

Next Generation X-ray Optics: High Resolution, Light Weight, and Low Cost

William W. Zhang NASA Goddard Space Flight Center

NGXO Team

M.P. Biskach¹, P.N. Blake, K.W. Chan², M. Hong¹, L.D. Kolos, J.R. Mazzarella¹, R.S. McClelland¹, T.T. Saha, M.J. Schofield¹, M.V. Sharpe¹, W.W. Zhang NASA Goddard Space Flight Center ¹ Stinger Ghaffarian Technologies, Inc. ² University of Maryland, Baltimore County

> J.A. Carter, J.A. Gaskin, W.D. Jones, J.J. Kolodzejczak, S.L. O'Dell NASA Marshall Space Flight Center

Process of Building a Telescope

~10⁴ Mirror Segments

~10² Modules Each containing ~10² mirror segments One or several mirror assemblies

Three Metrics

- Angular resolution
- Effective area (per unit mass)
- Production cost (per unit effective area)
- Field of view (shorter shell length)
- Energy bandwidth (multilayer coating)

Objectives

• Point of departure (2002)

- Suzaku's resolution (~120 arcsecs)
- Suzaku's eff. area per unit mass
- Suzaku's cost per unit area
- Near term (2014)
 - XMM-Newton's resolution (~10 arcsecs)
 - Suzaku's eff. area per unit mass
 - Suzaku's cost per unit area
- Long term (~2020)
 - Chandra's resolution (~0.5 arcsecs)
 - Suzaku's eff. area per unit mass
 - Suzaku's cost per unit area

Year	Mirror Segment		Alignment & Bonding		
	Technique	Contribution to HPD (")	Technique	Contribution to Single Pair HPD (")	Contribution to Multiple Pair HPD (")
2002	Slumped glass with epoxy replication	60	Optical Alignment Pathfinder	?	?
2007	Slumped glass	10	Mattress	12	?
2010		8	Smart Bonding	10	?
2012		6	Edge Bonding	8	12
2013	Single Crystal Silicon (Machine & Polish)	~1		?	?
2014		~0.1	?	?	?
2018		~0.1	?	?	?

8/15/2012

Glass Slumping (Zhang et al.)

- Simple, Reliable, Mature
- Producing good and consistent results
- Need to reduce mandrel cost & schedule

- Fast and accurate measurement of segmented mirrors
 - Fizeau interferometers
 - Easily designed and built cylindrical null lens
- Commercially available deterministic polishing machines
 - QED: Magneto-Rheological Finishing (MRF)
 - ZEEKO: Intelligent Robotic Polishing (IRP)
 - Others....
- Abundantly and cheaply available large blocks of mono-crystalline silicon
 - "Perfect" single crystals: "Free" of internal stress
 - High thermal conductivity and relatively low CTE
 - Can be machined using precision wire-EDM

New Method for Fabricating Mirror Segment (Zhang et al.)

- 1. Procure mono-crystalline silicon: **easy and cheaply** available.
- 2. Apply heat and chemical treatments to remove all surface/subsurface damage (fast & cheap)

- 1. W-EDM machine conical shape (fast & cheap)
- 2. Apply heat and chemical treatments to remove damage (fast & cheap).
- 3. Polish using modern deterministic technique to achieve excellent figure and micro-roughness (fast & cheap? Need demonstration)

- Slice off (using W-EDM) the thin mirror segment (fast & cheap)
- Apply heat and chemical treatment to remove all damage from back and edges (fast & cheap)

Proof of Principle: Fabricate and then Light-weight

Before Light-weighting 55 mm thick (~0.1")

After Light-weighting: ~2 mm thick (~0.5")

- 1. What's causing the degradation from ~0.1 to ~0.5"?
- 2. Would light-weighting to 0.5mm work as well?

Progression of Work

- FY2102: Demonstrate
 principle using flat mirrors –
 2012 (almost done)
 - Polish a thick 55mm flat mirror
 - Slice off a wafer ~1mm thick
- FY2013: Make separate parabolic/hyperbolic segments or combined P-H segment (lining up companies)
- **FY2014:** Minimize cost maximize production efficiency

Coating: Sputter vs. ALD (Chan et al.)

Alignment and Bonding (Biskach et al.)

Technology Development Module (X-ray Performance Test)

3 Pairs Co-aligned Bonded

Module Engineering and Environmental Testing (McClelland et al.)

- Vibration test fixture designed and built
- Static and dynamic analyses completed
- Test being conducted today

Forming mandrels

- Increase rate of production
- Decrease cost of production

Coating (Sputtering & Atomic layer deposition)

- Minimize figure distortion due to stress

Thermal environments

- CTE mismatch between mirror and housing
- Potential lack of thermal equilibrium between mirror and housing

Epoxy instability

- Cure over long periods of time
- Sensitivity to moisture
- Visco-elasticity

Prospects

- Near term (1 to 2 yrs)
 - XMM's angular resolution: ~10 arcseconds
 - Suzaku's weight and cost
 - To enable AXSIO, N-CAL, N-XGS, N-WFI, and Explorer missions
- Long term (3 to 10 yrs)
 - Chandra's angular resolution or better
 - Suzaku's weight and cost per
 - To enable Generation-X, SMART-X...

Necessary and Sufficient Conditions for Making Good X-ray Optics

- Reasonable and adequate funding
- Competent people
- Good ideas
- Clear and well-formulated objectives

PCOS Program Office ROSES/SAT ROSES/APRA GSFC/IRAD

8/15/2012