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We calculate next-to-leading-order (NLO) corrections to the B → π transition form factors at
leading twist in the kT factorization theorem. Light partons off-shell by k2

T are considered in the
quark diagrams, in the effective diagrams for the B meson wave function defined with the effective
heavy-quark field, and in the effective diagrams for the pion wave function. It is explicitly demon-
strated that the infrared logarithms ln k2

T cancel between the above sets of diagrams, as deriving
the kT -dependent NLO hard kernel from their difference. The infrared finiteness of the hard kernel
confirms the application of the kT factorization theorem to B meson semileptonic decays. The NLO
pion wave function is identical to those constructed from the pion transition and electromagnetic
form factors, consistent with its universality. Choosing the renormalization and factorization scales
lower than the B meson mass, the NLO corrections are under control: they amount only up to 30%
of the form factors at large recoil of the pion, when varying models for the meson wave functions.

PACS numbers: 12.38.Bx, 12.38.Cy, 12.39.St, 13.20.He

I. INTRODUCTION

B meson transition form factors are an essential input of the factorization approaches to nonleptonic two-body
B meson decays, such as the perturbative QCD (PQCD) approach [1, 2] based on the kT factorization theorem [3–
8]. For next-to-leading-order (NLO) contributions in leading-twist PQCD, the vertex corrections, the quark loops,
and the magnetic penguins associated with the weak decay vertices in factorizable emission amplitudes have been
calculated [9–11]. As explained in [9], the above corrections may be the most crucial NLO pieces for understanding
the known B → ππ and B → πK puzzles, which result from the large observed π0π0 branching ratio, and from the
dramatically different direct CP asymmetries between the π∓K± and π0K± modes, respectively. There have been
many applications of this NLO PQCD formalism to nonleptonic two-body B and Bs meson decays in the literature.
For NLO corrections to spectator diagrams, we have identified the so-called Glauber divergences, in additional to
those which are absorbed into hadron wave functions, and summed them into a phase factor to all orders [12]. It was
observed that the phase factor modifies the interference pattern between the spectator diagrams, and further improves
the resolution of the B → ππ, πK puzzles in NLO PQCD. At the same level of accuracy, we need to calculate NLO
corrections to the B meson transition form factors for completeness.
In this paper we shall extend the NLO framework for the pion electromagnetic form factor in the kT factorization

[13] to the B → π transition form factors. In this framework light partons in both QCD quark diagrams and effective
diagrams for hadron wave functions are off mass shell by k2T [14, 15]. Not only the collinear divergences from gluon
emissions collimated to the pion, but also the soft divergences from gluon exchanges between the two mesons exist.
Compared to the pion form factor [13], a new point is that an infrared regulator associated with the b quark is not
needed. Due to its finite mass, gluons radiated by the b quark do not generate collinear divergences. Soft divergences
can be regularized either by the virtuality of internal particles, or by the virtuality k2T of other light partons, to which
the radiative gluons attach. That is, the b quark remains on-shell in the above framework, a condition which justifies
the approximation of the b quark field by the effective heavy-quark field for defining the B meson wave function.
The NLO pion wave function is found to be identical to those constructed in the pion electromagnetic and transition
form factors [13, 15], consistent with its universality. Note that the diagrams considered here differ from those in the

http://arxiv.org/abs/1201.5066v2


2

QCD-improved factorization (QCDF) approach [16] and in the soft-collinear effective theory (SCET) [17], which are
based on the collinear factorization theorem [18]: there is no end-point singularity in the kT factorization, so it is not
necessary to introduce soft form factors [19] or to perform the zero-bin subtraction [20] in our calculation.
It will be demonstrated that the collinear and soft divergences in the quark diagrams are cancelled by those in the

effective diagrams for the B meson and pion wave functions. Taking the difference of the above sets of diagrams,
we derive the kT -dependent NLO hard kernel at leading twist for the B → π transition form factors. The infrared
finiteness of the hard kernel confirms the application of the kT factorization theorem to B meson semileptonic decays
[21]. Similar to the analysis in [13, 15], both the large double logarithms αs ln

2 kT and αs ln
2 x, x being a parton

momentum fraction, are identified. The former is absorbed into the B meson and pion wave functions and summed
to all orders in the coupling constant αs by the kT resummation [1], and the latter is absorbed into a jet function
and summed to all orders by the threshold resummation [22]. Due to the dominant soft dynamics associated with
the b quark, the effect of the kT resummation from the B meson side is minor. The renormalization scale µ and the
factorization scale µf are introduced by higher-order corrections to the quark diagrams and to the effective diagrams,
respectively. Choosing µ and µf appropriately, with both being lower than the B meson mass as postulated in [2, 7],
the NLO corrections are under control: they amount only up to 30% of the form factors at large recoil of the pion,
when varying models for the meson wave functions.
In Sec. II we calculate the O(α2

s) QCD quark diagrams for the B → πℓν̄ semileptonic decay, the O(αs) effective
diagrams for the B meson and pion wave functions, and their convolutions with the O(αs) hard kernel. Since the
kT factorization is appropriate for QCD processes dominated by contributions from small x [14], we shall keep only
terms in leading power of x. The important double logarithms are identified, and the kT -dependent NLO hard kernel
is presented. Section III contains the numerical investigation, in which we examine the dependence of the NLO
contributions to the B → π transition form factors on the renormalization and factorization scales, and on the shape
of the B meson and pion wave functions. Section IV is the conclusion.

II. NLO CORRECTIONS

In this section we calculate the O(α2
s) quark diagrams for the B → πℓν̄ semileptonic decay, and the O(αs) effective

diagrams for the B meson and pion wave functions in the Feynman gauge. The B → π transition form factors are
defined via the matrix element

〈π(P2)|ūγµb|B(P1)〉 = f+(q2)(Pµ
1 + Pµ

2 ) + [f0(q2)− f+(q2)]
m2

B −m2
π

q2
qµ, (1)

where mB (mπ) is the B meson (pion) mass, and q = P1 − P2 is the transfer momentum. The momentum P1

(P2) of the B meson (pion) is chosen as P1 = P+
1 (1, 1,0T ) (P2 = (0, P−

2 ,0T )) with the component P+
1 = mB/

√
2

(P−
2 = ηmB/

√
2). The large recoil region of the pion corresponds to the energy fraction η ∼ O(1). According to the

kT factorization, the anti-quark q̄ carries the momentum k1 = (x1P
+
1 , 0,k1T ) in the B meson and k2 = (0, x2P

−
2 ,k2T )

in the pion, x1 and x2 being the momentum fractions, as labelled in the leading-order (LO) quark diagrams in Fig. 1.
We postulate the hierarchy

m2
B ≫ x2m

2
B ≫ x1m

2
B ≫ x1x2m

2
B, k

2
1T , k

2
2T , (2)

in the small-x region, which is roughly consistent with the order of magnitude: x2 ∼ 0.3, x1 ∼ 0.1, mB ∼ 5 GeV, and
kT <∼ 1 GeV. Under the above hierarchy, only those terms that do not vanish in the x → 0 and kT → 0 limits are
kept, so the expressions of our NLO results will be greatly simplified.
To obtain the LO hard kernels, we sandwich Fig. 1 with the following leading-twist spin projectors for the B meson

and the pion [16, 23]

1

2
√
Nc

(6P1 +mB)γ5

[

6n+φ
(+)
B (x1) +

(

6n− − k+1 γ
ν
⊥

∂

∂kν
1T

)

φ
(−)
B (x1)

]

,
1√
2Nc

γ5 6P2φπ(x2) , (3)

respectively, where the dimensionless vectors are defined by n+ = (1, 0,0T ), and n− = (0, 1,0T ) along P2, and Nc

is the number of colors. The contributions proportional to the B meson distribution amplitudes φ
(+)
B and φ

(−)
B from

Fig. 1(a) are computed as

H(0)
a (x1, k1T , x2, k2T ) = −4g2CF

[x2ηφ
(+)
B (x1) + φ

(−)
B (x1)]P2

µ

x2η(x1x2ηm2
B + |k1T − k2T |2)

φπ(x2), (4)
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k2
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FIG. 1: Leading-order quark diagrams for the B → π transition form factors with ⊗ representing the weak vertex.

with the strong coupling g, and the color factor CF . To reach the above expression, we have applied the hierarchy
x2m

2
B ≫ k22T in Eq. (2) to the internal b quark propagator. The denominator x1x2ηm

2
B + |k1T − k2T |2 comes from

the virtuality of the LO hard gluon, in which the |k1T − k2T |2 term smears the end-point singularity from small x2.
Similarly, Fig. 1(b) leads to the amplitude

H
(0)
b (x1, k1T , x2, k2T ) = −4g2CF

(ηP1
µ − P2

µ)φ
(+)
B (x1) + P2

µφ
(−)
B (x1)

η(x1x2ηm2
B + |k1T − k2T |2)

φπ(x2). (5)

Comparing Eqs. (4) and (5), it is easy to see that the term proportional to φ
(−)
B from Fig. 1(a) dominates numerically

according to the hierarchy in Eq. (2). As explained above, the B → π form factors receive major contributions from
the small-x region, in which the kT factorization is an appropriate framework. Since the amplitude from Fig. 1(b) is

suppressed by a power of x2, we will not consider the NLO corrections to H
(0)
b (x1, k1T , x2, k2T ), and focus on those to

Fig. 1(a) below. The term proportional to P1
µ in Eq. (5) gives the symmetry breaking effect [16], which is calculable

even in the collinear factorization, as convoluted with φ
(+)
B (x1) ∼ x1 at small x1.

A. NLO Quark Diagrams

The NLO corrections to Fig. 1(a) contain Figs. 2, 3, and 4 for the self-energy corrections, the vertex corrections,
and the box and pentagon diagrams, respectively. The ultraviolet poles are extracted in the dimensional reduction
[24] in order to avoid the ambiguity from handling the matrix γ5. We adopt the following convenient dimensionless
ratios

δ1 =
k21T
m2

B

, δ2 =
k22T
m2

B

,

δ12 =
x1x2ηm

2
B + |k1T − k2T |2

m2
B

, (6)

as presenting our results. The infrared poles are then identified as the logarithms ln δ1 and ln δ2.
The self-energy corrections in Fig. 2 give

G
(1)
2a = −αsCF

4π

[

6

δ1

(

1

ǫ
+ ln

4πµ2

m2
Be

γE

+
5

3

)

+
1

2

(

1

ǫ
+ ln

4πµ2

m2
Be

γE

+ 2 ln
m2

g

m2
B

− 1

)]

H(0), (7)

G
(1)
2b = −αsCF

8π

[

1

ǫ
+ ln

4πµ2

δ1m2
Be

γE

+ 2

]

H(0), (8)

G
(1)
2c,2d = −αsCF

8π

[

1

ǫ
+ ln

4πµ2

δ2m2
Be

γE

+ 2

]

H(0), (9)

G
(1)
2e = −αsCF

4π

[

6

x2η

(

1

ǫ
+ ln

4πµ2

m2
Be

γE

+
5

3

)

+

(

1

ǫ
+ ln

4πµ2

m2
Be

γE

+ 4 ln(x2η)− 5

)]

H(0), (10)

G
(1)
2f+2g+2h+2i =

αs

4π

[(

5

3
Nc −

2

3
Nf

)(

1

ǫ
+ ln

4πµ2

δ12m2
Be

γE

)]

H(0), (11)



4

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 2: Self-energy corrections to Fig. 1(a).

where 1/ǫ represents the ultraviolet pole, µ is the renormalization scale, γE is the Euler constant, Nf is the number

of quark flavors, and H(0) denotes the leading-twist LO hard kernel proportional to P2
µ,

H(0)(x1, k1T , x2, k2T ) = −4g2CFP2
µ

x2ηδ12m2
B

. (12)

The above expressions are basically similar to the corresponding ones obtained in the pion electromagnetic form
factor [13]. We emphasize only that Fig. 2(a), the self-energy correction to the b quark, requires a mass renormalization
as indicated by the first term in the square brackets of Eq. (7). The finite piece of the first term is then absorbed,
with the relation (P1 − k1)

2 −m2
b = −k21T , into the redefinition the b quark mass,

1

(P1 − k1)2 −m2
b

[

1− αsCF

4π

6

δ1

(

ln
µ2

m2
B

+
5

3

)]

=
1

(P1 − k1)2 −m2
b(µ)

, (13)

leading to the pole mass

mb(µ) = mb

[

1 +
αs

π

(

ln
µ2

m2
B

+
5

3

)]

. (14)

In this work we shall not differentiate mb(µ) from mB, because the distinction between them contributes at next-to-
leading power. The second term in the square brackets of Eq. (7) represents the correction to the b quark wave function.
As explained before, we shall consider an on-shell valence b quark, so the involved soft divergence is regularized by a
gluon mass mg, which will be cancelled by the corresponding soft divergence in the effective diagram Fig. 5(a) below.
The results from the vertex corrections in Fig. 3 are summarized as

G
(1)
3a =

αsCF

4π

[

1

ǫ
+ ln

4πµ2

m2
Be

γE

− 2 ln

(

δ2
η

)

(1 + lnx2) + ln2 x2 −
π2 − 3

2

]

H(0), (15)

G
(1)
3b = − αs

8πNc

[

1

ǫ
+ ln

4πµ2

m2
Be

γE

+ 4 ln(x2η)

]

H(0), (16)

G
(1)
3c = − αs

8πNc

[

1

ǫ
+ ln

4πµ2

δ12m2
Be

γE

− 2 ln

(

δ1
δ12

)

ln

(

δ2
δ12

)

− 2 ln

(

δ1δ2
δ212

)

− 2π2

3
+

9

2

]

H(0), (17)

G
(1)
3d =

αsNc

8π

[

3

ǫ
− 3γE + 3 ln

4πµ2

δ12m2
Be

γE

+ 2 ln

(

δ212
δ1δ2

)

+ 7

]

H(0), (18)

G
(1)
3e =

αsNc

8π

[

3

ǫ
+ 3 ln

4πµ2

m2
Be

γE

− 1

2
ln2
(

δ12
η2

)

+ 2(lnx2 − 1) ln

(

x1

η

)

− π2

2
+ 3

]

H(0). (19)
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(a) (b) (c)

(d) (e)

FIG. 3: Vertex corrections to Fig. 1(a).

(d) (e) (f)

(b)(a) (c)

FIG. 4: Box and pentagon diagrams.

The amplitude from Fig. 3(a) depends only on the regulator δ2, because the radiative gluon attaches to the virtual b
quark line. The double logarithm 2 ln δ2 lnx2 leads to the known Sudakov logarithm ln2 δ2 and the known threshold
logarithm ln2 x2 [13, 15], as reexpressed in the form

2 ln δ2 lnx2 = ln2 δ2 + ln2 x2 − ln2
δ2
x2

. (20)

The radiative gluon in Fig. 3(b) attaches to the massive valence b quark and the virtual b quark, so Eq. (16) is infrared
finite. The radiative gluon in Fig. 3(c) attaches to the light valence anti-quarks, such that both the collinear and soft
divergences are produced, with the latter being denoted by the product ln δ1 ln δ2. This term can be absorbed neither
into the B meson wave function nor into the pion wave function. Since the radiative gluon attaches to the virtual LO
hard gluon in Fig. 3(d), the soft divergence does not appear Eq. (18). Equations (17) and (18) are symmetric under
the exchange of the regulators δ1 and δ2, as they should. Similar to Fig. 3(b), Fig. 3(e) also gives an infrared finite
contribution.
The box diagrams and the pentagon diagrams in Fig. 4 lead to the amplitudes

G
(1)
4a = −αsNc

4π

[

ln

(

x2η
2

δ2

)

+ 1

]

x2H
(0), (21)

G
(1)
4c = − αs

4πNc

[

ln

(

x1η

δ1

)

ln

(

δ12
δ2

)

+
π2

6

]

H(0), (22)

G
(1)
4d = −αsCF

4π

[

ln2
(

δ1
x2
1

)

− ln2 x1 −
7π2

3

]

H(0), (23)
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G
(1)
4e =

αs

8πNc

[

ln2
(

x2η
2

δ2

)

+ π2

]

H(0), (24)

G
(1)
4f =

αs

8πNc

[

ln

(

δ12
δ2

)(

ln(δ12δ2)− 4 ln(x2η)

)]

H(0). (25)

Note that Eq. (21) is power-suppressed in the small x2 region, while the corresponding diagram gives a leading
amplitude in the pion form factor [13]. The difference is attributed to the spin projectors: it is 6n− ∝ γ+ on the B
meson side here, but 6P1 ∝ γ− on the initial pion side in the latter case. Simply counting the sequence of the gamma
matrices, it is easy to understand that Fig. 4(a) does not produce an amplitude proportional to H(0) at leading power.
Figure 4(b) is a two-particle reducible diagram, so its contribution will be cancelled by the corresponding effective
diagram for the pion wave function [13], and needs not to be computed. Figure 4(c) also contains the soft divergence
denoted by the ln δ1 ln δ2 term, which cancels that in Fig. 3(c). It seems that Fig. 4(d) generates a collinear divergence,
as the gluon on the right is parallel to the light anti-quark in the pion. However, a careful look at the sequence of the
gamma matrices, similar to that for Fig. 4(a), reveals power suppression on this collinear divergence. Equation (24)
does not depend on an infrared regulator associated with the massive valence b quark, because δ2 alone is enough to
regularize the collinear and soft divergences. The collinear divergence associated with the light valence anti-quark on
the B meson side is also power-suppressed in Fig. 4(f), so Eq. (25) does not contain ln δ1.
The amplitudes from all the NLO quark diagrams are summed into

G(1) =
αsCF

4π

[

21

4

(

1

ǫ
+ ln

4πµ2

m2
Be

γE

)

− ln2 δ1 +

(

4 lnx1 −
3

2

)

ln δ1 + ln
m2

B

m2
g

− (2 lnx2 + 3) ln δ2

−55

16
ln2 x1 +

7

16
ln2 x2 +

9

8
lnx1 lnx2 +

7 ln η − 18

8
lnx1 +

7 ln η − 36

8
lnx2

− ln η(7 ln η + 4)

16
+

23

16
π2 +

235

16

]

H(0), (26)

for Nf = 6. The ultraviolet pole in the above expression is the same as in the pion electromagnetic form factor, which
determines the renormalization-group (RG) evolution of the coupling constant αs.

B. NLO Effective Diagrams

The O(αs) B meson wave function Φ
(1)
B [25] and the O(αs) pion wave function Φ

(1)
π [14, 26] collect the effective

diagrams from the matrix elements of the leading Fock states

ΦB(x1, k1T ;x
′
1, k

′
1T ) =

∫

dz−

2π

d2zT
(2π)2

e−ix′

1P
+

1
z−+ik′

1T ·zT 〈0|q̄(z)Wz(n1)
†W0(n1) 6 n−Γhv(0)|hv q̄(k1)〉, (27)

Φπ(x2, k2T ;x
′
2, k

′
2T ) =

∫

dy+

2π

d2yT
(2π)2

e−ix′

2P
−

2
y++ik′

2T ·yT

×〈0|q̄(y)Wy(n2)
†W0(n2) 6 n+γ5q(0)|u(P2 − k2)q̄(k2)〉, (28)

respectively, with z = (0, z−, zT ) and y = (y+, 0,yT ) being the coordinates of the anti-quark field q̄, respectively, hv

the effective heavy-quark field, and Γ an appropriate gamma matrix. In the above expressions the Wilson line Wz(n1)
with n2

1 6= 0 is written as

Wz(n1) = P exp

[

−ig

∫ ∞

0

dλn1 · A(z + λn1)

]

, (29)

and the definition of the Wilson line Wy(n2) is similar. It is understood that the two Wilson lines Wz(n1) and W0(n1)
(Wy(n2) and W0(n2)) are connected by a vertical link at infinity [27, 28]. Equation (27) ((28)) produces additional
light-cone singularities [25, 29, 30] from the region with a loop momentum collinear to n− (n+), as the Wilson line
direction approaches the light cone, i.e., as n1 → n− (n2 → n+) [29]. Hence, n

2
1 and n2

2 serve as the infrared regulators
for the light-cone singularities in our formalism. The B meson and pion wave functions then depend on the scales
ζ21 ≡ 4(n1 · P1)

2/|n2
1| and ζ22 ≡ 4(n2 · P2)

2/|n2
2|, respectively, whose variation is regarded as a factorization-scheme

dependence. This scheme dependence, entering the hard kernel when taking the difference between the quark diagrams
and the effective diagrams, can be minimized by adhering to fixed n2

1 and n2
2.
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(g) (h)

(a)

(f)

(b) (c) (d) (e)

(i) (j)

FIG. 5: O(αs) diagrams for the B meson wave function.

We compute the convolution of the NLO wave function Φ
(1)
B with the LO hard kernel H(0) over the integration

variables x′
1 and k′

1T ,

Φ
(1)
B ⊗H(0) ≡

∫

dx′
1d

2k′
1TΦ

(1)
B (x1,k1T ;x

′
1,k

′
1T )H

(0)(x′
1,k

′
1T , x2,k2T ). (30)

The sign of the plus component n+
1 of the vector n1 is arbitrary, which could be positive or negative (n−

1 has a positive
sign, the same as of P−

2 ). Choosing n+
1 < 0, i.e., n2

1 < 0 as in [1, 7, 31], we derive, from Figs. 5(a)-5(g),

Φ
(1)
5a ⊗H(0) =

αsCF

4π

(

1

ǫ
+ ln

4πµ2
f

m2
ge

γE

)

H(0), (31)

Φ
(1)
5b ⊗H(0) = −αsCF

8π

(

1

ǫ
+ ln

4πµ2
f

δ1m2
Be

γE

+ 2

)

H(0), (32)

Φ
(1)
5c ⊗H(0) = −αsCF

4π

(

ln2
δ1
x2
1

)

H(0), (33)

Φ
(1)
5d ⊗H(0) = −αsCF

4π
ln

ζ21
m2

B

(

1

ǫ
+ ln

4πµ2
f

m2
ge

γE

)

H(0), (34)

Φ
(1)
5e ⊗H(0) =

αsCF

4π
ln

ζ21
m2

B

(

ln
ζ21
m2

g

+
1

2
ln

ζ21
m2

B

+ 2 lnx1

)

H(0), (35)

Φ
(1)
5f ⊗H(0) =

αsCF

4π

(

1

ǫ
+ ln

4πµ2
f

x2
1ζ

2
1e

γE

− ln2
δ1m

2
B

x2
1ζ

2
1

− 2 ln
δ1m

2
B

x2
1ζ

2
1

+
π2

3

)

H(0), (36)

Φ
(1)
5g ⊗H(0) =

αsCF

4π

(

ln2
δ1m

2
B

x2
1ζ

2
1

− 2π2

3

)

H(0), (37)

µf being the factorization scale. The two-particle reducible diagrams Figs. 5(a) and 5(c) are calculated, since the
effective heavy-quark field employed in the B meson wave function differs from the b quark field in the quark diagrams.
Though the effective diagrams and the quark diagrams have the same soft poles, the finite pieces are different, which
contribute to the NLO hard kernel. The self-energy corrections to the Wilson lines in Figs. 5(h)-5(j) yield

(

Φ
(1)
5h +Φ

(1)
5i +B

(1)
5j

)

⊗H(0) =
αsCF

2π

(

1

ǫ
+ ln

4πµ2
f

δ12m2
Be

γE

)

H(0), (38)

the same as in the pion wave function [13].
It is pointed out that the gluon mass mg has been adopted to regularize the soft divergences in the diagrams

involving the effective heavy-quark field, namely, Figs. 5(a), 5(d), and 5(e). The soft divergence in Fig. 5(a) indeed
cancels that in Fig. 2(a) as stated in the previous subsection. The mg dependence disappears in the sum of Eqs. (34)
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FIG. 6: O(αs) diagrams for the pion wave function.

and (35), which must be the case, because the gluons emitted by the b quark and attaching to other particle lines do
not generate soft divergences. The hierarchy ζ21 ≫ m2

B was employed in the derivation of Eq. (35) [25], so the large

double logarithm ln2(ζ21/m
2
B) demands an additional resummation treatment of the B meson wave function, which

will not be performed in this work. The double logarithms ln2 δ1 from the quark diagram Fig. 4(d) and from the
effective diagram Fig. 5(c) cancel each other. The double logarithms ln2

(

m2
Bδ1/(x

2
1ζ

2
1 )
)

are not only attenuated by

x2
1, but also cancel exactly between Eqs. (36) and (37). Summing all the above O(αs) contributions, we obtain

Φ
(1)
B ⊗H(0) =

αsCF

4π

[(

ln
m2

B

ζ21
+

7

2

)(

1

ǫ
+ ln

4πµ2
f

m2
Be

γE

)

− ln2 δ1 +

(

4 lnx1 −
3

2

)

ln δ1 + ln
m2

B

m2
g

+
3

2
ln2

m2
B

ζ21
− (2 lnx1 − 1) ln

m2
B

ζ21
− 4 ln2 x1 − 2 ln(x2η)−

π2

3
− 1

]

H(0). (39)

We then compute the convolution of the NLO wave function Φ
(1)
π with the LO hard kernel H(0) over the integration

variables x′
2 and k′

2T ,

H(0) ⊗ Φ(1)
π ≡

∫

dx′
2d

2k′
2TH

(0)(x1,k1T , x
′
2,k

′
2T )Φ

(1)
π (x2,k2T ;x

′
2,k

′
2T ). (40)

The corrections from Figs. 6(a)-6(j) are summarized as

H(0) ⊗ Φ
(1)
6a = H(0) ⊗ Φ

(1)
6b = −αsCF

8π

(

1

ǫ
+ ln

4πµ2
f

δ2m2
Be

γE

+ 2

)

H(0), (41)

H(0) ⊗ Φ
(1)
6c = 0, (42)

H(0) ⊗ Φ
(1)
6d =

αsCF

4π

(

1

ǫ
+ ln

4πµ2
f

δ2m2
Be

γE

− ln2 ζ22
δ2m2

B

+ ln
ζ22

δ2m2
B

+ 2− π2

3

)

H(0), (43)

H(0) ⊗ Φ
(1)
6e =

αsCF

4π

(

ln2
x2ζ

2
2

δ2m2
B

+ π2

)

H(0), (44)

H
(0)
b ⊗ Φ

(1)
6f =

αsCF

4π

(

1

ǫ
+ ln

4πµ2
f

δ2m2
Be

γE

− ln2 x2
2ζ

2
2

δ2m2
B

+ ln
x2
2ζ

2
2

δ2m2
B

+ 2− π2

3

)

H(0), (45)

H(0) ⊗ Φ
(1)
6g =

αsCF

4π

(

ln2
δ2m

2
B

x2
2ζ

2
2

− π2

3

)

H(0), (46)

H(0) ⊗
(

Φ
(1)
6h +Φ

(1)
6i +Φ

(1)
6j

)

=
αsCF

2π

(

1

ǫ
+ ln

4πµ2
f

δ12m2
Be

γE

)

H(0), (47)

which are similar to those extracted from the pion transition and electromagnetic form factors [13, 15], but with
the hard scale Q being replaced by mB here. This similarity supports the universality of the pion wave function.
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Summing all the above O(αs) contributions, we have

H(0) ⊗ Φ(1)
π =

αsCF

4π

[

3

(

1

ǫ
+ ln

4πµ2
f

m2
Be

γE

)

− ln δ2(2 lnx2 + 3) + 2 ln
ζ22
m2

B

(lnx2 + 1)

−2 ln δ12 + lnx2(lnx2 + 2) + 2

]

H(0). (48)

We stress that the ultraviolet poles are different in Eqs. (39) and (48), since the former involves the effective heavy-
quark field, instead of the b quark field. That is, the B meson and pion wave functions exhibit different evolutions as
illustrated below. First, the B meson decay constant, defined via the matrix element with the effective heavy-quark
field, evolves with an energy scale. Hence, part of the lnµf term in Eq. (39) should be absorbed into fB(µf) through
the RG equation in the heavy quark effective theory (HQET)

(

µ
d

dµ
+

αsCF

4π
γf

)

fB(µf) = 0, (49)

with the anomalous dimension γf = −3 at one loop [32]. The RG equation for the B meson wave function without
the decay constant, ΦB(x1, µf )/fB(µf), is then written as

(

µ
d

dµ
+

αsCF

4π
γB

)

ΦB(x1, µf )

fB(µf)
= 0, (50)

where the anomalous dimension

γB = −2

(

ln
m2

B

ζ21
+ 2

)

, (51)

governs part of the RG evolution in the kT factorization formulas for the B → π form factors [1, 21].

C. NLO Hard Kernel

The infrared-finite kT -dependent NLO hard kernel for the B → π transition form factors is derived by taking the
difference between the quark diagrams and the effective diagrams [14]

H(1)(x1,k1T , x2,k2T ) = G(1)(x1,k1T , x2,k2T )

−
∫

dx′
1d

2k′
1TΦ

(1)
B (x1,k1T ;x

′
1,k

′
1T )H

(0)(x′
1,k

′
1T , x2,k2T )

−
∫

dx′
2d

2k′
2TH

(0)(x1, k1T , x
′
2,k

′
2T )Φ

(1)
π (x2,k2T ;x

′
2,k

′
2T ). (52)

Note that αs appearing in Eqs. (26), (39), and (48) denotes the bare coupling constant, which can be rewritten as

αs = αs(µf) + δZ(µf)αs(µf), (53)

with the counterterm δZ being defined in the modified minimal subtraction scheme. We insert Eq. (53) into the
expressions of the LO and NLO quark diagrams, and of the NLO effective diagrams. The LO hard kernel H(0)

multiplied by δZ then regularizes the ultraviolet pole in Eq. (26). The ultraviolet poles in Eqs. (39) and (48) are
regularized by the counterterm of the quark field and by an additive counterterm in the modified minimal subtraction
scheme.
The NLO hard kernel for Fig. 1(a) is given by

H(1) =
αs(µf )CF

4π

[

21

4
ln

µ2

m2
B

−
(

ln
m2

B

ζ21
+

13

2

)

ln
µ2
f

m2
B

+
9

16

(

ln2 x1 + 2 lnx1 lnx2 − lnx2
2

)

+

(

2 ln
m2

B

ζ21
+

7

8
ln η − 1

4

)

lnx1 +

(

2 ln
m2

B

ζ22
+

7

8
ln η − 5

2

)

lnx2 + 2 ln
m2

B

ζ22
+

(

15

4
− 7

16
ln η

)

ln η

−1

2
ln

m2
B

ζ21

(

3 ln
m2

B

ζ21
+ 2

)

+
85

48
π2 +

219

16

]

H(0), (54)
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in which all the infrared regulators mg, δ1, and δ2 have disappeared. A choice of the scales ζ1 and ζ2 corresponds
to a factorization scheme, which should be fixed for consistency. Following the scheme ζ2 = Q2 adopted in the NLO
analysis of the pion transition and electromagnetic form factors [13, 15], we set ζ2 to m2

B. The important logarithms
ln(m2

B/ζ
2
1 ), arising from the B meson wave function, enter the hard kernel after the infrared subtraction. Instead

of performing resummation of these logarithms, we choose a sufficiently large ζ1, say, ζ1/mB = 25 in the numerical
analysis, which has been assumed for achieving the simplified result in Eq. (35). In this scheme the ln2(mB/ζ1) term
happens to cancel the large constant term in the hard kernel, and reduces the NLO correction.
Moreover, the double logarithm ln2 x2 has been absorbed into the jet function J(x2) [22] defined in the kinematic

region where the virtual b quark in Fig. 1(a) becomes almost on-shell, namely, with x2 → 0. The organization of this
important logarithm to all orders leads to the threshold resummation factor, which further suppresses the end-point
singularity from small x2 in the B → π form factors [21]. Therefore, we have to subtract the NLO jet function [15]

J (1)H(0) = −αs

4π
CF

(

ln2 x2 + lnx2 +
π2

3

)

H(0), (55)

from Eq. (54), which finally turns into

H(1) → H(1) − J (1)H(0)

=
αs(µf )CF

4π

[

21

4
ln

µ2

m2
B

−
(

ln
m2

B

ζ21
+

13

2

)

ln
µ2
f

m2
B

+
7

16
ln2(x1x2) +

1

8
ln2 x1 +

1

4
lnx1 lnx2

+

(

2 ln
m2

B

ζ21
+

7

8
ln η − 1

4

)

lnx1 +

(

7

8
ln η − 3

2

)

lnx2 +

(

15

4
− 7

16
ln η

)

ln η

−1

2
ln

m2
B

ζ21

(

3 ln
m2

B

ζ21
+ 2

)

+
101

48
π2 +

219

16

]

H(0). (56)

Because the double logarithm ln2 x1 was not resummed in [21], it is left in the above NLO hard kernel H(1). Another
double logarithm ln2(x1x2) actually arises from the approximation ln2 δ12 ≈ ln2(x1x2). This approximation makes
sense: a logarithm does not develop an end-point singularity, so the k2T term is negligible in ln δ12. Equation (56),
proportional to P2

µ, generates the NLO corrections at leading twist to the B → π transition form factors f+(q2) and
f0(q2) in Eq. (1).

III. NUMERICAL ANALYSIS

In this section we evaluate the B → π transition form factors numerically in the kT factorization up to NLO,
adopting the following non-asymptotic pion distribution amplitudes [33, 34],

φA
π (x) =

6fπ

2
√
2Nc

x(1 − x)
[

1 + a2C
3/2
2 (u) + a4C

3/2
4 (u)

]

,

φP
π (x) =

fπ

2
√
2Nc

[

1 + 0.59C
1/2
2 (u) + 0.09C

1/2
4 (u)

]

,

φσ
π(x) =

6fπ

2
√
2Nc

x(1 − x)
[

1 + 0.11C
3/2
2 (u)

]

, (57)

with the pion decay constant fπ = 130 MeV, the Gegenbauer moments a2 = 0.16 and a4 = 0.04, and the Gegenbauer
polynomials

C
1/2
1 (u) = u, C

3/2
1 (u) = 3u,

C
1/2
2 (u) = 1

2 (3u
2 − 1), C

3/2
2 (u) =

3

2
(5u2 − 1),

C
1/2
3 (u) = 1

2u(5u
2 − 3), C

3/2
4 (u) =

15

8
(21u4 − 14u2 + 1), (58)

and the variable u = 1 − 2x. The B meson distribution amplitudes inspired from a QCD sum rule analysis in the
HQET [35]

φ
(+)
B (x, b) =

fB

2
√
2Nc

x

(

mB

ω0

)2

Exp

[

−xmB

ω0
− 1

2
(ω0b)

2

]

,

φ
(−)
B (x, b) =

fB

2
√
2Nc

(

mB

ω0

)

Exp

[

−xmB

ω0
− 1

2
(ω0b)

2

]

, (59)
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FIG. 7: Renormalization scale ts(µf), defined in Eq. (61), as a function of momentum fractions x1 and x2 for a typical
factorization scale µf = 1.5 GeV and the ratio ζ1/mB = 25.

are employed, where the B meson decay constant is set to a constant fB = 214 MeV for convenience (namely,
neglecting its evolution), and the shape parameter is chosen as ω0 = 0.35 GeV.
The first issue concerns the choice of the renormalization scale µ and the factorization scale µf in order to minimize

the NLO corrections to the form factors. For the first choice, µf is set to the hard scales specified in the PQCD
approach to exclusive processes [2, 7, 36]

ta = max(
√
x2ηmB, 1/b1, 1/b2), tb = max(

√
x1ηmB, 1/b1, 1/b2), (60)

corresponding to the largest energy scales in Figs. 1(a) and 1(b), respectively. Then we utilize the freedom of choosing
µ to diminish all the single-logarithmic and constant terms in the NLO hard kernel, which is found to be

ts(µf) =

{

Exp

[

c1 +

(

ln
m2

B

ζ21
+

5

4

)

ln
µ2
f

m2
B

]

xc2
1 xc3

2

}2/21

µf , (61)

with the coefficients

c1 = −
(

15

4
− 7

16
ln η

)

ln η +
1

2
ln

m2
B

ζ21

(

3 ln
m2

B

ζ21
+ 2

)

− 101

48
π2 − 219

16
,

c2 = −
(

2 ln
m2

B

ζ21
+

7

8
ln η − 1

4

)

,

c3 = −7

8
ln η +

3

2
.

To have an idea of the magnitude of the renormalization scale µ = ts(µf), we display its behavior in the dominant
region with the small momentum fractions x1 and x2 in Fig. 7, where the factorization scale µf is fixed at its typical
value 1.5 GeV. The ratio of the NLO contributions over the total ones as a function of the transfer momentum squared
q2 is summarized in Fig. 8, which is approximately 30% for both the form factors f+(q2) and f0(q2). In the second
choice, we set both scales to µ = µf = ta (tb) in the factorization formula associated with Fig. 1(a) (1(b)). It turns out
that this simple scenario yields larger NLO corrections around 40% as shown in Fig. 8. The third choice corresponds
to µf = mB and µ = ts(µf), for which the NLO corrections are approximately 15%. However, the inverse relation
µf > µ in this case seems not to be natural. Hereafter, we shall adopt the first choice of the renormalization and
factorization scales as the default one.
The B → π transition form factors in the kT factorization up to NLO are presented in Fig. 9. It is observed that

the LO and NLO contributions exhibit the similar power-law behavior, as they should. It is not a surprise that the
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FIG. 8: Ratios of the NLO corrections over the total contributions to the B → π form factors for three different choices of the
renormalization and factorization scales.
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FIG. 9: LO and NLO contributions to the B → π form factors with the non-asymptotic pion distribution amplitudes in Eq. (57)
and the first scenario for the scale choice, µf = t and µ = ts(µf).

form factors at the maximal recoil of the pion, f+(0) = f0(0), are close to their LO value [21], even after including
the NLO contributions. The reason is that the meson wave functions have been adjusted accordingly to maintain this
value, which is regarded as an input. That is, when choosing hadron wave functions in the PQCD approach, one must
pay attention to the order in the coupling constant, at which the hadron wave functions are determined. Though the
form-factor values, treated as inputs, are not changed at higher orders, the different hadron wave functions extracted
at different orders do affect other topologies of nonleptonic two-body B meson decay amplitudes. It is worthwhile to
investigate the corrections to nonleptonic two-body B meson decays from this NLO source in future works.
To test the impact of higher conformal-spin partial waves in the pion distribution amplitudes, we plot the q2

dependence of the form factors in Fig. 10 with the asymptotic pion distribution amplitudes. Numerically, both the
form factors are reduced by about 25% for q2 ≤ 12GeV2 without the non-asymptotic Gegenbauer terms in Eq. (57).
We also investigate the effects from different models of the B meson distribution amplitudes. A model widely adopted
in the PQCD analysis is given by

φ
(+)
B (x, b) = φ

(−)
B (x, b) =

fB

2
√
2Nc

NB x2(1− x)2 Exp

[

−x2mB

2ω2
0

− 1

2
(ω0b)

2

]

, (62)
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FIG. 10: LO and NLO contributions to the B → π form factors with the asymptotic pion distribution amplitudes and the first
scenario for the scale choice, µf = t and µ = ts(µf).
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FIG. 11: LO and NLO contributions to the B → π form factors with the B meson distribution amplitudes in Eq. (62) and the
first scenario for the scale choice: µf = t and µ = ts(µf ).

with the normalization constant NB defined via
∫

dxφ
(+)
B (x, 0) = fB/(2

√
2Nc). Note that the two leading B meson

distribution amplitudes have been assumed to be equal for the purpose of numerical estimate, which do not obey the
equations of motion [37]. Besides, it exhibits an asymptotic behavior at x → 0 different from that derived in [38]. The
corresponding q2 dependence in Fig. 11 indicates that the form factors with the model in Eq. (62) are approximately
25% smaller than those with the model in Eq. (59). It is interesting to notice in Fig. 11 that the NLO corrections
are relatively small, less than 20% of the total contributions. The reason is attributed to the fact that the end-point
region of x1 is strongly suppressed by this model and the double logarithm ln2 x1 in the NLO hard kernel does not
play an essential role.
The extraction of the Cabibbo-Kobayashi-Maskawa matrix element |Vub| [39] from the semileptonic decay B → πℓν̄

is of intensive phenomenological interest recently (see [34] and references therein). Here we comment on the consistency
of the B → π form factors predicted in the NLO kT factorization with those in the literature, in view of the extraction
of |Vub|. For this purpose, we also estimate the theoretical uncertainties of the form factors f+(q2) and f0(q2) from
the variations of the Gegenbauer moments a2 and a4 in the twist-2 pion distribution amplitudes, from the variations
of the chiral scale m0 ≡ m2

π/(mu+md), mu (md) being the u (d) quark mass, involved in the two-parton twist-3 pion
distribution amplitudes [40], and from the variations of the shape parameter ω0 in the B meson distribution amplitudes
in Eq. (59). Unfortunately, the extraction of ω0 still suffers large uncertainty from QCD sum-rule calculations. We
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FIG. 12: LO and NLO contributions to the B → π form factors with the B meson distribution amplitudes in Eq. (59), however,
varying the shape parameter ω0 from 0.30 GeV to 0.40 GeV and the first scenario for the scale choice: µf = t and µ = ts(µf ).
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FIG. 13: Theoretical uncertainties of the B → π form factors with the first scenario for the scale choice: µf = t and µ = ts(µf ).

simply take ω0 = 0.35± 0.05GeV to illustrate the effect on the form factors from the variation of ω0. It is seen from
Fig. 12 that both the form factors f+(q2) and f0(q2), including LO and NLO contributions, increase (decrease) by 15 %
with the decrease (increase) of ω0. Combining the uncertainties due to a2(1GeV) = 0.16+0.09

−0.07, a4(1GeV) = 0.04+0.12
−0.08,

m0(1GeV) = 1.74+0.67
−0.38GeV, and ω0 = 0.35 ± 0.05GeV, we predict the form factors f+(q2) and f0(q2) as displayed

in Fig. 13. Fitting to the BaBar data on the integrated B → πℓν̄ branching ratio within the region 0 ≤ q2 ≤ 8 GeV2

[41], where the leading-twist kT factorization is expected to work well, we obtain

|Vub| = 2.90+0.77
−0.80

∣

∣

th.
+0.13
−0.14

∣

∣

exp.
. (63)

The above value is in good agreement with that in [41], which employed the data on q2 bins in the whole kinematic
region and the lattice QCD results of the B → π form factors from the FNAL/MILC Collaboration [42]. Equation (63),
however, differs from |Vub| = 3.59+0.38

−0.33

∣

∣

th.
± 0.11

∣

∣

exp.
extracted in [34], where the B → π form factors were computed

in the light-cone sum rule (LCSR). The distinction can be traced back to the different q2 dependence of the form
factor f+(q2) predicted in the kT factorization and in LCSR, albeit with the similar f+(0) value in both approaches.
More dedicated efforts on the study of the shape of B → π form factors in QCD is in demand in order to resolve the
potential difference in the extraction of |Vub|.
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IV. CONCLUSION

In this paper we have calculated the NLO corrections to the B → π transition form factors at leading twist in
the kT factorization theorem. Both the collinear and soft divergences in the NLO quark diagrams and in the NLO
effective diagrams for meson wave functions are regularized by the off-shellness k2T of light partons. The b quark
remains on-shell, such that it can be approximated by the standard effective heavy quark in the kT factorization. The
key is that the soft gluons radiated by the b quark and attaching to other particle lines can be regularized by the
virtuality of other particle lines. The NLO pion wave function is the same as constructed in the pion transition and
electromagnetic form factors, confirming its universality. Compared to the pion wave function, the NLO B meson
wave function contains the additional double logarithm ln2(ζ21/m

2
B). Because of the assumed hierarchy ζ21 ≫ m2

B, the
appearance of this double logarithm demands the implementation of the resummation technique, which is expected
to minimize the scheme dependence from different choices of ζ1. This subject, together with the asymptotic behavior
of the B meson wave function in the kT factorization, will be discussed in a forthcoming work.
The exact cancellation of the infrared divergences between the quark diagrams and the effective diagrams verifies

the validity of the kT factorization for the B meson semileptonic decays at NLO level. Though the NLO hard kernel
for the B → π transition form factors contains a huge constant term, it is reduced by the large double logarithm
ln2(ζ21/m

2
B) mentioned above. This is the reason why the conventional choice of the factorization scale in the PQCD

approach, as the virtuality of internal particles, can work to render the NLO corrections under control. By tuning
the renormalization scale to cancel the single-logarithmic and constant terms, which is still lower than the B meson
mass in the dominant kinematic region, the NLO corrections are about 30% of the form factors. The effect of varying
the meson wave functions has been also investigated: the model for the B meson wave function with a stronger
suppression at a small momentum fraction, and the asymptotic model for the pion wave function lower the NLO
corrections down to 20%.
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Li, Phys. Rev. D 63, 074006 (2001); C.-D. Lü, K. Ukai and M.-Z. Yang, Phys. Rev. D 63, 074009 (2001).
[3] S. Catani, M. Ciafaloni and F. Hautmann, Phys. Lett. B 242, 97 (1990); Nucl. Phys. B 366, 135 (1991).
[4] J.C. Collins and R.K. Ellis, Nucl. Phys. B 360, 3 (1991).
[5] E.M. Levin, M.G. Ryskin, Yu.M. Shabelskii, and A.G. Shuvaev, Sov. J. Nucl. Phys. 53, 657 (1991).
[6] J. Botts and G. Sterman, Nucl. Phys. B 225, 62 (1989).
[7] H.-n. Li and G. Sterman, Nucl. Phys. B 381, 129 (1992).
[8] T. Huang and Q.-X. Shen, Z. Phys. C 50, 139 (1991); J.P. Ralston and B. Pire, Phys. Rev. Lett. 65, 2343 (1990); R. Jakob

and P. Kroll, Phys. Lett. B 315, 463 (1993); B 319, 545 (1993)(E).
[9] H.-n. Li, S. Mishima, and A.I. Sanda, Phys. Rev. D 72, 114005 (2005).

[10] H.-n. Li and S. Mishima, Phys. Rev. D 73, 114014 (2006).
[11] H.-n. Li and S. Mishima, Phys. Rev. D 74, 094020 (2006).
[12] H.-n. Li and S. Mishima, Phys. Rev. D 83, 034023 (2011).
[13] H.-n. Li, Y.-L. Shen, Y.-M. Wang, and H. Zou, Phys. Rev. D 83, 054029 (2011).
[14] M. Nagashima and H.-n. Li, Phys. Rev. D 67, 034001 (2003).
[15] S. Nandi and H.-n. Li, Phys. Rev. D 76, 034008 (2007).
[16] M. Beneke and Th. Feldmann, Nucl. Phys. B592, 3 (2001).
[17] C. W. Bauer, D. Pirjol and I. W. Stewart, Phys. Rev. D 67, 071502 (2003).
[18] G.P. Lepage and S.J. Brodsky, Phys. Rev. D 22, 2157 (1980).
[19] M. Beneke and Th. Feldmann, Nucl. Phys. B 685, 249 (2004).
[20] A.V. Manohar and I.W. Stewart, Phys. Rev. D 76, 074002 (2007).
[21] T. Kurimoto, H.-n. Li, and A.I. Sanda, Phys. Rev D 65, 014007 (2002).
[22] H.-n. Li, Phys. Rev. D 66, 094010 (2002); K. Ukai and H.-n. Li, Phys. Lett. B 555, 197 (2003).
[23] T. Huang and X.-G. Wu, Phys. Rev. D 71, 034018 (2005).



16

[24] W. Siegel, Phys. Lett. B 84, 193 (1979).
[25] H.-n. Li and H. S. Liao, Phys. Rev. D 70, 074030 (2004).
[26] H.-n. Li, Phys. Rev. D 64, 014019 (2001); M. Nagashima and H.-n. Li, Eur. Phys. J. C 40, 395 (2005).
[27] X. Ji, and F. Yuan, Phys. Lett. B 543, 66 (2002); A.V. Belitsky, X. Ji, and F. Yuan, Nucl. Phys. B 656, 165 (2003).
[28] I. O. Cherednikov and N. G. Stefanis, Nucl. Phys. B 802, 146 (2008).
[29] J.C. Collins, Acta. Phys. Polon. B 34, 3103 (2003).
[30] J.-P. Ma and Q. Wang, JHEP 0601, 067 (2006); Phys. Lett. B 642, 232 (2006).
[31] H.-n. Li, Phys. Rev. D 55, 105 (1997).
[32] M. A. Shifman and M. B. Voloshin, Sov. J. Nucl. Phys. 45, 292 (1987) [Yad. Fiz. 45, 463 (1987)]. H. D. Politzer and

M. B. Wise, Phys. Lett. B 206, 681 (1988); Phys. Lett. B 208, 504 (1988).
[33] G. Duplancic, A. Khodjamirian, Th. Mannel, B. Melic, and N. Offen, JHEP 0804, 014 (2008).
[34] A. Khodjamirian, Th. Mannel, N. Offen and Y.-M. Wang, Phys. Rev. D 83, 094031 (2011).
[35] A.G. Grozin and M. Neubert, Phys. Rev. D 55, 272 (1997).
[36] C.-H. Chou, H.-H. Shih, S.-C. Lee and H.-n. Li, Phys. Rev. D 65, 074030 (2002); P. Guo, H.-W. Ke, X.-Q. Li, C.-D. Lü
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