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Next-Generation Wafer Stage Motion Control:

Connecting System Identification and Robust Control

Tom Oomen, Robbert van Herpen, Sander Quist, Marc van de Wal, Okko Bosgra, Maarten Steinbuch

Abstract— Next-generation precision motion systems are
lightweight to meet stringent requirements regarding through-
put and accuracy. Such lightweight systems typically exhibit
lightly damped flexible dynamics in the controller cross-over
region. State-of-the-art modeling and motion control design
procedures do not deliver the required model fidelity to control
the flexible dynamical behavior. In this paper, identification and
control challenges are investigated and a novel approach for
next-generation motion control is presented. The procedure is
applied to a multivariable wafer stage, confirming a significant
performance improvement.

I. INTRODUCTION

Mass production of integrated circuits (ICs) has enabled
the development of a wide variety of technologies in today’s
society. The state-of-the-art equipment for the automated
production of ICs are wafer scanners, see Fig. 1. In the
production process, the wafer must be extremely accurately
positioned in six motion degrees-of-freedom (DOFs). This is
the task of the wafer stage, which is the application that is
considered in this paper.

In the last decades, increasing demands with respect
to computing power and memory storage have led to the
need for new wafer scanner technologies. Already in 1998,
the replacement of deep ultraviolet (DUV) lightsources by
extreme ultraviolet (EUV) lightsources was considered to be
a promising technology, since it results in a reduction of the
wavelength from 193 nm to 13.5 nm. Hence, smaller features
can be produced on the ICs. At present, EUV constitutes a
key technology in state-of-the-art wafer stages. Experimental
prototypes are reported in [1] and the first production systems
are presently being installed [2].

The introduction of EUV light has far-reaching conse-
quences for all subsystems of the wafer scanner, including
the wafer stage. Air absorbs the EUV light beam, hence
the system has to operate in vacuum. This has important
consequences for the motion control of the wafer stage.

The trends in wafer stages are expected to lead to
lightweight precision motion systems for several reasons.
Firstly, contactless operation is required to avoid pollution of
the vacuum environment due to mechanical wear or lubricants.
Secondly, market viability requires a high throughput of the
wafer scanner. In view of Newton’s law F = ma, high
accelerations (a) of the system require a mass (m) reduction
and hence a lightweight system is essential.

As a result of a lightweight system design, next-generation
motion systems predominantly exhibit flexible dynamical
behavior. On the one hand, the increasing accuracy and
performance demands lead to the manifestation of flexible
dynamical behavior at lower frequencies. On the other hand,

Tom Oomen, Robbert van Herpen, Sander Quist, Okko Bosgra, and
Maarten Steinbuch are with the Eindhoven University of Technology,
Eindhoven, The Netherlands. Marc van de Wal was with Philips Applied
Technologies. E-mail: t.a.e.oomen@tue.nl.

due to these increasing demands, the controller has to be
effective at higher frequencies. Combining these developments
leads to a situation where flexible dynamical behavior is
present within the control bandwidth. This is in sharp contrast
to traditional positioning systems where the flexible dynamical
behavior are considered as high-frequent parasitic dynamics,
see [3, Sec. 2.1, Assumption 1-3]. Specific implications for
motion control design include:

i) next-generation motion systems are inherently multivari-
able, since the flexible dynamical behavior is generally not
aligned with the motion DOFs;

ii) next-generation motion systems can exploit additional
actuation and sensing to deal with flexible dynamical behavior,
whereas the number of inputs and outputs in the traditional
situation equals the number of motion DOFs; and

Although several model-based robust control design
methodologies have been developed to deal with the inherently
multivariable nature of wafer stages, including [4], [3], [5],
these approaches cannot deal with the model complexity
that is associated with next-generation lightweight wafer
stages. Indeed, robust control is essential for motion systems,
since a nominal model cannot encompass the entire system
behavior due to the presence of high order flexible dynamical
behavior [6] and nonlinear damping effects [7]. In [4], a
motion control design procedure is presented for SISO motion
system that combines system identification and robust control.
In [3], this approach is further extended towards multivariable
systems. However, as is also argued in [3], the performance
improvement is hindered by inadequacies in the system
identification procedure.

The identification of accurate models in view of the control
objective is of vital importance to obtain high performance
robust motion control. In [5], a first step is made to intertwine
the identification and control design steps. However, all the
approaches in [4], [3], and [5] resort to highly structured
model uncertainty structures. As a result, these approaches
lead to intractable computations and unnecessary conservatism
in next-generation motion control, where a high number of
inputs and outputs are expected. A key consequence of the
induced conservatism is that the approaches do not lead to
the limit of control performance.

The key contribution of this paper is a novel framework for
next-generation motion control. Hereto, system identification
and robust control are connected, leading to guaranteed
high performance robust motion control. The severe require-
ments associated with the system complexity, including the
(uncertain) model complexity are explicitly addressed to
obtain a computationally tractable procedure. Specifically, the
following contributions are identified in this paper, leading
to the following sections:

C1) Sec. III: low-order control-relevant modeling. In [3,
Sec. 5], it is argued that new developments are essential to
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Fig. 1. Left: schematic illustration of a wafer scanner system. Right:
photograph of experimental wafer stage system. À: light source, Á: reticle,
Â: reticle stage, Ã: lens, Ä: wafer, Å: wafer stage, Æ: metrology frame, Ç:
mover, È: airmount.

model multivariable motion systems from frequency response
function data. In this paper, a new approach to obtain low-
order nominal models of the wafer stage is pursued by
i) directly identifying a multivariable model, thereby taking
into account common dynamics in different input/output
channels, and ii) only considering control-relevant dynamics,
i.e., by only including dynamics in the model that will be
subsequently compensated;

C2) Sec. IV: robust-control-relevant uncertainty modeling.
Robust control is essential to guarantee stability and per-
formance when the controller is implemented on the true
system. In this paper, a new model uncertainty structure is
exploited that connects the size of model uncertainty and
the control criterion. On the one hand, this leads to a wafer
stage model set that is tailored towards the robust control
goal. On the other hand, this enables the use of unstructured
perturbation models to represent the uncertainty of the wafer
stage model. This is of vital importance, since the use of
highly structured perturbation models, e.g., as in [3] and [5],
leads to an unnecessarily high computational demand and
introduced conservatism for an increasing number of inputs
and outputs. In contrast, the proposed approach leads to µ-
simple [8] perturbation models that facilitate nonconservative
uncertainty modeling and robust control.

C3) Sec. V: wafer stage performance improvement through
robust control. A robust controller is synthesized and im-
plemented on the wafer stage system. This shows that the
presented procedure, which is a joint procedure for system
identification and robust control, significantly improves wafer
stage performance, both in terms of the H∞-criterion and
the measured time domain results.

Furthermore, concluding remarks and relevant topics for
further research are discussed in Sec. VI.

II. PROBLEM FORMULATION

A. Experimental setup

The considered wafer stage system is depicted in Fig. 1.
The system is equipped with a moving-coil permanent magnet
planar motor that enables contactless operation. As a result,
the wafer stage is suitable for operation in vacuum. Due to
the contactless actuation, the motion system consists of two
parts: a stator, which is a plate consisting of an ordered array
of permanent magnets, and a mover, which constitutes the
moving part of the wafer stage.

Four force actuators are connected to the mover, each
consisting of three coils that are powered by a three-phase
power source. By means of an appropriate position-dependent

PC−
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[
rx2
r
y
2

] r1 =

[
rx1
r
y
1
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ux

uy

]

y =

[
yx

yy

]

Fig. 2. Feedback configuration for wafer stage application.

commutation of the coils, eight independent forces are
available. Laser interferometers in conjunction with a mirror
block, which are connected to the metrology frame and the
wafer stage, respectively, enable a subnanometer accuracy
position measurement in all six motion DOFs. Throughout,
a sampling frequency of 2.5 kHz is used.

The controller design in this paper is performed for the
translational x and y DOFs in the horizontal plane to facilitate
the exposition. It is emphasized that the presented approach
is aimed to deal with a large number of actuators and sensors,
possibly more than the number of motion DOFs.

B. Robust control

As is motivated in Sec. I, a model-based control design
procedure is considered. Although a well-design feedforward
controller is essential in servo tasks, in the present paper
focus is on feedback control design. Hereto, the feedback
interconnection in Fig. 2 is considered, where y is the
measured position output and u is the input voltage to the
amplifiers. In addition, r2 and r1 are external reference signals.
All signals have components in both x and y directions, as

is indicated by a superscript, e.g., y =
[
yx yy

]T
.

The performance is quantified using the criterion

J (P,C) = ‖WT (P,C)V ‖
∞

, (1)

where W and V are weighting filters given by

W =

[
Wy 0
0 Wu

]
, V =

[
V2 0
0 V1

]
, (2)

and T (P,C) is defined as

T (P,C) :

[
r2
r1

]
7→

[
y
u

]
=

[
P
I

]
(I + CP )−1

[
C I

]
.

The use of the H∞-norm in (1) has important advantages,
since it enables loop-shaping-based motion controller designs
[4] and enables a robust controller design.

The goal in the considered model-based control design
procedure is to compute the controller Copt that minimizes
J (P,C)) in (1) for the true system Po, i.e., Copt =
argminC J (Po, C)). In this paper, Po represents the un-
known physical wafer stage system as described in Sec. II-
A. Hence Copt cannot be computed directly. Hereto, the
knowledge regarding the true system Po is represented by a
model set P that encompasses the true system behavior, i.e.,
it satisfies

Po ∈ P. (3)

Throughout, the model set P is constructed by considering a

perturbation ∆u around the nominal model P̂ , i.e.,

P =
{
P
∣∣P = Fu(Ĥ,∆u),∆u ∈ ∆u

}
. (4)

Here, Ĥ contains the multivariable nominal model P̂ , see
Sec. III, and the model uncertainty structure. In addition,

∆u =
{

∆u ∈ RH∞

∣∣‖∆u‖∞ ≤ γ,∆u(e
jω) ∈ C

2×2
, ω ∈ [0, 2π)

}

,

(5)
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i.e., an unstructured model perturbation is employed, see also
Contribution C2 and Sec. IV.

Associated with P is the worst-case performance
JWC(P, C) = supP∈P J (P,C). By minimizing the worst-
case performance, i.e.,

CRP = argmin
C

JWC(P, C), (6)

it is guaranteed that

J (Po, C
opt) ≤ J (Po, C

RP) ≤ JWC(P, CRP), (7)

hence CRP is guaranteed to result in a certain perfor-
mance when implemented on the wafer stage system, which
is the essence of robust control design. In contrast, the
worst-case performance for a nominal control design, i.e.,

JWC(P, CNP(P̂ )), where CNP = argminC J (P̂ , C), in
which case the controller performs optimally for the nominal

model P̂ , may even be unbounded, as is shown in Sec. V.

C. Robust-control-relevant system identification procedure

The achievable worst-case performance bound in (7)
depends on the actual shape of the model set P . Indeed,
although P is subject to the constraint in (3), there is

freedom in the choice of the nominal model P̂ and the
model uncertainty structure, see Ĥ in (4). The key question
is which properties the model set P should have to guarantee
a nonconservative control design CRP, i.e., to guarantee that
the worst-case performance guarantee in (7) is small.

Optimally, the identification procedure should deliver a
model set such that JWC(P, CRP(P)) is minimized over its
argument P , such that (3) holds. Observe that CRP(P) in
general depends in a complicated manner on P , hence the
use of CRP(P) in an identification criterion is not directly
possible. Thereto, as in [9], [10], an upper bound is employed,
leading to the robust-control-relevant identification criterion

min
P

JWC(P, Cexp), (8)

subject to (3)

Here, P is structured as in (4), i.e., P is constructed by

considered a nominal model P̂ and model uncertainty ∆u.
Also, Cexp is a known controller that stabilizes Po. In fact,
the wafer stage system that is considered in this paper is open-
loop unstable due to a contactless operation, hence system
identification has to be performed in closed-loop. In the case
where Cexp is not sufficiently close to CRP(P), then (6)
and (8) may be solved iteratively, leading to a monotonous
performance improvement [9]. Using the results presented
in this paper, unnecessary conservatism is avoided. Hence, a
large performance improvement can typically be realized in
one step, rendering an iterative procedure superfluous.

The initial controller Cexp is a multi-loop SISO PID
controller that achieves a bandwidth in terms of crossover
frequency of approximately 40 Hz, see Fig. 6. The other
DOFs, i.e., z-translation and three rotations, are controlled
by low performance PID controllers to stabilize the system.

Furthermore, the weighting filters W and V are designed
using a loop-shaping based design procedure, see [4], [3].
These weighting filters are designed using an identified non-
parametric frequency response function of the system, which
is identified prior to the estimation of a control-relevant
parameteric model. The weighting filters are aimed at a
cross-over frequency of 90 Hz.
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Fig. 3. Nonparametric closed-loop frequency response function estimate

T̃ (Po, Cexp) for ωi ∈ Ωid.

III. CONTROL-RELEVANT NOMINAL IDENTIFICATION

In this section, a nominal model is identified that, in
conjunction with the uncertainty model in Sec. IV, provides
a solution to (8). Hereto, a new connection between control-
relevant system identification and coprime factor identification
is employed. This leads to a new connection between the size
of ∆u and the criterion JWC(P, Cexp). To relate the closed-
loop performance of any candidate model and the true system,
the triangle inequality is invoked, which is at the heart of
common iterative identification and control techniques [11]:

J (Po, C) ≤ J (P,C) + ‖W (T (Po, C)− T (P,C))V ‖
∞

. (9)

By evaluating (9) for the controller Cexp and minimizing
over P , the following control-relevant identification criterion
is formulated as in [11]:

P̂ = argmin
P

‖W (T (Po, C
exp)− T (P,Cexp))V ‖

∞
. (10)

The control-relevant identification criterion (10) depends on
the unknown system Po. To formulate a solvable identification
problem, the frequency domain interpretation of the H∞-norm
is exploited to recast (10) as

P̂ = argmin
P

max
ωi∈Ωid

σ̄
(
W

(
T̃ (Po, C

exp)− T (P,Cexp)
)
V
)

(11)

subject to T (P,Cexp) ∈ RH∞

In (11), T̃ (Po, C
exp) represents an identified multivariable

frequency response function of the wafer stage system. This

frequency response function T̃ (Po, C
exp) can be identified

directly using the results in [12], see Fig. 3 for the results. The
optimization problem (11) is an approximation of (10). Firstly,

the use of T̃ (Po, C
exp) introduces estimation errors. However,

due to the use of multisine excitations and high signal-to-
noise ratios, these errors are negligible. Secondly, the use
of a discrete frequency grid Ωid implies that (11) minimizes
a lower bound of the norm in (10). To minimize potential
interpolation errors, the frequency grid is chosen sufficiently
dense. In addition, these interpolation errors should be part
of the model uncertainty in Sec. IV.

The key step that leads towards Contribution C1-C2
involves the result of [10], which establishes that the control-
relevant identification problem (11) is equivalent to

min
N̂,D̂

max
ωi∈Ωid

σ̄

(
W

( [No

Do

]
−

[
N̂

D̂

] ))
(12)

subject to N̂ , D̂ ∈ RH∞.
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Fig. 4. Coprime factorization: nonparametric No, Do (blue dots), eighth

order parametric model coprime factorizations N̂ , D̂ (dashed red).

Here, {N̂ , D̂} and {No, Do} are right coprime factorizations

(RCFs) of P̂ and Po, respectively, where
[
N
D

]
=

[
P
I

]
(D̃e + Ñe,2V

−1
2 P )−1, (13)

and D̃e and Ñe,2 follow from Cexp, V1, V2, see also (2), and
the solution of an algebraic Riccati equation, see [10] for
further details and a proof. Note that the pair {N,D} is an
RCF of P implies that [13]: i) P = ND−1, ii) N,D ∈ RH∞,
and iii) ∃X,Y ∈ RH∞ such that XN + Y D = I . These
coprime factorizations will turn out to have a crucial role in
the construction of the uncertainty structure in Sec. IV.

The first step in solving the optimization problem (12)

is determining {No, Do}. Given V , C, and T̃ (Po, C
exp) for

ωi ∈ Ωid, then No and Do, see (13), can directly be computed
for ωi ∈ Ωid, see [10], see Fig. 4.

The next step is the estimation of a parametric model

P̂ that is internally structured as a coprime factorization

{N̂ , D̂}, see (13). Hereto, a specific parametrization is used,
see [10], where the underlying system model is parametrized
as the nominal model is given exactly by the matrix fraction

description P̂ (θ) = B(θ)A(θ)−1, where B,A ∈ R
2×2[z],

i.e., polynomial 2× 2 matrices in z. The parameterization in
terms of these polynomial matrices is essential for obtaining
a low-order model, see Contribution C1.

To solve the actual optimization problem (12), the iterative
algorithm in [10] is employed. The results are depicted in
Fig. 4 and Fig. 5.

The model order is selected using the approach presented
in [14], leading to a McMillan degree equal to 8. In view of
Contribution C1, the model indeed is of low order, since

i) the use of polynomial matrices, i.e., P̂ = BA−1,
has a direct connection to state-space models and hence
provides a low-order multivariable system description. This
is in sharp contrast to the models as delivered by the
procedure in, e.g., [3], that does not take into account common
dynamics between the different DOFs. When considering
Fig. 5, observe that four states are used to model the
two rigid-body modes in both the x-direction and the y-
direction. The other four states are used to represent resonance
phenomena. Since these resonance phenomena correspond to
flexible dynamical behavior, these correspond to complex pole
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Fig. 5. Bode magnitude diagram: nonparametric estimate (dot), nominal

model P̂ (solid blue), model set Pdyn (yellow), and Psta (cyan).

pairs. Specifically, around 208 Hz and 214 Hz two closely
spaced resonance phenomena are present. Interestingly, these
resonance phenomena correspond to inherently multivariable
behavior, since both these resonances appear in all four
transfer functions in Fig. 5, yet only require two orders each.

ii) the low-order model is obtained stems from the control-
relevant identification criterion (12) that emphasizes dynamics
that are especially relevant for control. The coprime factor
domain in Fig. 4 directly connects to control-relevance in
terms of (10). Indeed, system dynamics that have a high gain
in the coprime factor domain are important for control and
should be modeled accurately, which is clearly the case in
Fig. 4. This is further supported by the results in Sec. IV.

IV. IDENTIFICATION FOR ROBUST CONTROL

Since the nominal model P̂ is not exact, the model quality
is taken into account during robust control design by means
of an uncertainty model. The key contribution, see C2,
involves the construction of an uncertainty model that, in
conjunction with the nominal model of Sec. III, addresses
the identification problem (8). The main ingredient involves
the specific coprime factorization in (12).

A. Robust-control-relevant model uncertainty structure

The coprime factorization resulting from (12) is used to
generate candidate models

P = (N̂ +Dc∆u)(D̂ −Nc∆u)
−1

, ∆u ∈ ∆u ⊂ RH∞, (14)

where a specific, (Wu,Wy)-normalized coprime factorization
of Cexp is used, see [10].

To illustrate the advantages of this specific robust-control-
relevant uncertainty structure (14), observe that for many
uncertainty structures, including additive uncertainty [13], the
performance under closed-loop with Cexp is given by

J (P,Cexp) = ‖M̂22 + M̂21∆u(I − M̂11∆u)
−1

M̂12‖∞,

see [10] for details. In general, M̂11 6= 0, hence J (P,Cexp)
can become unbounded for some ∆u in a bounded set ∆u.
For the model uncertainty structure (14) for any right coprime

factorization of P̂ and Cexp, the performance is given by

J (P,Cexp) = ‖M̂22 + M̂21∆uM̂12‖∞,

in which case a norm-bounded ∆u always leads to a bounded
criterion value. However, the criterion can become arbitrarily
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large, since M̂21 and M̂12 are multivariable and frequency-
dependent functions.

The specific coprime factorization {N̂ , D̂} of P̂ that is
identified in Sec. III, in conjunction with a specific (Wu,Wy)-
normalized coprime factorization of Cexp, see [10] for a
state-space computational procedure, leads to the following
stronger bound on the worst-case performance

JWC ≤ J (P̂ , Cexp) + γ, (15)

where γ is defined in (5). See [10] for a proof.

The bound (15) is an important and significant extension
of identification-related uncertainty structures for robust
control and involves Contribution C2 of this paper. Indeed,
it transparently connects the size of unstructured model
uncertainty and the control criterion by appropriately scaling
the model uncertainty channels with respect to the control
criterion. As a result, unstructured model uncertainty can be
used without unnecessarily introducing conservatism. This is
in sharp contrast to earlier approaches, including [3] and [5].

B. Size of model uncertainty

The model uncertainty structure (14) leads to the important
result (15). Hence, it remains to estimate the size γ such
that the constraint (3) holds. Hereto, the validation-based
uncertainty modeling procedure that is presented in detail in
[15] is employed. The result of the validation procedure is a
static bound γ = 2.1 on the model uncertainty, leading to a
model set Psta. In addition, a dynamic overbound is used,
that reduces the potential conservatism in the approach, as is
explained in [14]. This leads to a model set Pdyn ⊂ Psta.

By using the procedure that is presented in detail in
[16], the resulting uncertain model sets Psta and Pdyn are
visualized in Fig. 5. The Bode diagrams corresponding to
Psta best illustrate robust-control-relevance in the sense of (8)
and (15) and reveal that those phenomena that are important
for subsequent control are contained in the identified model
set with high fidelity. Specifically, it is observed that the two
resonance phenomena around 200 Hz are very accurately
modeled. Interestingly, the rigid-body behavior is accurately
modeled around the desired closed-loop bandwidth of 90 Hz.
However, at low frequencies, where the rigid-body mode
dominates the system behavior, the model set is relatively
large and hence uncertain. A similar observation holds
at higher frequencies, where the model set increases for
increasing frequencies. Thus, from a control perspective, there
is no significant benefit from explicitly modeling the high

frequent resonance phenomena in P̂ , at least in terms of the
target closed-loop bandwidth of 90 Hz. Observe that the shape
of this model set is principally different from those obtained
by alternative model uncertainty structures, including additive
and multiplicative uncertainty. Finally, observe from Fig. 5
that indeed Pdyn ⊂ Psta.

V. ROBUST CONTROLLER DESIGN AND IMPLEMENTATION

In this section, the identified model set Pdyn in Sec. III and
Sec. IV is used as a basis for robust controller synthesis. The
optimal controller is then implemented on the true system.

Firstly, the actual robust controller synthesis (6) is solved
through a skewed structured singular value synthesis. Hereto,
D −K-iterations are generalized to take the skewness into
account. Interestingly, the considered uncertainty structure

TABLE I

IDENTIFICATION AND CONTROLLER SYNTHESIS RESULTS.

Controller Minimized criterion J (P̂ , C) JWC(Psta, C) JWC(Pdyn, C)
Cexp None (PID) 89.91 92.05 90.16

CNP
J (P̂ , C) 10.94 ∞ ∞

CRP
JWC(Pdyn, C) 16.38 ∞ 16.43
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Fig. 6. Bode magnitude diagram: initial controller Cexp (solid blue), CRP

(dashed red), CNP (dash-dotted green).

associated with the considered synthesis problem is µ-simple,
see [8, Sec. 9]. Consequently, the use of upper bounds in D−
K-iterations leads to exact results and does not introduce any
conservatism. In contrast, when the number of perturbation
blocks in ∆u exceeds 2, as is the case in the approaches in
[3] and [5], then the use of upper bounds for the structured
singular value for robust performance synthesis, as is done in
typical D −K-iterations, introduces conservatism. Secondly,
for comparison, also a nominal controller CNP is synthesized

using P̂ and standard H∞-optimization.

The resulting controllers are depicted in Fig. 6, whereas
their performance is given in Table I. Here, ∞ implies absence
of robust stability. Several observations are made.

i) The controller CNP achieves optimal performance for

the nominal model P̂ , i.e., J (P̂ , CNP) = 10.94. However, the
worst-case performance associated with Pdyn is unbounded,
hence neither stability nor performance can be guaranteed
when implementing CNP on the true system Po. This
underlines the necessity of a robust control design.

ii) The controller CRP achieves optimal worst-case per-
formance for the model set Pdyn. Indeed, the bounds

JWC(P
dyn, CRP) ≤ JWC(P

dyn, Cexp)

JWC(P
dyn, CRP) ≤ JWC(P

dyn, CNP)

hold as is expected. In addition, JWC(P
dyn, CRP) is signif-

icantly lower than JWC(P
dyn, Cexp), hence the controller

CRP leads to significantly improved performance.

iii) In contrast to the initial controller Cexp, the optimal
controllers CNP and CRP are inherently multivariable. Indeed,
the inputs and outputs of the wafer stage system have equal
units and comparable magnitude. Next, in Fig. 6 it is observed
that the off-diagonal elements have a comparable magnitude
to the diagonal elements in the high frequency range. Clearly,
the compensation of the inherently multivariable resonance
phenomena benefits from a multivariable controller.

Next, the controllers Cexp and CRP are implemented on
the true wafer stage system. The controller CNP is not
implemented, since it potentially destabilizes the system,
see also Table I. The evaluation of standstill errors is an
important performance indicator for wafer stage systems.
Here, the reference signal is set to zero, leading to a regulator
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Fig. 7. Measured error signals in x-direction (top) and y-direction
(bottom). Left: initial controller Cexp. Middle: robust controller CRP. Right:
cumulative power spectrum of the measured error signal with Cexp (solid
blue) and CRP (dashed red).

TABLE II

STANDARD DEVIATION AND PEAK ERROR SIGNALS IN [NM].

σx σy px py

Cexp 25.3 13.5 129.4 60.4
CRP

8 12.7 6.4 54.1 27.4

problem with performance variable e = −y. In this case, the
key task of the feedback controller is to attenuate exogenous
disturbances that affect the wafer stage.

The resulting time domain measurements are depicted in
Fig. 7, whereas the cumulative power spectrum (CPS) is
depicted in Fig. 7. The standard deviation σx and σy and
peak values px and py for the x-direction and y-direction,
respectively, are given in Table II. These results confirm that
CRP leads to significantly improved performance.

VI. CONCLUSIONS

In this paper, a combined system identification and robust
control framework is presented for next-generation motion
control. The approach provides new, computationally tractable
techniques for accurate identification and uncertainty model-
ing for mechanical systems with high order flexible dynamics
and many inputs and outputs. Application to an industrial
wafer stage reveals a significant and guaranteed performance
improvement through a systematic procedure.

The key technical result that enables the developments in
this paper is a new coprime factorization. On the one hand,
a new connection between coprime factor identification and
control-relevant identification leads to a low order nominal
model. On the other hand, a new connection between the
size of model uncertainty and the control criterion enables
the non-conservative use of unstructured uncertainty. As a
result, a robust-control-relevant model set is obtained that is
of low complexity, facilitating a robust controller synthesis.

VII. EXTENSIONS

Continued research topics that are beyond the scope of the
present paper includes the following aspects.

• Dealing with unmeasured performance variables [17].

• Dealing with position-dependent dynamics. Motion sys-
tems involve moving parts of the system, hence the dynamics
may depend on operating conditions. Although an initial
attempt to improve the control performance through position-
dependent wafer stage modeling is presented in [18], the
resulting position-dependent controller does not significantly
improve the performance. An explanation for the lack of

performance improvement is the fact that the identified
position-dependent models in [18] are not aimed towards the
control goal. Indeed, in [19, Sec. 5.7], the position-dependency
of the wafer stage dynamics is investigated from a control
perspective using the results of Sec. IV of the present paper,
revealing that the changing dynamics are irrelevant from a
robust control perspective. These observations motivate the
need for control-relevant system identification techniques for
position-dependent dynamics.

• Extension of the control goal definition. Hereto, the loop-
shaping techniques in the present paper should be extended
towards incorporating models of the disturbances that affect
the wafer stage system, see, e.g., Fig. 7.

• The investigation of the limits of achievable control
performance for the traditional motion control situation, where
the number of inputs and outputs equals the number of motion
DOFs. Next, performance may be improved when additional
actuators and sensors are placed.
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