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Abstract
In this paper, we address the issue of predicting the next lo-
cation of an individual based on the observations of his mo-
bility behavior over some period of time and the recent loca-
tions that he has visited. This work has several potential ap-
plications such as the evaluation of geo-privacy mechanisms,
the development of location-based services anticipating the
next movement of a user and the design of location-aware
proactive resource migration. In a nutshell, we extend a mo-
bility model called Mobility Markov Chain (MMC) in order
to incorporate the n previous visited locations and we de-
velop a novel algorithm for next location prediction based
on this mobility model that we coined as n-MMC. The eval-
uation of the efficiency of our algorithm on three different
datasets demonstrates an accuracy for the prediction of the
next location in the range of 70% to 95% as soon as n = 2.

Categories and Subject Descriptors K.4 COMPUTERS
AND SOCIETY [K.4.1 Public Policy Issues ]: Privacy

Keywords Next location prediction, Mobility model, Markov
chain, Clustering.

1. Introduction
The collection of the locations visited by individuals through
mobile devices equipped with GPS capacities, cell towers or
Wi-Fi positioning has attracted a lot of the attention, both
from the industry and the research community. In this pa-
per, we address the issue of predicting the next location of
an individual based on the observations of his mobility be-
havior over some period of time and the recent locations that
he has visited. More precisely, we extend a mobility model
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called Mobility Markov Chain (MMC) developed in a pre-
vious work [5] in order to incorporate the n previous vis-
ited locations. The extended model is coined as a n-MMC
and we design a novel algorithm for next location predic-
tion based on this mobility model. This work has several
potential applications such as the evaluation of geo-privacy
mechanisms, the development of location-based services an-
ticipating the next movement of a user and the design of
location-aware proactive resource migration. The evaluation
of the efficiency of our algorithm on three different datasets
demonstrates an accuracy for the prediction of the next loca-
tion in the range of 70% to 95% as soon as n = 2.

The remainder of this paper is organized as follows. First,
we review relevant related work in Section 2 before describ-
ing the concept of Mobility Markov Chain (MMC) and its
extension the n-MMC model in Section 3. Afterwards, we
present the algorithm for next place prediction based on n-
MMC in Section 4 before reporting on the experimental re-
sults in Section 5 and finally concluding in Section 6.

2. Related Work
In this section, we describe related work on location predic-
tion based on Markov models [2, 3], raw trajectories [7, 8]
and semantic trajectories [13]. We also discuss the results of
studies comparing location predictors [9, 11] and review the
literature on the modeling of human mobility.

Markov model. This type of predictors represents the mo-
bility behavior of an individual as a Markov model and pre-
dicts the next location based on the previously visited loca-
tions [2, 3, 12]. For instance, Ashbrook and Starner [3] have
built a method for predicting future movements that first ex-
tract the Points Of Interests (POIs) frequently visited by an
individual before building a mobility model. POIs are dis-
covered using a variant of the k-means clustering algorithm
on the individual’s mobility traces. Finally, a Markov model
is computed in which each node is a POI and the transition
between two nodes corresponds to the probability of moving
from one POI to another. This work is very similar in spirit



to the Mobility Markov chains (MMC) [5], however the ma-
jor difference between this previous work and our work lies
in the clustering algorithm used to discover the POIs. In-
deed, Ashbrook and Starner have used the standard k-means
algorithm while we rely on a clustering algorithm tailored
for geolocated data called DJ-cluster [16]. This algorithm
is adaptive in the sense that the number of POIs extracted
depends on the mobility behavior of the individual stud-
ied, while in k-means the number of clusters to be discov-
ered has to be fixed in advance. More precisely, DJ-Cluster
takes only as input parameters an upper bound on the radius
of clusters and the minimal number of mobility traces that
should be contained in a cluster. Furthermore, in the context
of MMCs, we perform an additional step in which neighbor-
ing and overlapping clusters are aggregated thus leading the
generation of clusters of potentially different size and shape.
Finally, while Ashbrook and Starner proposed a method for
learning a model for next place prediction, they did not ac-
tually assess its accuracy on a real dataset.

A variant of Markov model called the Mixed Markov-
chain Model (MMM) [2] has recently been proposed for
next place prediction. This approach considers that standard
Markov Models (MM) and Hidden Markov Models (HMM)
are not generic enough to encompass all types of mobility.
Therefore, the concept of MMM was proposed as an inter-
mediate model between individual and generic models. The
prediction of the next location is based on a Markov model
belonging to a group of individuals with similar mobility be-
havior. This approach clusters individuals into groups based
on their mobility traces and then generates a specific Markov
model for each group. The prediction of the next location
works by first identifying the group a particular individual
belongs to and then inferring the next location based on this
group model. This approach was tested experimentally on
artificial and real datasets and shows an accuracy for the
prediction task (as measured by the ratio between the cor-
rect and total number of predictions) of 74,1% for MMM,
16,9%– 45,6% for MM and 2,41%–4,2% for HMM.

Semantic and raw trajectories. Ying et al. have proposed
to integrate semantic information about the places visited by
an individual in addition to its location data in order to en-
hance the accuracy of the prediction about his future location
[13]. The proposed approach relies on the notion of semantic
trajectories, which represents the mobility of an individual
as a sequence of visited places tagged with semantic infor-
mation. For instance, the semantic tags can be “home”, ‘fa-
vorite restaurant” or “sport center visited on Wednesday and
Friday”. To support the prediction of next location based on
semantic trajectories, the authors have developed a frame-
work called SemanPredict, which is composed of two mod-
ules. The offline mining module extracts the semantic tra-
jectories from raw data by first computing the stop points
of a trajectory [1], which corresponds to locations in which
the user has stayed more than a certain amount of time. Af-

terwards, the offline module queries a Geographic Semantic
Information Database (GSID) storing information of land-
marks collected via Google Maps in order to attached se-
mantic information to the stop points. The stop points and
semantic trajectories are then stored in a tree-like structure
and then the semantic trajectories are clustered using an al-
gorithm based on the MSTP similarity [14]. The online pre-
diction module is responsible for matching the current trajec-
tory of a user with the closest trajectory in the database by re-
lying on the geographical and semantic features. This mod-
ule computes a similarity measure combining a geograph-
ical and semantic score quantifying the closeness between
two trajectories. A partial matching strategy is applied on the
tree-like structure in order to identify the closest trajectory.
Finally, the prediction of the next location is simply the child
node of the candidate trajectory with the highest similarity.

Some other works also rely on the notion of trajectories to
predict the next location. For instance, Krumm and Horvitz
have developed a tool called Predestination [7], which aims
at predicting the destination of a trip based on the trajec-
tory information gathered so far. In a nutshell, this method
divides the spatial area into a grid in which each cell has a
surface of 1 km2 and then counts the number of times an in-
dividual has visited each cell. From this information, Predes-
tination computes a probability distribution representing the
likelihood of visiting a particular cell. This probability dis-
tribution is then used later to predict the most likely destina-
tion of a trip. Following the same line of research, Froehlich
and Krumm have designed an approach predicting the next
location based on the trip similarity [4], which displays an
accuracy of 85%.

Modeling human mobility. Song et al. have made a study
comparing four different families of location predictors [11]
that have been tested on a dataset gathered by the Dart-
mouth College from Wi-Fi users between April 2001 to
March 2003. From the results obtained, the authors con-
clude that more complex predictors are not necessarily much
more accurate than Markov predictors. They also establish
that Markov predictors beyond the second order (i.e., basing
their predictions on the n ≥ 3 previous locations) are less
precise. On the theoretical side, Barabasi et al. [10] have an-
alyzed the predictability of the human mobility using three
different entropy measures. Their approach first constructs a
graph in which each node is associated with the percentage
of time spent in a cell. Afterwards, the probability distribu-
tions of the three proposed entropy measures are computed
in order to characterize the predictability of the population.
Finally, a predictability score is computed, which represents
the accuracy of the prediction of future whereabouts. This
predictability score is derived from the Fano’s inequality and
quantifies the entropy of a particular user moving between n
locations. In their experiments, the authors have used a sam-
ple of 45 000 users of mobile phones registered during a pe-
riod of 3 months. This dataset was collected by an American



phone company for billing purpose, recording the user in a
cell when he uses his phone. From the combination of the
empirically measured entropy and the Fano’s inequality, the
authors conclude the human mobility can be predicted with
a probability of success of 93% on average.

3. Extended Mobility Markov Chain
In this section, we briefly review the concept of mobility
Markov chains that consider only the current location to
predict the next one before extending this concept to take
into account the n previous locations visited (for n ≥ 1). We
coin this extended mobility Markov chain as a n-MMC. We
also describe an algorithm for learning a n-MMC, which is
a variant of the algorithm described in [5], to which some
memory has been added to learn the previous n locations
visited.

3.1 Mobility Markov Chain
A Mobility Markov Chain (MMC) [5] models the mobility
behavior of an individual as a discrete stochastic process
in which the probability of moving to a state (i.e, POI)
depends only on the previous visited state and the probability
distribution of the transitions between states. More precisely,
a MMC is composed of:

• A set of states P = {p1, . . . pk}, in which each state cor-
responds to a frequent POI (ranked by decreasing order
of importance). These states generally have an intrinsic
semantic meaning and therefore semantic labels such as
“home” or “work” can often be attached to them. The
semantics of some states can sometimes be deduced au-
tomatically from the structure of the MMC.

• A set of transitions, such as ti,j , which represents the
probability of moving from state pi to state pj . A transi-
tion from one state to itself can occur if the individual has
a probability of moving from one state to an occasional
location before coming back to this state. For instance,
an individual can leave his “home” to go to the pharmacy
before coming back to “home”.

A MMC can be represented either as graph (see Figure 1)
or a transition matrix. In the graph representation, nodes rep-
resent POIs while arrows symbolize the transitions between
POIs along with the associated probability of performing
this transition. In the matrix representation, the row corre-
sponds to the POI of origin and the column the destination
POI. The value stored in the cell is the probability of the
associated transition.

Standard MMCs are memoryless in the sense that the pre-
diction of the future location depends only on the current
location. However, this limitation in which the MMC “for-
gets” the previous locations visited before reaching the cur-
rent state can impact negatively the accuracy of the predic-
tion. To address this issue, we introduce the concept of a
n-MMC, which is a MMC in which the states do not corre-

Figure 1. Example of a n-MMC with n = 1.

spond only to a single POI, but rather represent the sequence
of the n previous visited POIs.

3.2 Learning a n-MMC
Thereafter, we describe an algorithm for learning a n-MMC
out of the trail of mobility traces of an individual, which is
decomposed in two steps. During the first step, a clustering
algorithm called Density-Joinable cluster (DJ-Cluster) [16]
is used to discover the POIs (Algorithm 1). Afterwards,
during the second step, the transitions between those POIs
are computed. DJ-Cluster takes as input three parameters:
MinPts the minimal number of points necessary to form
a cluster, ε the maximum radius of the cluster and dmer a
merging distance for clusters.

DJ-Cluster is itself decomposed into three phases. Dur-
ing the first phase (preprocessing) only the “static” mobility
traces (i.e., traces whose speed ≤ δ, for δ a small predefined
positive constant) are kept by deleting all traces in move-
ment (i.e., with speed > δ), and then consequently redun-
dant traces are also removed. The second phase (clustering)
consists in processing all remaining traces in order to con-
struct clusters containing at least MinPts points within a
radius ε of their centers. Once these clusters are computed,
during the third and last phase (merging), the algorithm
merges the clusters sharing at least a common trace, which
can lead to the creation of clusters of arbitrary shape. For
example, given two clusters C1 = {m1,m3,m7,m9} and
C2 = {m9,m11,m12}, we first verify that their intersection
is not null, which is the case here as C1∩C2 = {m9}. These
clusters are then merged into a single cluster composed of
their union C1 ∪ C2 = {m1,m3,m7,m9,m11,m12}. Fi-
nally, the resulting clusters whose centroids are within dmer

distance are also merged.



Once the clustering is performed, the radius, time interval
and density of each cluster are computed. In a nutshell, the
radius is the distance between the center of a cluster and
the farthest mobility trace, the time interval is the difference
in days between the oldest and the most recent mobility
trace and the density is the number of traces in the cluster.
Each cluster (i.e., POI) corresponds to a state in the Markov
model. Once the POIs are formed, the transitions and their
associated probabilities are computed. This process is done
by considering the trail of mobility traces in chronological
order and labeling each trace with the identifier of the POI
to which it belongs (i.e., the mobility trace is located inside
the radius of this cluster). If the trace does not belong to
any cluster, it is labelled as “unknown”. Afterwards during
a second pass on the trail of mobility traces, all “unknown”
traces are removed and successive traces sharing the same
label are squashed in a single occurrence. For instance, a
succession of 10 mobility traces sharing the same label will
be squashed into a single trace with this label. Finally, from
these labeled traces, the transition between states taking into
account the n last visited states are computed.

4. Next Place Prediction
In order to predict the next location based on the n last posi-
tions in the n-MMC model, we compute a modified form of
the transition matrix whose rows represent the n last visited
positions. To illustrate the concept of prediction based on a
n-MMC, Table 1 and Figure 2 respectively show the transi-
tion matrix and graphical representation of a 2-MMC learnt
on the trail of mobility traces taken from a user of the Pho-
netic dataset [6] that we simply name as Bob to preserve his
anonymity. This 2-MMC consists of three different states:
“Home” (H), “Work” (W) and “Others” (O) and the goal is
to predict the next location based on the two previous loca-
tions (i.e., n = 2). Thus, the rows of the transition matrix
denote all possible combinations of pair of previous loca-
tions (HH ,HW ,HO,WH ,WW ,WO,OH ,OW ,OO) while
a column represents the next position in the n-MMC. For
instance, if the previous position was H and the current po-
sition is W , the prediction on the next location will be home
H and a transition will occur from state HW to state WH ,
thus updating the previous location toW and the current one
to H .

Source/Dest. H W L O
H W 1,00 0,00 0,00 0,00
H L 1,00 0,00 0,00 0,00
H O 0,64 0,34 0,00 0,00
W H 0,00 0,84 0,08 0,08
L H 0,00 0,50 0,00 0,50
O H 0,00 1,00 0,00 0,00
O W 1,00 0,00 0,00 0,00

Table 1. Transition matrix of Bob.

Algorithm 1 Construction of a n-MMC
Require: D a trail of (mobility) traces D, n the number of

previous location kept, MinPts the minimum number of
traces in a cluster, ε the maximum radius of a cluster and
dmer the merging distance for clusters.
Preprocess the trail of mobility traces D by deleting mov-
ing and redundant traces thus producing D′

Run a clustering algorithm on D′ to discover the most
significant clusters
Merge the clusters that share at least a common point
Merge the clusters that are within dmer distance of each
other
Let listPOIs be the list of all constructed clusters
for each cluster C in listPOIs do

Compute the time interval, radius and density of C
end for
Sort the clusters in listPOIs by decreasing order accord-
ing to their densities
for each cluster Ci in listPOIs do

Create the corresponding state pi in the mobility
Markov chain

end for
for each mobility trace m in D′ do

if the distance between the tracem and the center of the
cluster Ci is less than the radiusi then

Update the n − 1 previous locations (FIFO) and the
current position with Ci

Label the trace m with the n − 1 previous locations
and Ci

else
Label the trace m with the value “unknown”

end if
end for
Delete all traces that are “unknown”
Squash all the successive mobility traces sharing the same
label into a single occurrence
Compute all the transition probabilities between each pair
of states of the Markov chain
return the Mobility Markov chain computed

The prediction algorithm (Algorithm 2) requires as input
the n previous visited locations and a n-MMC and works
in the straightforward following manner. For instance, the
input could be a transition matrix such as Table 1 and the
two previous locations HO. The algorithm finds the row
corresponding to these n previous locations and searches the
most probable transition (ties are broken arbitrarily). In our
example, as the previous locations are HO, the prediction is
H with a probability of 64%.
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Figure 2. A graphical representation of the 2-MMC from
Bob.

Algorithm 2 Prediction using a n-MMC
Require: Transition matrix M of a n-MMC, n previous

visited locations
Search the row r in M corresponding to the n previous
visited locations
Find the column corresponding to the maximum probabil-
ity of transition pmax for the row r (ties are broken arbi-
trarily)
return the POI corresponding to the column with pmax

5. Experimental Evaluation
In this section, we report on experiments conducted to evalu-
ate the accuracy of our prediction algorithm and the theoret-
ical predictability of users. In these experiments, we used
three different datasets, whose characteristics are summa-
rized in Table 2. The Phonetic dataset [6] is composed of
the mobility traces from 6 researchers sampled at a rate of 1
to 5 minutes from October 2009 to January 2011. The Geo-
life dataset [15] has been gathered by researchers from Mi-
crosoft Asia and consists of mobility traces collected from
April 2007 to October 2011 using GPS-enabled devices,
mostly in the area of Shanghai. The synthetic dataset has
been generated out of the first user of the Geolife dataset
and we use it mainly as a sanity check to verify the behav-
ior of the prediction algorithm. For instance, the user of this
dataset corresponds to the first user of Geolife obtained by
duplicating the mobility traces of the first user and then ap-
plying a translation in the time domain.

In order to assess the efficiency of our location predictors,
we compute two metrics: the accuracy and the predictability.
The accuracy Acc is the ratio between the number of correct
predictions pcorrect over the total number of predictions
ptotal:

Acc = pcorrect/ptotal. (1)

Char. (average) Phonetic Geolife Synthetic
#Users 6 175 1

#Traces per user 16363 126970 694136
Duration of capture 255 146 511

Frequency (#trace/day) 67,53 1263,5 1 358,38
#POI per user 5 8 9

Table 2. Characteristics of datasets used.

The predictability Pred is a theoretical measure repre-
senting the degree to which the mobility of an individual is
predictable based on his n-MMC (in the same spirit as the
work of Barabasi and co-authors [10]). For instance, if the
location predictor knows that Bob was previously at work
(W ) and he is currently at home (H), the probability of mak-
ing a successful guess is theoretically equal to the maximal
outgoing probability transition, which is 84% for this par-
ticular example (see Figure 2 and Table 1). More formally,
the predictability Pred of a particular n-MMC (and thus a
particular individual) is computed as the sum of the product
between each element of the stationary vector π of the n-
MMC model, which corresponds to the probability of being
in a particular state (for l, the total number of states of this
n-MMC) and the maximum outgoing probability (Pmax out)
of the kth state:

Pred =

l∑
k=1

(π(k)× Pmax out(k, ∗)). (2)

In our experiments, we split each trail of mobility traces
into two sets of same size: the training set, which is used
to build the n-MMC, and the testing set, which is used to
evaluate the accuracy of the predictor. Finally, we also com-
pute the average predictability score for each user based on
the n-MMC -learnt from his training dataset. Figure 3 shows
the results obtained for a user from the Geolife dataset with n
ranging from 1 to 4. As expected, the accuracy first improves
as n increases but then seems to stabilize or even decrease
slightly as soon as n > 2. Moreover, while unsurprisingly
the prediction accuracy is usually better on the training set
that on the testing set, this difference is not significative. This
seems to indicate that the mobility behavior of an individual
is similar in the second part of his trail of traces (the test-
ing set) to the first part of the traces (the training set), which
may not necessarily be the case if the mobility behavior of
a user naturally drift due to an important change in his life.
Finally, Figure 4 displays the results obtained for all users of
the three different datasets. To summarize, the results consis-
tently show that the accuracy and predictability are optimal
(or almost optimal) when n = 2, with an accuracy and pre-
dictability ranging from 70% to 95%.



Figure 3. Accuracy and predictability measured for a single
user of Geolife.

Figure 4. Accuracy and predictability on the three datasets.

6. Conclusion
In this work, we have presented an algorithm for next place
prediction based on a mobility model of an individual called
a n-MMC that keeps track of the n previous locations vis-
ited. Experiments on three different datasets show that the
accuracy of this prediction algorithm ranges from 70% to
95%. Moreover, while the accuracy of the prediction grows
with n, choosing n > 2 does not seem to bring an important
improvement at the cost of a significant overhead in terms
of computation and space for the learning and storing of the
mobility model. In order to further improve the accuracy of
the prediction, we are planning as future work to introduce
more explicitly the notion of time in the constructed MMC.

References
[1] L. O. Alvares, V. Bogorny, B. Kuijpers, B. Moelans, J. A. Fern,

E. D. Macedo, and A. T. Palma. Towards semantic trajectory
knowledge discovery. Technical Report, Hasselt University,
Limbourg, Belgium, 2007.

[2] A. Asahara, A. Sato, K. Maruyama, and K. Seto. Pedestrian-
movement prediction based on mixed Markov-chain model. In
Proceedings of the 19th International Conference on Advances

in Geographic Information Systems, pages 25-33, IL, USA,
2011.

[3] D. Ashbrook and T. Starner. Learning significant locations and
predicting user movement with GPS. In Proceedings of the
6th International Symposium on Wearable Computers, pages
275-286, Sardina, Italy, 2003.

[4] J. Froehlich and J. Krumm. Route prediction from trip
observations. In Proceedings of the Society of Automotive
Engineers World Congress, MI, USA, 2008.

[5] S. Gambs, M.-O. Killijian, and M. Nuñez del Prado C. Show
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