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ABSTRACT

Researchers in quantitative systems biology make use of a large number of different soft-
ware packages for modelling, analysis, visualization, and general data manipulation. In this
paper, we describe the Systems Biology Workbench (SBW), a software framework that al-
lows heterogeneous application components—written in diverse programming languages and
running on different platforms—to communicate and use each others’ capabilities via a fast
binary encoded-message system. Our goal was to create a simple, high performance, open-
source software infrastructure which is easy to implement and understand. SBW enables
applications (potentially running on separate, distributed computers) to communicate via a
simple network protocol. The interfaces to the system are encapsulated in clieni-side libraries
that we provide for different programming languages. We describe in this paper the SBW
architecture, a selection of current modules, including Jarnac, JDesigner, and SBWMeta-
tool, and the close integration of SBW into BioSPICE, which enables both frameworks to

share tools and compliment and strengthen each others capabilities.

INTRODUCTION

HE APPLICATION OF MATHEMATICS and computer science to understanding biochemical networks has a
long history, going back in fact to the initial development of computers in the 1930s and 1940s (Chance

et al., 1962; Burns, 1971). More recently and especially since the development of high-throughput data col-
lection and the completion of the human genome project, there has been a renewed and vigcroug& interest
in understanding the dynamic aspects of cellular networks (Endy and Brent, 2001; Rao and Arkin, 20(%2;
Tyson et al., 2003). Although it has been appreciated for many years that cellular ne%wafks were dyjﬁamm,
intricate control systems, the molecular biology revolution of the last 30 years, with its f()Cf:IS on ]?NA ax%d
protein structure, has taken center stage in mainstream biology at the expense of‘mher smdze§. If is fm}y in
the last few years that “quantitative systems biology” is finally becoming a mainstream fopic in biology.
One of the important techniques at the disposal of the quantitative systems biologist is computer model-
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ling. This involves constructing kinetic models of the biochemical reaction networks, incorporating network
as well as kinetic information. The models can vary in size from very small models comprising only two
reaction steps to whole cell models incorporating hundreds of reaction steps. The models are studied by
computing the time-course behavior or the steady state. By these means, hypotheses can be tested, new hy-
potheses developed and a general understanding of the network’s behavior developed.

Almost from the earliest days of simulation, it was realized that developing the necessary mathematical
models was tedious and error prone. As a result, specialized software was developed to help users input the
models into the computer. This involved allowing users to enter reaction networks in a familiar form, of-
ten s a list of reactions and kinetic laws. This approach has been followed ever since. Interestingly, though
perhaps not surprisingly, the software tools themselves have tended to progress in step with technological
developments. In the early years of modelling, tools took a script-based approach to specifying models
(Garfinkel, 1968; Park and Wright, 1973; Fell and Sauro, 1990; Sauro and Fell, 1991). With the beginning
of the widespread use of graphical user interfaces in the 1980s, simulation tools took a marked change in
direction. Tnstead of specifying models using text-based script files, users could now specify models using
much friendlier GUI-based user interfaces. The most famous of this new geperation was and still is, Gepasi,
developed by Pedro Mendes (Mendes, 1993). The development of Gepasi began a new episode in software
development, which continues to the present day, and there are now numerous tools available that take a
similar approach.

Easier you use, GUI-based simulators tend to be less flexible compared to script-based tools. In fact many
general-purpose commercial simulation tools are script based for this very reason (e.g., Mathematica, Mat-
lab, MathCAD). As a result, script-based tools have continued to be developed, the most advanced exam-
ple of this being Jarmac, which incorporates a full programruing language as well as extensive libraries for
numerical analysis. In more recent years, a second generation of GUI-based tools has also emerged that
take the user interface to an even more visual level. That is, models in the form of networks are drawn on
a cunvas and the diagrams converted into a mathematical representation for simulation. Examples of such
tools include JDesigner, CeliDesigner, and KinCyte. At the last count, there were over 33 different pack-
ages for simulating cellular networks. This proliferation of tools has resulted in a variety of capabilities and

interfaces. However, though welcome in many respects, this proliferation has resulted in two unwelcome
side effects:

1. Each tool uses its own format, often undocumented, to store models, The result is that a model saved in
one tool cannot be loaded into another. This obviously hinders the free exchange of models from one
ool to another.

2. The Sef:{mﬁ problem is that many of the tools duplicate each other’s capabilities. Writing simulation tools
takes time, and many of the projects are short-lived, which means that the authors are unable to develop the
tools much further than basic functionality. As a result, many of the tools provide similar functionality.

Unlike other software development communities, there is little tradition of code reuse in the system bi-
ology community. As a result, the community has seen much duplicated effort and little true novelty.

The fimt problem, that of model exchange, has been addressed by introducing a standard format for all
tool Writers to e»mpiﬂy. This standard is called Systerns Biology Markup Language (SBML) (Hucka et al.,
?.(ﬁ%‘v‘&}: é&iﬁng with CelIML (Hedley et al.. 2001), the introduction of a standard format is beginning to make
a significant impact on tools writers, and the majority of the most widely used tools now employ SBML
a% @ means to exchange models. |

The second i;sue is more difficult to address, that is how to encourage code reuse in the community. Our
attempt 1o ms:}ivg this has been to develop a software framework called the System Biology Workbench.
The workbench allows different tools to expose programmatic {unctionality to other tools. This means that
a é%?ﬂiﬂ}pﬁ}i: can now build on previous work without having to understand in detail the é)ften intricate in-
%fzmai workings of other tools. All a developer need know is the interface that the tool expdses Thus, a par-
&@w :mi way aéfgmse a time~dependent simulation interface from a simulation tool, anaﬂaér tooI’ devel-
oper-—rather than invent another simulation tool—can exploit this capability and develop a new tool that

can carry out additional functions. The workload for th i
‘ s . ] or the second developer is oreath ; ey can
instead concentrate on novel functionality. ¥ greatly reduced, and they con
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BioSPICE takes a very similar approach, so much so that both SBW and BioSPICE are becoming
closely integrated. Like SBW, the goal of the BioSPICE project (BioSPICE, 2001) is to create an open
source framework and toolset for modelling dynamic cellular network functions. The hope is that this
will develop a user community committed to using and extending the tools. Clearly, the SBW project
has considerable overlap with the BioSPICE project. We are currently developing a softwate bridge that
will allow modules in both SBW and BioSPICE to communicate with each other. At the moment, SBW
and BioSPICE are to a large extent complimentary in functionality; whereas BioSPICE is more data
centric, SBW’s emphasis is on analysis. As a result, SBW can provide a range of ready-made modules
to the BioSPICE program, including simulators, both stochastic and deterministic, model buiding tools,
network analysis tools (based on METATOOL [Pfeiffer et al., 1999]), and as part of the BioSPICE pro-
gram, tools for optimization and bifurcation analysis. Such a bridge would therefore clearly benefit both
commuttities.

A number of documents have been published in the past on SBW (Hucka et al., 2002), but none have
focused on the internal workings of SBW or on some of the applications that we have developed in con-
junction with SBW. In this paper, we will focus on these issues. In particular, we will describe the data
structures and the mode of operation of SBW, tools such as Jamac, JDesigner, and Metatool, and how SBW

will be integrated into BioSPICE.

MATERIALS AND METHODS

The Systems Biology Workbench is a computational resource sharing framework. It allows applications
to commumicate with each other efficiently and without loesing their identity. Applications can be written
in a variety of different languages and can run on different operating systems across the internet. The en-
tire workbench is open-source and vendor independent. SBW was designed to offer excellent performance

and be geared specifically towards scientific applications.

SBW architecture
In setting out the requirements for SBW, the following items were our highest priority:

* Simplicity: The framework must be simple enough that interested developers can use if in their pro-
jects with a minimum amount of learning and coding effort. We considered here the foll range of de-

velopers, from experienced to novice. _ ’
*» Performance: Since SBW will be used for scientific work, performance was an important issue. Mov-

ing data from module to module has to be efficient. -

* Component modularity: As new tools and methods are developed, it must be possible o implement
them as modules that can be hooked into the existing framework without having to modify the frame-
work iself, . o

» Language interoperability: The framework must support the interaction of modules written in differ-
ent programming languages. ;

. Fref diiinfgg;;of: Alig intgerested users must be able to obtain both SBW and its source code fqr free
Any software that is incorporated into SBW and distributed with it, such as GUI grxgigets or ubjecff k-
braries, must itself be free of Hcensing fees or restrictions on redistribution. (This is only a require-
mient on SBW itself, and not on modules built for SBW or other software developed using S:?W.). ‘

* Poriability: The framework must be poriable to Mi;;miiir Windows (NT, 2000, XP} and Linux ini-

iall ty be portable to other platforms in the future.

. ?Jffi;zi; I;?;g?fn Zﬁﬁdiﬂg: Modules gat implement particular capﬁhiiities should not hayﬁ to b% pre-
loaded into SBW every time it is started; instead, the system shoulfi be data» and ’task-ﬁnvgn and i.?ﬁ?'
nangically load modules on an as-needed basis. This helps keep the size of the renning system to a min-

imum. , ~ . e
* Support for distributed computing: The user should have control over where processes are execufed

and the ability to interact with remote services.
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Given the requirements above, the question then arose, what software technology should we employ to
build the framework. Some of the requirements immediately eliminated certain existing frameworks, in-
cluding DCOM because it is limited to Microsoft Windows platforms, and Java JNI and Java RMI because
this would limit the framework to Java.

Other frameworks such as XML-RPC (Winer, 2001) or SOAP (Box et al., 2000) were also unsuitable,
because these frameworks did not meet our performance criteria. Some recent studies in particular (Olson
and Ogbuji, 2002) indicate that SOAP and XML-RPC are orders of magnitude slower compared to CORBA
or simple socket transmission.

CORBA was another possibility (OMG, 2001). However, CORBA is notorious for being difficult to mas-
ter and requires highly skilled programmers to work with. Hence, CORBA was not in line with our first
requirement, that of simplicity. Since the development of SBW, Microsoft has released .NET, which in
some limited respects is similar to SBW. The .NET framework has many of the desirable features we sought
in the requirements; however, it has an uncertain future due to its availability on only a single platform, al-
though there is now an open-source, platform independent variant called Mono.

Since we couldn’t find a suitable existing framework that satisfied all our requirements, it was decided
to develop our own. During the period when we were considering the design, peer-2-peer technologies were
becoming a fashionable and useful mode of communication (Oram, 2001). Peer-2-peer possessed many of
the attributes that were attractive to us. The three main features that stood out were simplicity, performance,
and language independence. Most peer-2-peer frameworks were characterized by binary transmission of
data over simple TCP/IP sockets. In addition, they were also characterized by simple APIs, which helped
ensure their rapid take up by third-party developers as witnessed by the plethora of peer-2-peer clients. As
a result of these observations, it was decided to base SBW on a binary messaging passing architecture over
TCP/AIP sockets.

Architecture. SBW wuses a broker-based, message-passing architecture that allows dynamic extensibility
and configurability. Software modules in SBW interact with each other as peers in the overall framework.
Maodules are started on demand through user requests or program commands. Modules are executables which
have their own event loops and all remote calls run in their own threads. As shown in Figure 1, interac-
tions ave mediated through the SBW Broket, a small program running on a user’s computer. The Broker
enables Jocating and starting other modules and establishing communications links between them. Com-
munication is implemented using simple TCP/IP sockets, which are fast and lightweight, with a straight-
forward programming interface.

Broker-based architectures are a means of structuring a distributed software system with decoupled com-
ponents that interact by remote service invocations. In SBW, the remote service invocations are imple-
mented using message passing. Because interactions in a message-passing framework are defined at the
level of messages and protocols for their exchange, it is easier to make the framework neutral with respect
to implementation languages and platforms: modules can be wriften in any language, as long as they can

Binding I

IModule One i © | <mmp- ( SBW Bpogef}~<—-—> + {8 Module Two
; &
! F3 %
$ 7 21
|sBW Pyinon Binding]
WModule Three
FIG. & Connection between broke: ‘ s e o .
by the banding Hhraries en broker, modules, and binding Hbraries. Packing and unpacking of messages is handled
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send, receive, and process appropriately structured messages using agreed-upon conventions. The organi-
zation of SBW means that modules can be easily exchanged, added, or removed, even at run-time, under
user or program control.

We strove to develop an API for SBW that provides a natural and easy-to-use interface in each of the
different langnages for which we have implemented libraries. By “natural,” we mean that it uses a style
and features that programmers accustomed to that language would find familiar. For example, in Java, the
high-level APl is oriented around providing SBW clients with proxy objects whose methods implement the
operations that another application exposes through SBW.

An SBW module provides one or more interfaces or services. Each service provides one or more meth-
ods. Modules register the services they provide with the SBW Broker. The module optionally places each
service it provides into a category. By convention, a category is a group of services from one or more mod-
ules that have a common set of methods.

Supported languages and operating systems. One of the key advaatages of SBW is its language and OS
neutrality. At this point in time, we have support for Windows and Linux operating systems (MacOS is
scheduled for future development). The languages we support, through language bindings, include Java, C,
C++, Delphi, C#, VB.NET, Python, and Perl. There are developments currently underway to create bind-

ings for Matlab and Mathematica.

Capabilities. Here we summarize the capabilities of SBW:

* Dynamic service and module discovery: The SBW Broker keeps track of modules, services, and ser-
vice categories, and provides facilities for a module to learn about them.

* Remote method invocation: The bread and butter of SBW is enabling one module to invoke a service
method in another module. If necessary, the SBW Broker will automatically start an instance of a mod-
ule whose services are requested.

* Data serialization: Method invocations involve sending messages between modules, with arguments
and data packed into message streams. For some languages such as Java, Delphi, C#, VB.NET, Perl,
and Python, the SBW library provides proxy objects that hide the message-passing, so that, to client
programs, remote services appear as local objects whose methods can be invoked like any other ob-
ject method in that language.
Exception handling: SBW provides facilities for dealing transparently with exceptional conditions,
« Event notification: Certain events in SBW, such as the startup or shutdown of an instance of a mod-
ule, are announced to all modules upon their occurrence.
Module, service and method registration: Modules that are not ranning but wish, nevertheless, to ad-
vertise their services can do so by registering with the broker. This is accomplished by rusning the
module once, in a special mode, The registration facilities aflow a module to record with the Broker
the services that the module provides, the command that should be used to start up the module on de-
mand, and other information. The SBW Broker stores this in a disk file, so that the information pro-
vided by modules is persistent between start-up and shutdown of the modules and the Broker.

Messaging protocols. At the heart of SBW is the messaging protocol used to exchange information ’be»
tween the different modules. For efficiency reasons, messages that are exchanged beiwien nfmdu}e.s are sim-
ple sequences of binary data. For each programming language, there is a language binding library that takes
care of much, if not all, of the housekeeping necessary to operate through SBW, inciuding connection and
transmission of data. In addition, issues such as little and big-endian byte ordering need not concem the

- developer as this is taken care of automatically by the binding libraries. Each binding also provides the nec-
essary message packing and unpacking logic and exposes fanctionality in the form of an easy-to-use API
(Fig. 1).
( ﬁ%ﬂ x}mduies that make a connpection to the SBW Broker are assigned a sumeric idsr:tiﬁcatim haa&fe.
The handle is generated when a module makes its initial connection with the SBW broker or when SBW
starts a module and makes a connection. The Broker itself has its own publicly reserved handle that allows
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Headet: 25 byles Variable Length
| i ) 1 ¥
Length | Destld |Type] UID Sreld | Serviceld | Methodid | .10 pavi
(32-8;1) (32-bi) (é’yﬁe). (2bi) | (@24 | (32bit) | (32bit ata Payload

FiG. 2. Structure of the send/call message.

modules to make requests to services provided by the Broker. When a module wishes to communicate to
another module, it does so by sending a message through the Broker. The message will contain the desti-
nation module handle that the Broker will use to route the message onto the appropriate module.

There are four basic message types: messages that represent blocking calls to methods in other modules
or to the broker itself, messages that represent non-blocking calls to methods in other modules or the bro-
ker itself, messages that represent replies to earlier messages, and messages that represent error conditions
as a result of poorly formatted messages or exceptions that occur in modules.

Call and send messages. These messages come in two varicties, send (non-blocking) and call (block-
ing). Both types of message have the same internal structure. What distinguishes the two is the value of the
message type byte (Fig. 2).

The fields in a call/send message have the following meanings:

Length: Length of the message in bytes, including the length integer itself.

Destld: A handle which indicates the destination module for this message.

Type: Indicates whether the message is a call, send, reply or an error condition.

UID: A unique identifier associated with this message. A comresponding reply will have the same UID
(Unique identifier) and can be used to match a teply to the original sender.

Srcld: A bandle which indicates the source module for this message.

Serviceld: Indicates the required service.

Methodld: Tndicates the parficular method in the service.

Data payload: A data payload containing the arguments required by the method,

Reply m@ssefgves. A reply message is sent in response to a call message. Its sole purpose is to deliver raw
data to the recipient as a result of 2 method call. The format of the first 13 bytes of a reply message is iden-

tical to a calling message except that the type byte is set to the reply message type. All remaining data in

the reply message is composed of data returned by the call (Fig. 3).

Error messages. Error messages are sent in response to an error condition originating either as a result

of 2 baéﬁyrformafted message or as a result of an exception in the method which was meant to service the
message. The error byte is a byte to indicate the

> of error, these are defi in the docu-
mentation at the maln SBW web site (Fig. 4). oee ¢ are defined fn the developer coc

Data types

In the previous section, we described the

’ ‘ structare for the four diff g ~ . The call
and send messages include an optional data W Mg e,

payload, which may be required by the recipient. Likewise, a

_Header;is iay“ies 7 Variable Length

3 1

£

Léngih [ Destid Typsl O ' N
b .532%3 {hifp:}; {32_%} Data Payload

FIG. 3. Structure of the weply message,
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Header: 14 bytes Variable Length
T ¥ 1

Length Destld | Type uiD Error | Readable Error| Detailed Error
(32-bit) (32-bit) | (byte)} (32-bit) | Byte Message Message

FIG. 4. Structure of the error message.

reply message may also include a data payload for the recipient. In order for data to be easily exchange-
able between modules, we needed to decide on a collection of defined data types. Obviously, it would not
be possible to imagine every possible type of data type that a module might wish to package and send to
another module; therefore, we devised a set of data types, of sufficient generality, from which any other
data type could be constructed. In the first version of SBW, we defined seven basic data types. Five of these
are fundamental data types, such as byte, Boolean, integer, double, and string. The remaining two are struc-
tured data types that provide the most flexility; these include arrays and lists (Table 1).

Byte. Bytes start with a byte code (dtByte) indicating a byte type. This is then followed by an 8-bit byte
value.

Integers. Integers start with a byte code (diInteger) indicating an integer type. This is then followed by
a signed 32-bit integer value in Intel-byte order that has the range —2147483648 to 2147483647.

Double. Double values start with a byte code (dtDouble) indicating a double type. This is then followed
by a floating-point value stored in standard IEEE standard 754 double 64-bit format—that is, 1-bit sign,
11-bit base 2 exponent, and 52-bit fraction in Intel-byte order (Fig. 5).

Boolean. Boolean values start with a byte code (dtBoolean) indicating a Boolean type. This is then fol-
lowed by a further byte indicating the value of the Boolean. A byte value of zero indicates False, and a

value of one indicates True.

String. String values start with a byte code (dtString) indicating a string type. This is then f{xﬁowe&- by
an unsigned 32-bit integer denoting the namber of bytes in the string. The remaind’e; of ti{e data cgnsxsts
of the sequence of characters that make up the string. Note that the string is also null terminated (Fig. 6).

Arrays. Arrays are multi-dimensional objects of arbitrary size containing homogeneous data. AH&?S start
with a header made up of one byte indicating the data type stored in the array, and an integ:ar indicating
the number of dimensions, followed by a sequence of integers, one for each dimension, denoting the num-
ber of elements in each dimension. The header is therefore (2 + 4 + 44) bytes long, where d equals the
number of dimensions of the array. Array access can be optimized at the module if it is known that the data

Tapre 1. Dara Tyess

Data type Type code Description

Byte diByie Sunple Byte

Integer dilnteger 32 bit integer o

Double &tDauble IBEE 754 double 64 bit format

Boolean diBfoolean Byte indicating true or false (0 represents ?aise}

String diSering Sequence of characters, the first unsigned integer
- © indicates the lensth of the string

Array dtArray Homogeneous m&ydgi riiata {n dimensional}

Eist dilist ﬁﬁiemgeneus, ngste  Yist structure
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Length: 5 bytes Length: 9 bytes
i T | 1
Int Type o Double Type | Double [EEE 754
byte) 32 bit Infeger (bvte) (64-bit)

FIG. 5. Integer and double data types.

type has a fixed size. This is especially the case for simple types such as integers and doubles. In these
cases, the application can carry out block copies of the data in order to greatly improve performance
(Fig. 7.

Lists. Lists are recursively defined structures for storing heterogeneous data. This means that lists can
be used to store other lists which allows complex relationships to be represented.

A list is a much simpler structure that an array. A list starts with a list type byte, followed by a 32-bit
integer indicating the number of items in the list. Each item in the list can be any of the data types previ-
ously described, including a list (Fig. 8).

For example, the following are legal list structures:

[1,2.34]

[ 1, “ATP”, 3.1415, {1, 2, 3} |

*{ [ “S]‘.”; “SZH’ C):SSB&’ [ 4’ 5’ 6] ]’ “kl”, “k2” ]

I tﬂe}‘i?: { {eaXG:BI’ {“Sl”l }, “leIﬂ }’ [“JZ”, [ [“S].”,‘ “S2” ]’ [ “83” ] ]’ “k252” ]’ s }

Note the nested lists in the third and fourth examples.

Event support

' SBW supplies a number of special method calls to modules that are sent when certain events occur. These
include the following:

void onModuleShutdown{Module module): This method on the listener is called every time a module in-

stance somewhere in the SBW system disconnects from the SBW Broker. The module passed to the
method represents the module instance that has just shut down.

void onModuleStart{Module module): This method on the listener is called every time a module instance
starts up or connects to the SBW Broker. The module passed to the method represents the module in-
stance that has just started.

void onRegistrationChange(): This method on the listener is called whenever a registration change for a
module occurs in the SBW Broker. Registration changes are a module registering itself with the Broker,
4 module registering a service with the Broker, or a module being unregistered.

Simple example
Having described in some detail the internal structures and design of SBW, it is now worth showing 2

simple example to illustrate how it might be used. The following example shows how to set up a module

Length: 2 bytes
¥ ] —1

In 1
(tb?;%g? Byte {a:fai‘;}{

Length: 5 byvtes Vér%able tength
P : 3

£

,'tSﬁmg'fy;ié Lengthof | s
{byte}  |String (32-bit) Characte list

FIG. 6. Boolean and string data types.
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Length: 2 + 4 + 4d bytes
f 1

Array Type | Data | Number of {Number of Elements | Number of Elements| _ |Number of Elements
(byte) Type {Dimensions| in first dimension  {in second dimension in nth dimension

Byte 32-bit 32-bit 32-bit 32-bit

Dimensions are stored row by row

Element 1] Element 2| Element 3] =—=—————> Row One
d rows
deep

Element 1] Element 2} Element 3] ———> Row j

FIG.7. Array data type.

which provides two math services, trig and log, and another module which uses these services. The code
is shown using Java but similar code would apply to other languages.

We first declare the classes which represent the services that the module is going to provide. In this case
we will provide two services, one that offers basic trigonometric functions, and another that provides ba-
sic logarithmic functions.

class TrigClass {
public double sin(double x) throws SBWApplicationException {
return Math.sin(x);
}
public double cos(double x) throws SBWApplicationException {
return Math.cos(x);
}

class LogClass {
public double log(double x) throws SBWApplicationException {
return Math.log(x);
}
public double exp(double x) throws SBWApplicationException {
return Math.exp(x);
}

In the main program, we create a new instance of an object that represents the obéecﬁ that other modules
will see. Into this object, we register the two services that we wish to provide. Finally, we call the run

tengthe 1+ 4 bytes
i - T

List Type | Numberof } oo noia Eloment [Second Data Element | ath Data Elements
(byts} elements .

3z2-bit

The siza of each data element is daia typs dependent

Data slemers can be any of the sterdard types, byts, boolear, integer,
double, string, arays and lists

FIG. 8. List data type.
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method of the module object, which initiates the connection to the SBW broker. Once the broker receives
the connection request, it transmits a startup event to all connected modules indicating that a new module
is available. At this point, modules may now interrogate the new module and use the services that the mod-
ule provides.

Modulefmpl module = new ModuleImpl(“edu.caltech.math”, “math”, ModuleImpl. UNIQUE);

module.addService(“Trigonometry”, “trig functions”, TrigClass.class);
module.addService(“Logarithmic”, “log functions”, LogClass.class);

module run(args);

The argument args in the run method is the command line argument that invoked the module. If a remote
module wishes to use the services provided by math, it would use the following code:

Interface TTrigService {
double sin(double x) throws SBWException;
double cos(double x) throws SBWException;
}

Interface TLogService {
double log(double x) throws SBWException;
double exp(double x) throws SBWException;
3

Module module = SBW.getModulelnstance(“edu.caltech.math™);

# Get the individual services

Service trig = module.findServiceByName(“Trigonometry”);
Service log = module findServiceByName(“Logarithmic”);

/# Create proxy with this interface and call it:

I?’trigS&wiea trigService = trig service.getServiceObject(ITrigService.class);
ILogService logService = log.service.getServiceObjeci(ILogService.class);

Double result;
Doable x = 12.2;

result = trigService.sin(x);
result = logService.log {x);

The first two sections declare interfaces of the services that will'be used. In this case, the services are hard-
coded, but SBW also allows runtime reflection on a remote moduale and thus allows methods and services 10
be used dynamically if need be. Under Java, the easiest approach to access remote services is to use interfaces.
| Once the interfaces have been declared, a call is made to obtain 2 handle of the module. ¥ the module
has been registered with the Broker but is not currently running, this call will cause the module to be au-
tomatically started up.

Finally, the objects representing the individual services are created using the getServiceObject method
call. iasi but not least, ?hﬁ methods are called through the service object returned previously.

Tﬁu& it ﬁfxﬁ}“ takes & ta\gsf lines of code to access and call remote methods. For more details of the AP, the
reader is referred to the APY manual available on the SBW web site. Note that services and methods on rez;m’ce
mm&uifaa are ;@tisa jfwaﬁable vig & number of interactive scripting tools, in pammﬂar Fytﬁan and Perl. In these
cases, n:ﬁem&n is even simpler, as the seripting tools will automatically wrap remote services into Python and
Perl objects. Thus, under Python, to access the rigonometric method, sin, only requires a single Tine:
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print edu_caltech_math.Trigonometry.sin (30.0)

The BioSPICE/SBW bridge

One of BioSPICEs’ main interfaces is based on the Netbeans IDE. This has enabled the developers of
BioSPICE to implement a data flow GUI that allows users to direct daia from one module to another through
a GUI interface. This allows users to chain a series of processes in whatever fashion suits their needs. The
BioSPICE modules themselves are made accessible to the Netbeans IDE either via OAA (Open Agent Ar-
chitecture) or directly into the Netbeans IDE itself.

Work is nearing completion to construct a software bridge between SBW and OAA, which will enable
clients of either system to access the services provided by the other system. These services will be made
to appear as native services, identical to any other. This is made possible by a special generic translation

layer.

OAA is based on a Prolog programming model and is organized in terms of agents that provide specific
functions. Parameters are untyped and may be numbers, strings, lists, and several other Prolog-specific data
types. Prolog functions do not have return values; rather they use a system called “unification,” wherein
unbound variables are replaced with results. For example, to get the sum of two numbers in Prolog, one

might call a fonction as follows:
sum(2,5,X)
and get the result
sum(2,5,7)
SBW, in contrast, uses a more common model for methods, which take typed parameters and have a sin-
gle typed result, that is,
int sum(int,int)

The bridge handles the conversion of the method signatures between OAA and SBW automatically. If there
was a method in OAA such as get_some_data_3 (the name, "get_some_data, "and three parameters), this

would be translated into an appropriate SBW method signature:
get_some_data(}

The most recent version of OAA provides for typed, directional paramefers. If get_some_data 3 had two
input parameters of integer type, and one output parameter of double type, then the SBW method signature

would be as follows:
double get_some_data(int,int}

In the other direction, an SBW method such as
int get_just_an_int(int)
would be translated by the bridge into an OAA method get_just_an_int 2-the second parameter is just the

SBW function’s retorn value. ‘ »

Incompatible data types are mapped whenever possible to equivalent types. Asan examgie, arrays, which
are used by SBW, are not recognized in OAA. These are franslated into lists or lists-of-lists, which OAA
can handle. Services in SBW appear as separaic agents in OAA, and agents in OAA are represented as ser-

vices of a single module (the “oaabridge™) module in SBW (Fig. 9).

APPLICATIONS

In this section, we will describe an application of SBW that utilizes three SBW-compliant tools: Jamnac,
IDesigner, and METATOOL. : '
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FIG. 9. Structure of the BioSPICE/SBW bridge.

Jarnac

Jarnac is a script-based simulation tool that can operate either interactively via a console window or as
a simulation server for SBW. Details of Jarnac can be found in Sauro (2000). Here we will just describe
the SBW interface.

The Jarnac SBW interface supports four services: modelServices, msim, mat, and asim. asim 13 used o
interface to the SBW GUI, details of which can be found at the SBW website (www.sbw-sbml.org). The
interface provided by msim is more extensive than asim and is the one described here.

msim supports multiple simulation instances; that, is more than one simulation can be active at any one
time. All the methods in msim require a model handle to indicate the current model instance. Model in-
stances can be created and destroyed through the modelServices service. msim provides a range of meth-
ods to control, interrogate, and simulate either continuous (ordinary differential equation based), or proba-
bilistic (based on the Gillespie method) models.

Models are loaded into a model instance in the form of SBML Level 1 (Hucka et al., 2003) via the
load_SBML() method. A range of access methods are provided to interrogate the currently loaded model.
For example, remote modules can request the number of reactions, the rates of change of species, and the
reaction velocities. In addition, methods are provided for a remote application to access the model equa-
tions, including the list of differential equations, the rate law expressions (both in infix format), and the list
of any conservation laws in the model. Methods are also provided to allow a remote application to modity
parameters and initial conditions. Finally, there is a range of analysis methods, including time course sim-
ulation, Gillespie stochastic simulation, steady-state analysis, sensitivity analysis, and specialist informa-
tion such s the Jacobian matrix.

The remaining service, mat, supplies two matrix-related methods: one method to compute the eigenval-
ues for a matrix and a second method to compute the inverse for a matrix.

Jarnae can be ran in two modes, either interactively, where a user has access to the model capabilities
throngh 4 console Wiz;dow and via the SBW iaterface, or in server mode, where Jarnac runs invisibly as 2
background service. The only way to access Jarnac in server mode is via the SBW interface.

}?m& 't‘hgai we provide a GUI-based browser tool that allows a users to inspect the services and methods
available from a particular module. '

JDesigner

. Designer is 2 model design tool for editing biochemical networks visually. Tt has no simulation capa-
ﬁﬂﬁi&S itself but ift can interface to the Jarnac SBW interface. Unlike Jarnac or SCAMP (Sauro and Fell,
319?3; Sauro, 2000y, where models are entered in the form of a script describing the chemical reactions and
rate laws, under JDesigner, models arc entered visually as reaction networks. JDesigner stores models in
the form of SBML Level 1 (Hucka et al., 2003) with specific annotation added to support layout informa-

ﬁaﬁf I}gta%is of this and othter information on JDesigner can be found at the website (www.sys-bio.org)-
Figure 10 illustrates a basic screen shot from JDesigrer.
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FIG. 18. JDesigner, iltustrating a model of glycolysis taken from Pritchard and Kell (2002).

Interaction of JDesigner with Jarnac, or any other compatible simulator, is automatic. Figure 11 illus-
trates a simulation displayed by JDesigner but actually carried out by Jarnac via SBW.
SBWMetatool

METATOOL (Pfeiffer et al., 1999) is an application developed by Siefan Shuster, Thomas Pieiffer, and
more recently by Ferdinand Moldenhauer and Juan Carlos Nuno (www.bioinf.mdcberlin. de/projects/meta-
bolic/metatool/). Its primary task is the determination of elementary modes (Schuster et al., 2000), but it
also has a variety of other fimctions, including null space computation and conservation analysis. It easily
runs on Linux or Windows, or for that matter any platform that can compile standard C code. METATOOL
generates a multitude of information, inclading, but not exclusively, the null space of the stoichiometry ma-
trix, conservation relations, and what METATOOL was specifically designed to generate, elementary modes.
Generating elementary modes is a non-frivial exercise, and other packages, such as the interactive simula-
tor, Jarnac (Sauro, 2000), employ METATOOL for this task.

To make METATOOL available to SBW, we wrote a small conirolling application that has an interface

to SBW and controls the running of METATOOL.
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FIG. 11. JDesigner and Jamnae working together to casty out and display the rosults from a simulation. The model
was token from Elowitz and Leibler (2000), which illusteates a synthetic oscillatory cireuit that was constructed in Es-
cherichia coli.

Pigure 12 illusteates the interaction of METATOOL with JDesigner. JDesigner acts as the model ed-
itor from which users can initiate simulation and METATOOL analysis. The figure illustrates two
aspects. The lower panel shows the SBWMetatool imterface; this displays all the clementary
modes that METATOOL. found for the displayed model (Calvin Cycle). Note that one of the elemen-
tary modes in the lower panel is highlighted. The main canvas shows the Calvin reaction network, and
the selected elementary mode is displayed on the reaction network by highlighting the appropriate re-
actions. This allows 4 user to easily visualize each elementary mode in turn. The example illustrates
the ability of BBW to combine two unrelated applications (JDesigner and METATOOL) and deliver
completely new functionality. The other point to make is that METATOOL was not modified in this
5‘1%%? we only wrote a small separate SBW-based module that could control the ranning of META-
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FIG. 12. OQperation of METATOOL with JDesigner illustrating the visualization of elementary modes in the Calvin
eycle (Poolman et al.,, 2003). (Model courtesy of M. Poolman, D. Fell, and C. Raines.)

CONCLUSION

Software reuse is considered a well-known technigue for increasing development productivity, but the promise
often falls short of the expeciation. There are some success stories; in particular, the number of reusable com-
ponents for Delphi (Borland) and Visual Basic (Microsoft) run into the thousands (www.torry.com) and prob-
ably many more for Visnal Basic, The question is why have some development environments been more stic-
cessful than others at encouraging a vibrant cormmunity of code reuse? One of the distinguishing features of
VB and Delphi development is the ease with which it is possible to develop stand-alone reusable components.
Other environments such as CORBA or basic COM have a much steeper learning curve, and thus the number
of people actively engaged in supporting code reuse is correspondingly smaller. For code reuse to be a actively
supported, code development should be correspondingly easy to accomplish.

In terms of SBW, we have tried to achieve this situation by making the development of reusable SBW
modules as easy as development under VB or Delphi. Developing reusable modules in Java or Delphi is
particulary straightforward under SBW.
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Tn terms of our own development, code reuse was most successful. In developing JDesigner, we did not
need to write yet-another-simulator; instead, we leveraged the existing simulator Jarr_xac. As an example of
third-party component use, we were able to wrap METATOOL into a SBW-compliant tool, thus making
available the sophisticated algorithms present in METATOOL to all SBW modules.

Some of the key advantages of SBW over other technologies is performance, simplicity of imple-
rmentation, and language and platform neutrality. With the rapid rise in interest in Systems Biology, it
is fair to say that it it probably impossible for one person or even a group to attempt to write the all-
singing, all-dancing software tool for Systems Biology, simply because the breadth of the field is too
wide.

One great advantage of SBW is that it does not constrain developers to a single platform or even a sin-
gle language. It eliminates language and platform wars at a stroke, which means we can concentrate on

functionality instead.

FUTURE DIRECTIONS

The future direction of SBW is in two places, enhancements to the core SBW technology, that is en-
hancements to the Broker and/or binding libraries and enhancements to modules.

Module development

Module development is taking place on two levels: enhancements to existing modules and development
of new modules. The existing modules, in particular JDesigner will continue to be enhanced. One of the
most interesting projects is the development of library based model construction. That is, models can be
developed in parts and combined at a later date.

As for new modules, two are currently planned for development, this includes an optimization module
and a bifurcation module. Both modules are being primarily developed for BioSPICE and will be made
available to BioSPICE via the SBW/BioSPICE bridge.

Core development: broker, language bindings, and BioSPICE integration

The first version of SBW is complete and in production. The current plans for the development of the
core are fairly Hmited. There are a couple of items that we would like to include in a future version. For
example, we would like to add an additional fype to the core data types that can be transmitted from mod-
ule to module, this type being the complex number type. Since SBW is primarily aimed at the scientific
community, complex numbers would prove a very useful addition. One of the primary applications of com-
plex numbers in systems biology is stability analysis and data analysis such as principal component analy-
sis. Of course, in the current version, complex numbers can be transmitted by combining existing types;
however, since complex numbers are fundamental to quantitative science there is no reason why they shuuki
not have “first class” status as one of the fundamental types.

A second addition we would like 1o make is to give the binding libraries the ability to decide whether to
compress messages before transmission. Some messages especially those containing XML data can be \?ery
targe. These messages, by their nature are also highly compressible. It would seem sensible therefore to be
able to compress such messages automatically before they get transmitied to ‘
where the threshold is set to compress a message according to
be achieved.

The most immediate project however to the SBW core is the dev : \
BioSPICE. This is csmp;;;y underway and sh(:vai:f b(;ozi e rclopment of a bridge betweon SEW 297

T . . i mpleted very soon. As previoush tioned, the
ggi%ﬁ W{;ﬁgﬁ,ﬁg‘;ﬁ%ﬁ&ﬂgs n Tﬁl SBW and BioSPICE to communicate with ei:h ;:;:ryg 3;3 ;Qient
SBW and Bio! are complimentary in funcionali o . . :
fit both communities, plimentary in functiopality, and such a bridge would therefore greaily bene-

: the receiver. Depending on
s size, performance increases could easily
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