULATION TOOLS 

,__,, __ , _____ """~~-~~-··-~--------------·---·-·-~----- .. -·-·-~-,, 

I 

FIG. 12. Operation of META TOOL with JDesigner illustrating the visualization of elementary modes in the Calvin 

cycle (Poolman et al., 2003). (Model courtesy of M. Poolman, D. Fell, and C. Raines.) 

CONCLUSION 

Software reuse is considered a well-known technique for increasing development productivity, but the promise 

often falls short of the expectation. There are some success stories; in particular, the number of reusable com

ponents for Delphi (Borland) and Visual Basic (Microsoft) run into the thousands (www.tony.com) and prob

ably many more for Visual Basic. The question is why have some development environments been more suc

cessful than others at encouraging a vibrant community of code reuse'! One of the distinguishing features of 

VB and Delphi development is the ease with which it is possible to develop stand-alone reusable components. 

Other environments such as CORDA or basic COM have a much steeper leaming curve, and thus the number 
of people actively engaged in supporting code reuse is cmrespondingly smaller. For code reuse to be a actively 

supported, code development should be correspondingly easy to accomplish. 
In terms of SBW, we have tried to achieve this situation by making the development of reusable SBW 

modules as easy as development under VB or Delphi. Developing reusable modules in Java or Delphi is 

particulary straightforward under SBW. 

369 



SAUROET AL. 

d as most successful. In developing JDesigner, we did not In terms of our own development, co e reuse w 
1 d to wrlte yet-another-simulator; instead, we leveraged the existing simulator J~ac. As an examp e_ of 

nee . ble to wrap METATOOL into a SBW-comphant tool, thus making 
third-party component use, we were a 
available the sophisticated algorithms present in META TOOL t~ all_ SBW modules. . . . . 

S f th k Y 
advantages of SBW over other technolog1es 1s performance, stmphctty ~f tmpl~-

ome 
0 

e e · · · · t · S t Bt 1 y 1t · d 1 a d pla~orm neutrality With the rap1d nse m mteres m ys ems o og , mentatwn, an · anguage n Ll' • • h 11 
. fair to say that it it probably impossible for one person or even a group to attempt to wr~te t _e a -
1

~ • . ll d · ftware tool for Systems Biology simply because the breadth of the freld IS too s1ng1ng, a. - ancmg so , 

wide. . · 1 1 ++ • 
One great advantage of SBW is that it does not constrarn developers ~o a smg e p auorm or even a sm-

gle language. It eliminates language and platform wars at a stroke, whtch means we can concentrate on 

functionality instead. 

FUTURE DIRECTIONS 

The future direction of SBW is in two places, enhancements to the core SBW technology, that is en

hancements to the Broker and/or binding libraries and enhancements to modules. 

Module development 

Module development is taking place on two levels: enhancements to existing modules and development 

of new modules. The existing modules, in particular JDesigner will continue to be enhanced. One of the 

most interesting projects is the development of library based model construction. That is, models can be 

developed in parts and combined at a later date. 

As for new modules, two are currently planned for development, this includes an optimization module 

and a bifurcation module. Both modules are being primarily developed for BioSPICE and will be made 

available to BioSPICE via the SBW !BioSPICE bridge. 

Core development: broker, language bindings, and BioSPICE integration 

The first version of SBW is complete and in production. The current plans for the development of the 

core are fairly limited. There are a couple of items that we would like to include in a future version. For 

example, we would like to add an additional type to the core data types that can be transmitted from mod

ule to module, this type being the complex number type. Since SBW is primarily aimed at the scientific 

community, complex numbers would prove a very useful addition. One of the primary applications of col:Il

plex numbers in systems biology is stability analysis and data analysis such as principal component analy

sis. Of course, in the current version, complex numbers can be transmitted by combining existing types; 

however, since complex numbers are fundamental to quantitative science there is no reason why they should 
not have "first class" status as one of the fundamental types. 

A second addition we would like to make is to give the binding libraries the ability to decide whether to 

compress messages before transmission. Some messages especially those containing XML data can be very 

large. These me.'>sages, by their nature are also highly compressible. It would seem sensible therefore to be 

able to compress such messages automatically before they get transmitted to the receiver. Depending on 

where the threshold is set to compress a message according to its size, performance increases could easily 
be achieved. 

The most immediate project however to the SBW core is the development of a bridge between SBW and 

BioSPICE. This is currently underway and should be completed very soon. As previously mentioned, the 

bridge will allow modules in both SBW and BioSPICE to communicate with each other. At the moment, 

SBW and BioSPICB are complimentary in functionality, and such a bridge would therefore greatly bene
fit both communities. 

370 



NEXT GENERATION SIMULATION TOOLS 

ACKNOWLEDGMENTS 

This work was initially funded by the Japan Science and Technology Corporation under the ERATO Ki

tano Systems Biology Project. The development of JDesigner and Jarnac were partially funded by ERATO 

and the Keck Graduate Institute. More recent support for H.M.S. and C.W. was received via a grant awarded 

from the DARPA/IPTO BioCOMP program, contract number MIPR 03-M296-0l. We wish to acknowl

edge Mark Borisuk, Mineo Morohashi, and Tau-Mu Yi for support, comments, and advice, and the BioSPICE 

team at SRI and Berkeley for their invaluable assistance in enabling BioSPICE/SBW integration. 

REFERENCES 

BIOSPICE. (2001). The BioSPICE Development Project [On-line). Available: www.biospice.org/. 

BOX, D., EHNEBUSKE, D., KAKIVAYAT, G., et al. (2000). Simple object access protocol (SOAP) 1.1: W3C note 

08 May 2000 [On-line]. Available: W\vw.w3.org/TR/SOAP/. 

BURNS, J.A. (1971). Studies on Complex Enzyme Systems [Ph.D. dissertation]. University of Edinburgh. Available: 

www .cds.caltech.edu/hsauro/Bums/jimBums.pdf. 

CHANCE, B., HIGGINS, J.J., and GARFINKEL, D. (1962). Analogue and digital computer representations of bio

chemical processes. Proc. Fed. Am. Soc. Exp Biol. 21, 75-86. 

ELOWITZ, M.B., and LEIBLER, S. (2000). A synthetic oscillatory network of transcriptional regulators. Nature 403, 

335-338. 

ENDY, D., and BRENT, R. (2001). Modeling cellular behavior. Nature 409,391-395. 

FELL, D.A., and SAURO, H.M. (1990). Metabolic control analysis by computer: progress and prospects. Biomed. 

Biochim. Acta 8/9, 811-816. 

GARFINKEL, D. (1968). A machine-independent language for the simulation of complex chemical and biochemical 

systems. Comput. Biomed. Res. 2, 31-44. 

HEDLEY, W.J., MELANIE, N.R., BULUVANT, D.P., et al. (2001). A short introduction to CeiiML. Phil. Trans. R. 

Soc. Lond. A 359,1073-1089. 
HUCKA, H.M., FINNEY, A., SAURO, H.M., et al. (2002). The ERATO Systems Biology Workbench: enabling in

teraction and exchange between software tools for computational biology. Pac. Symp. Biocomput. 450-461. 

HUCKA, M., FINNEY, A., SAURO, H.M., et al. (2003). The Systems Biology Markup Language (SBML): a medium 

for representation and exchange of biochemical network models. Bioinformatics 19, 524-531. 

MENDES, P. (1993). Gepasi: a software package for modelling the dynamics, steady states and control of biochemi

cal and other systems. Comput. Appl. Biosci. 9, 563-571. 
OLSON, M., and OGBUJI, U. (2002). The Python web services developer: messaging teclmologies compared [On

line). Available: www-1 06ibm.com/developerworks/webservicesllibrary/ws-pyth9/. 

OMG. (2001). CORBA specication [On-line}. Available: www.omg.org. 
· ORAM, A. (2001). Peer-to-Peer: Harnessing the Power of Disruptive Technologies (O'Reilly & Associates, Sebastopol, 

CA). 
PARK, D.J.M., and WRIGHT, B.E. (1973) Metasim, a general purpose metabolic simulator for studying cellular trans-

fonnations. Comput. Prog. Biomed. 3, 10-26. 
PFEIFFER, T., SANCHEZ-V ALDENEBRO, I., NUNO, J.C., et al. (1999) Metatool: for studying metabolic networks. 

Bioinformatics 15, 251-257. 
POOLMAN, M.G., FELL, D.A., and RAINES, C.A. (2003). Elementary modes analysis of photosynthate metabolism 

in the chloroplast stroma. Eur. J. Bioclrem. 270, 430-439. 
PRITCHARD, L., and KELL, D.K. (2002). Schemes of flux control in a model of Saccharomyces cerevisiae glycoly-

sis. Eur, J. Biochem. 269, 3894-3904. 
RAO, D.M. W., and ARKIN, A.P. (2002), Control, exploitation and tolerance of intracellular noise. Nature 42~ 231-237. 

SAURO, H.M. (2000). Jamac: a system for interactive metabolic analysis. In: Animating the Cellular Map: Proceed

ings of the 9th International Meeting on BioTherrnoKinetics. J.-H.S. Ho:fineyr, J.M. Rohwer, and J.L. Snoep, eds. 

(Stellenbosch University Press), pp. 221-228. 
SAURO, H.M., and FELL, D.A. (1991). Scamp: a metabolic simulator and control analysis program. Math. Comput. 

Modelling 15, 15-28. 
SCHUSTER, s., FELL, D.A., and DANDEKAR, T. {2000). A general definition of metabolic pathways useful far sys-

tematic organization and analysis of complex metabolic networks. Nat. Biotecbn€11 18, 32().-..:332. 

311 



SAUROETAL 

'fYSON, JJ., CHEN. K.C., and NOVAK, B. (2003). Sniffers, buzzers, toggles and blinkers: dynamics of regulatory 

and signaling pathways in the cell. Curr. Opin. Cell Bioi. 15,221-231. 

WINER, D. (2001). XML-RPC [On-line]. Available: www.xmlrpc.com/spec/. 

Address reprint requests to: 

Dr. Herbert M. Sauro 

Keck Graduate Institute 

535 Watson Drive 

Claremont, CA 91711 

E-mail: hsauro@kgi.edu 


