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Abstract

We use the QCD sum rule approach to calculate the splitting between vector

and pseudoscalar mesons containing one light and one heavy quark, and the

kinetic energy of the heavy quark. Our result for the splitting induced by the

chromomagnetic interaction agrees to the experimental data on charm and

beauty mesons. For the matrix element of the kinetic energy operator, we

obtain the value K = −(0.60 ± 0.10)GeV2.
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I. INTRODUCTION

In recent years there has been a continuous interest in the study of mesons built of one
heavy and one light quark. This interest is fuelled by a constant flow of new experimental
data and the results of lattice calculations. The main theoretical achievement in the past few
years was the development of the heavy quark effective theory (HQET, see [1] for reviews),
which provides one with a systematic tool for the study of the heavy quark limit mQ → ∞
and for the classification of corrections which are suppressed by powers of the heavy quark
mass. Physical applications of this approach include various decays of charm and beauty
mesons, for which the preasymptotical corrections ∼ 1/mQ are likely to be significant.
Considerable effort has been made in the past two years to estimate them, see e.g. [2–5],
but this task is far from being completed yet. The Lagrangian density, written in terms of
the effective heavy quark fields, contains to O(1/mQ) accuracy two additional contributions
[6,7] apart from the leading one. They are related in an obvious way to the non–relativistic
kinetic energy operator, and to the Pauli term, describing the chromomagnetic interaction.
Matrix elements of these two operators over meson states are fundamental observables in
the heavy quark effective theory, and determine the next–to–leading order corrections to
the meson masses suppressed by powers of the quark mass. The matrix element of the
chromomagnetic interaction operator is a leading contribution to the mass splitting between
vector and pseudoscalar mesons, and can be directly related to the data on the meson
spectrum. The matrix element of the kinetic energy operator contains information about
the smearing in heavy quark momentum, which is important in many applications and
contributes, e.g., to subleading form factors of semileptonic decays [8], and recently was
shown to give a significant contribution to the electron spectrum in inclusive B–decays [9].

Up to now, there exist no quantitative estimates for the kinetic energy of the heavy
quark, except for a single attempt in [4]. This task proves to be difficult for lattice QCD,
because of power divergences which need to be subtracted, see e.g. [10]. In this paper we
calculate the kinetic energy and the chromomagnetic mass splitting using the QCD sum rule
approach [11], including radiative corrections.

The presentation is organized as follows. Sec. II is introductory, and contains a short
discussion of the heavy quark effective theory, giving necessary definitions and notations.
Some results of more technical nature are given in App. A. The QCD sum rules for the
relevant three–point functions in the effective theory are derived in Sec. III. Sec. IV contains
our main result, namely the sum rule for the matrix element of the kinetic energy operator,
including two–loop radiative corrections and renormalization group improvement to two–
loop accuracy. Details of the calculation are given in Apps. B and C. Finally, in Sec. V we
give the summary and conclusions.

II. THE HEAVY QUARK EXPANSION

The dynamics of hadrons containing both light and heavy quarks can be described by
an effective field theory, in which the heavy degrees of freedom are integrated out, and
the resulting effective Lagrangian is expanded in inverse powers of the heavy quark mass.
Following [12] we introduce the heavy quark effective field hv as

2



P+Q(x) = e−imQ(v·x)hv(x), (2.1)

where

P+ =
1

2
(1+ 6v) (2.2)

is the projector on the upper components of the heavy quark field Q(x), mQ is the heavy
quark mass, and v its four–velocity. The contributions of lower components of the Q–quark
field are integrated out, producing an effective theory with the Lagrangian density [6,7]

L = h̄vi(v · D)hv +
1

2mQ
K +

1

2mQ
S + O(1/m2

Q), (2.3)

where

K = h̄v(iD
⊥)2hv (2.4)

is the operator of the non–relativistic kinetic energy, and

S =
1

2

(

αs(mQ)

αs(µ)

)3/β0

h̄vσµνgF µνhv, (2.5)

is the Pauli term. The covariant derivative is defined as Dµ = ∂µ − igAµ. In (2.4) we have
introduced projectors on the directions orthogonal to the velocity vµ:

g⊥µν = gµν − vµvν ,

(D⊥)2 = DµD
µ − (vD)2. (2.6)

The operator of the chromomagnetic interaction has a non–trivial anomalous dimension,
and the coefficient in front of it receives corrections of higher orders in the coupling constant,
CP (µ = mQ) = 1/2 + O(αs(mQ)). In contrast to this, the kinetic energy operator has zero
anomalous dimension to all orders, and its coefficient is exactly one, cf. [13]. This property
follows from a residual symmetry of the effective theory under non–relativistic boosts, and
is related to the fact that the kinetic energy term in the non–relativistic Hamiltonian is
invariant under these transformations.

Operators in the full theory (QCD) are expanded in a series of operators in the effective
theory as

OQCD =
∑

i

Ci(mQ/µ, αs(µ))OHQET
i (µ). (2.7)

The coefficients in this expansion depend on the scale µ according to the renormalization
group equations,

C(mQ/µ, αs(µ)) = C(1, αs(mQ)) exp

[

−
∫ g(mQ)

g(µ)

γ(g)

β(g)
dg

]

, (2.8)

where γ(g) is the anomalous dimension of the corresponding operator in the effective theory,
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γ = γ0
g2

16π2
+ γ1

(

g2

16π2

)2

+ . . . , (2.9)

and β(g) is the Gell-Mann–Low function

β = −g



β0
g2

16π2
+ β1

(

g2

16π2

)2

+ . . .



 . (2.10)

At the scale µ = mQ, the coefficient functions Ci are determined from the condition that the
matrix elements of effective operators, times the appropriate coefficient functions, equal the
matrix elements of the corresponding QCD operators at this scale to the required accuracy.
For the practically important cases of vector and axial currents built of one heavy and one
light quark, the heavy quark expansion reads [4,14]

q̄γµQ =

(

1 − CF
αs(mQ)

π

)

(q̄γµhv)
(µ=mQ) +

1

2
CF

αs(mQ)

π
(q̄vµhv)

(µ=mQ)

+
1

2mQ

(q̄γµi 6D⊥hv)
(µ=mQ) + O

(

1

2mQ

αs(mQ)

π

)

,

q̄γµγ5Q =

(

1 − CF
αs(mQ)

π

)

(q̄γµγ5hv)
(µ=mQ) − 1

2
CF

αs(mQ)

π
(q̄vµγ5hv)

(µ=mQ)

+
1

2mQ
(q̄γµi 6D⊥hv)

(µ=mQ) + O

(

1

2mQ

αs(mQ)

π

)

, (2.11)

where CF = (N2
c −1)/(2Nc). Invariant functions and matrix elements of operators in HQET

are most conveniently defined using the so–called trace formalism [15], which makes the spin
symmetries explicit. Following [4], we define

〈0|q̄Γhv|M(v)〉 =
1

2
F (µ)Tr{ΓM(v)}, (2.12)

where M(v) is the spin wave function

M(v) =
√

mMP+

{

−iγ5 for JP = 0−,
6ǫ for JP = 1−.

(2.13)

The relation in (2.12) is valid for an arbitrary structure of Dirac matrices Γ. To two–loop
accuracy we have

(q̄Γhv)
(µ=mQ) = (q̄Γhv)

(µ)

(

αs(mQ)

αs(µ)

)γ0/(2β0) [

1 +
γ0

8β0

(

γ1

γ0

− β1

β0

)

αs(mQ) − αs(µ)

π

]

(2.14)

with the anomalous dimensions [14,16,17]

γ0 = −4 , γ1 = −254/9 − 56π2/27 + 20nf/9 ,

β0 = 11 − 2nf/3 , β1 = 102 − 38nf/3 . (2.15)
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The effective coupling F (µ) depends on the scale in a similar way. Defining physical lepton
decay constants, e.g. for B–mesons, by

〈0|q̄γµγ5b|B(q)〉 = ifBqµ,

〈0|q̄γµb|B∗(q, ǫ)〉 = fB∗mB∗ǫµ, ǫ · q = 0, ǫ2 = −1, (2.16)

and taking into account the matching conditions in (2.11), one obtains the relations of the
physical couplings to the effective ones [3,14]:

fB
√

mB =

(

1 − 2

3

αs(mB)

π

)

F (µ = mB) + O(1/mB),

fB∗

√
mB∗ =

(

1 − 4

3

αs(mB)

π

)

F (µ = mB) + O(1/mB). (2.17)

Furthermore, we define matrix elements of the operators of kinetic energy and chromomag-
netic interaction over heavy–light mesons as

〈M(v)|K|M(v)〉 = −K Tr{M̄(v)M(v)} ,

〈M(v)|S|M(v)〉 = −dMΣ Tr{M̄(v)M(v)} . (2.18)

Here dM is defined by

P+σαβM(v)σαβ = 2dMM(v), (2.19)

yielding

dM =

{

3 for JP = 0−,
−1 for JP = 1−.

(2.20)

Note that the normalization of matrix elements is

〈M(v)|h̄vhv|M(v)〉 = 2 ·
(

−1

2

)

Tr{M̄(v)M(v)} = 2mM , (2.21)

so that

K =
〈M(v)|K|M(v)〉

〈M(v)|h̄vhv|M(v)〉 ,

Σ =
1

dM

〈M(v)|S|M(v)〉
〈M(v)|h̄vhv|M(v)〉 . (2.22)

To 1/mQ accuracy the meson masses are given by

mM = mQ + Λ̄ − 1

2mQ
[K + dMΣ], (2.23)
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where Λ̄ determines the difference between the quark and meson masses in the heavy quark
limit, and is a fundamental observable in the heavy quark effective theory. It has received
a lot of attention recently, see e.g. [3,4]. The chromomagnetic interaction determines the
splitting between pseudoscalar and vector mesons:

m2
V − m2

P = 4Σ + O(1/mQ). (2.24)

The relation (2.23) can be derived in a variety of ways and is widely known [8,9]. One
possibility is, e.g., to consider the 1/mQ expansion of suitable two–point correlation functions
in QCD near the particle–type singularity, corresponding to the lowest–lying meson state,
cf. App. A.

III. THE SUM RULES

The aim of this paper is to obtain quantitative estimates of the matrix elements K and
Σ. We use the method of QCD sum rules, see the book [18], which we apply directly to
suitable correlation functions in HQET. In particular, we consider the following three–point
correlation functions at zero–recoil:

i2
∫

dx
∫

dy eiω(v·x)−iω′(v·y)〈0|T
{

q̄(x)Γ1hv(x)K(0)h̄v(y)Γ2q(y)
}

|0〉 =

= −Tr{Γ1P+Γ2}TK(ω, ω′), (3.1)

i2
∫

dx
∫

dy eiω(v·x)−iω′(v·y)〈0|T
{

q̄(x)Γ1hv(x)S(0)h̄v(y)Γ2q(y)
}

|0〉 =

= −dMTr{Γ1P+Γ2}TΣ(ω, ω′). (3.2)

Saturating the three–point functions with hadron states, one can isolate the contribution
of interest as the one having poles in both the variables ω and ω′ at the value ω = ω′ = Λ̄:

TΣ(ω, ω′) =
Σ(µ)F 2(µ)

4(Λ̄ − ω)(Λ̄ − ω′)
+ . . .

TK(ω, ω′) =
KF 2(µ)

4(Λ̄ − ω)(Λ̄ − ω′)
+ . . . (3.3)

where the scale µ is the normalization point of the currents, and F 2(µ) is the coupling
(squared) of the effective current to the lowest–lying meson state, defined in (2.12). This
coupling, in turn, can be obtained as the residue of the pole at ω = Λ̄ in the two–point
correlation function

i
∫

d4x eiω(v·x)〈0|T
{

q̄(x)Γ1hv(x)h̄v(0)Γ2q(0)
}

|0〉 = −1

2
Tr{Γ1P+Γ2}Π(ω), (3.4)

Π(ω) =
F 2(µ)

2(Λ̄ − ω)
+ . . . (3.5)
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To derive Eqs. (3.3) and (3.5), the following relation is useful [4]:
∑

polarizations

Tr{Γ1M(v)}Tr{M̄(v)Γ2} = −2mMTr{Γ1P+Γ2}. (3.6)

For example, for the lowest–lying meson contribution to the correlation function Π(ω), one
obtains
(

1

2
F (µ)

)2

Tr{Γ1M(v)} 1

2mM(Λ̄ − ω)
Tr{M̄(v)Γ2} =

F 2(µ)

2(Λ̄ − ω)

(

−1

2

)

Tr{Γ1P+Γ2}, (3.7)

which is the result given in (3.5).
The correlation functions Π(ω), TΣ(ω, ω′), and TK(ω, ω′) can be calculated in the Euclid-

ian region, for negative ω, ω′, and receive contributions from perturbation theory and from
vacuum condensates. The results can be written in form of (double) dispersion relations,

Π(ω) =
∫ ds

s − ω
ρΠ(s),

TΣ(ω, ω′) =
∫ ∫

ds

s − ω

ds′

s′ − ω′
ρΣ(s, s′),

TK(ω, ω′) =
∫ ∫

ds

s − ω

ds′

s′ − ω′
ρK(s, s′), (3.8)

where the spectral densities are subject to direct calculation in HQET:

ρ = ρpert 〈11〉 + ρ(3) 〈q̄q〉 + ρ(4)
〈

αs

π
G2
〉

+ ρ(5) 〈q̄σgGq〉 + . . . (3.9)

The relevant Feynman diagrams, which contribute to the three–point correlation func-
tions to first order in αs, are shown in Fig. 1 for the chromomagnetic operator, and in
Figs. 2, 3, and 4 for the kinetic energy (up to dimension 4). The graphs missing there turn
out to be vanishing. Note that the leading contributions to the correlation function TΣ,
Fig. 1, are of O(αs). On the contrary, the leading perturbative contribution to the kinetic
energy is of order O(1), see Fig. 2(a).

In this section, we consider the sum rule for the chromomagnetic mass splitting, taking
into account the set of diagrams in Fig. 1, and the leading order sum rule for the kinetic
energy, taking into account the perturbative contribution in Fig. 2(a) and the leading non–
perturbative correction, which in this case is due to the mixed quark–gluon condensate. The
contribution to the kinetic energy of the quark condensate is of O(αs). The full sum rule
for the kinetic energy, with account for all the contributions in Figs. 2, 3, and 4 and with
renormalization group improvement to two–loop accuracy, is considered in detail in the next
section.

A straightforward calculation yields:

ρΠ(s) =
3

2π2
s2 − 1

2
〈q̄q〉δ(s) +

1

32
〈q̄σgGq〉δ′′(s) + O(αs),

ρK(s, s′) = − 3

4π2
s4δ(s − s′) +

3

32
〈q̄σgGq〉δ(s)δ(s′),
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ρΣ(s, s′) =
αs

π3

{

s′2(s − s′/3)θ(s − s′) + s2(s′ − s/3)θ(s′ − s)
}

− αs

3π
〈q̄q〉{sδ(s′) + s′δ(s)} +

1

48

〈

αs

π
G2
〉

δ(s − s′) − 1

48
〈q̄σgGq〉δ(s)δ(s′). (3.10)

Following the usual strategy of the QCD sum rule approach, we apply a Borel transformation
to the correlation functions in both the external momenta ω and ω′:

B̂ω(t)
1

Λ̄ − ω
=

1

t
exp(−Λ̄/t). (3.11)

The transformation B̂ω(t) introduces the Borel parameter t instead of the external momenta.
We next equate the representations of the correlation functions in terms of hadronic

states, Eqs. (3.3) and (3.5), and in terms of spectral densities, Eqs. (3.8) and (3.10). In the
latter we constrain the region of integration to the interval of duality 0 < s, s′ < ω0. Due to
the symmetry of the correlation functions, it is natural to take the two Borel parameters in
the three–point functions equal to each other, t1 = t2. The normalization of the Isgur–Wise
function at zero recoil [19], further requires that the value of the Borel parameter in the
three–point function takes twice the value as in the two–point function, t1 = t2 = 2t, and
that the values of the continuum threshold ω0 in the sum rules for two– and three–point
functions coincide. We end up with the set of sum rules1

1

2
F 2(µ)e−Λ̄/t =

ω0
∫

0

ds e−s/tρΠ(s),

1

4
F 2(µ)Ke−Λ̄/t =

ω0
∫

0

ds

ω0
∫

0

ds′ e−(s+s′)/(2t)ρK(s, s′),

1

4
F 2(µ)Σ(µ)e−Λ̄/t =

ω0
∫

0

ds

ω0
∫

0

ds′ e−(s+s′)/(2t)ρΣ(s, s′). (3.12)

The normalization scale µ should be taken to be of order of the typical Borel parameter. The
quantities Λ̄ and ω0, as well as the “working region” in the Borel parameter t are determined
from the two–point sum rule for F 2, and the sum rules for K and Σ do not contain free
parameters. In practice, it turns out to be convenient to consider the ratio of three–point and
two–point sum rules, which suppresses significantly all the sources of uncertainties. Adding
a factor 4 (cf. (2.24)) and taking into account the scale dependence, we obtain the following
sum rule for the mass splitting between vector and pseudoscalar mesons:

1In this paper we conform to the standard duality region, which is a square in the (s, s′) plane. Its

size is fixed by the continuum threshold in the corresponding two–point sum rule. Our sum rules

are not sensitive to the detailed shape of the duality region near the diagonal, which is different

from the situation considered in [20].
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m2
V − m2

P = 8

(

αs(mQ)

αs(2t)

)3/β0

ω0
∫

0

ds

ω0
∫

0

ds′ e−(s+s′)/(2t)ρΣ(s, s′)

ω0
∫

0

ds e−s/tρΠ(s)

. (3.13)

In the spectral functions, the renormalization scale is µ = 2t. A similar ratio determines the
kinetic energy K of the heavy quark:

K =

2

ω0
∫

0

ds

ω0
∫

0

ds′ e−(s+s′)/(2t)ρK(s, s′)

ω0
∫

0

ds e−s/tρΠ(s)

. (3.14)

Note that the explicit dependence on Λ̄ has cancelled out. It is, however, present implicitly
since the values of ω0 and Λ̄ are correlated.

In the numerical calculations we use the following standard values of the vacuum con-
densates (at the normalization point 1 GeV):

〈q̄q〉 = −(240 MeV)3,

〈

αs

π
G2
〉

= 0.012 GeV4,

〈q̄σgGq〉 = (0.8 GeV2)〈q̄q〉. (3.15)

In this section we use the one–loop expression for the running coupling with ΛQCD = 150 MeV
and four active flavors. The corresponding values of the coupling are αs(1GeV) = 0.40 and
αs(mB) = 0.21.

The results are shown in Fig. 5. For definiteness, we give values of the decay constant
and the chromomagnetic splitting normalized at the scale of the B–meson mass. The sum
rule for the two–point function is most stable for the value Λ̄ = (0.4 − 0.5) GeV and ω0 =
(1.0 − 1.2) GeV, see Fig. 5(a). The stability region starts already at values of the Borel
parameter of order 0.3 GeV, and stretches practically to t → ∞. It is known, however, that
stability at large values of the Borel parameter is not informative, since in this region the
sum rule is very strongly affected by the continuum model. The usual criterium that both
the higher order power corrections and the contribution of the continuum should not be very
large (say, less than (30–50)%), restricts the working region considerably. In the particular
case of the decay constant F (µ) one usually chooses 0.3 GeV < t < 1 GeV [3]. In the case of
the three–point functions, the sum rules are especially strongly affected by the subtraction
of the continuum owing to the high dimension of the spectral densities. Thus, it is especially
difficult in this case to ensure that the continuum contribution is sufficiently small, and this
requirement forces one to work in a rather narrow region of the Borel parameter, close to the
lowest possible value t ∼ 0.3 GeV. This strategy is backed up by considerable experience of
QCD sum rule calculations of higher–twist operators built of light quarks, see e.g. [21,22]. In
this paper we take the working window in the Borel parameter for the three–point functions
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(3.1) and (3.2) to be 0.3 GeV < t < 0.6 GeV. We emphasize that this region should be fixed
by considering the two–point function, and does not necessarily coincide with the stability
plateau for three–point sum rules. The remaining instability should be considered as a part
of the errors involved in the calculation.

In Fig. 5(b) we plot the right-hand side of the sum rule for the heavy quark kinetic
energy, Eq. (3.14), and in Fig. 5(c) the right-hand side of the sum rule (3.12), as a function
of the Borel parameter for two different values of the continuum threshold ω0 = 1.0 GeV
and ω0 = 1.2 GeV. The sensitivity of the sum rules to the change of ω0 and of the Borel
parameter (within the working region which is shown as shaded area) gives a conservative
estimate for the accuracy of the results. We end up with the values

(m2
V − m2

P )(µ=mB) = (0.46 ± 0.14) GeV2 , (3.16)

K(LO) = −(0.54 ± 0.09) GeV2 . (3.17)

The given value of the mass splitting between vector and pseudoscalar mesons is our final
result whereas the analysis of K will be extended to next–to–leading order in the next section
(the superscript “LO” stands for “leading–order” result). The experimental values for the
mass splitting in beautiful and charmed mesons are [23]

m2
B∗ − m2

B ≃ 0.48 GeV2 ,

m2
D∗ − m2

D ≃ 0.56 GeV2 . (3.18)

These values are close to each other which indicates the smallness of higher order corrections.
The measured splittings agree quite well with our result in (3.16).

IV. THE ORDER αs CORRECTIONS TO THE KINETIC ENERGY

In this section we calculate the O(αs) corrections to the sum rule for the kinetic energy.
This calculation is laborious, but worthwhile, since in the case of the coupling F the radiative
corrections proved to be very large, see [3,24]. Following [3], we introduce the heavy–light
current ĴΓ, which is renormalization group invariant to two–loop accuracy (cf. (2.14)),

ĴΓ = (q̄Γhv)
(µ)αs(µ)−γ0/(2β0)

(

1 − δ
αs(µ)

π

)

, (4.1)

with

δ =
γ0

8β0

(

γ1

γ0
− β1

β0

)

≈ −0.23 . (4.2)

The corresponding invariant coupling F̂ is defined as (cf. (2.12)):

F̂ = F (µ) αs(µ)−γ0/(2β0)

(

1 − δ
αs(µ)

π

)

. (4.3)
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The leading– and next–to–leading order anomalous dimensions of ĴΓ, γ0 and γ1, as well as
the coefficients of the β–function are given in (2.15).

The two–point correlation function of the invariant currents ĴΓ can be expressed in terms
of invariant quantities and the strong coupling αs(µ) at the scale of the external momentum,
µ = −2ω. A calculation of radiative corrections to the two–point function (3.4) leads to the
following sum rule for the invariant coupling F̂ [3]:

F̂ 2e−Λ̄/t =

=
3

π2
αs(2t)

−γ0/β0

ω0
∫

0

ds s2 e−s/t

{

1 +
αs(2t)

π

(

17

3
+

4

9
π2 − 2δ +

γ0

2
ln

s

t

)

}

−
{

1 +
αs(2t)

π

(

2 − ∆γ1

8β0

)}

O3 +
O5

16t2
αs(2t)

(γ(5)−2γ0)/(2β0) , (4.4)

which is valid to two–loop accuracy. Here we have introduced the scale–invariant condensates

O3 = 〈q̄q〉(µ)αs(µ)−γ
(3)
0 /(2β0)







1 − αs(µ)

π

γ
(3)
0

8β0





γ
(3)
1

γ
(3)
0

− β1

β0











,

O4 =
〈

αs

π
G2
〉

[1 + O(αs)] ,

O5 = 〈q̄σgGq〉(µ)αs(µ)−γ
(5)
0 /(2β0) [1 + O(αs)] . (4.5)

The leading–order anomalous dimensions are γ
(3)
0 = 2γ0 = −8, γ

(5)
0 = −4/3, the next–to–

leading order anomalous dimension of the quark condensate equals γ
(3)
1 = −404/9+40nf/9.

As a shorthand, we use ∆γ1 = 2γ1 −γ
(3)
1 = 704/9−112π2/27. Apart from an overall scaling

factor 2αs(2t)
−γ0/(2β0), the sum rule for F̂ in (4.4) differs from the one given in the last

section by terms of O(αs). As for the determination of Σ and K to one–loop accuracy, we
neglected these terms and consistently used the leading–order spectral densities (3.10) in
the sum rules (3.13) and (3.14).

Our aim now is to calculate the double spectral function ρK defined in Eq. (3.8) to next–
to–leading order. The calculation of the perturbative two–loop corrections to the diagram
Fig. 2(a) is the most difficult task. The necessary techniques are explained in App. B, while
the contributions of the individual diagrams in Fig. 2 are collected in App. C. The result
reads:

ρpert
K (s, s′) =

(

− 3

4π2

)

s4 δ(s − s′)

{

1 +
αs(µ)

π

(

41

9
+

4

9
π2 +

γ0

2
ln

2s

µ

)}

− αs(µ)

π

1

2π2
(s + s′)

(

s2 + s′2 − |s2 − s′2|
)

. (4.6)

In Feynman gauge, the spectral densities of individual diagrams contain terms like
d/ds ln |s − s′| which remind of the cancellation of infra–red divergences between partic-
ular discontinuities, corresponding to real and virtual gluon emission. In the sum given
above, however, they cancel.
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The contribution of the quark condensate is easier to calculate. The relevant diagrams
are collected in Fig. 3 and their spectral density is

ρ
(3)
K (s, s′) =

1

3

αs

π
〈q̄q〉 {sδ(s′) + s′δ(s) + (s + s′)δ(s − s′)} . (4.7)

Finally, we take into account the contribution of the gluon condensate, see the diagrams in
Fig. 4. The corresponding contribution to the spectral density equals

ρ
(4)
K (s, s′) = − 1

16

〈

αs

π
G2
〉

δ(s − s′) . (4.8)

The leading tree–level contribution of the mixed condensate is given in (3.10). We neglect the
contribution of the four–quark condensate which is tiny in the case of F̂ and of semileptonic
form factors [25].

The results given above correspond to the calculation of the Feynman diagrams shown
in Figs. 2, 3, and 4. To obtain the correlation function involving invariant currents, one has
to multiply the spectral densities Eqs. (4.6), (4.7), and (4.8) by the corresponding power
of the coupling. Then, after the Borel transformation, renormalization group improvement
reduces to the substitution of the scale µ by 2t, twice the Borel parameter (see [3] for details).
Combining all terms, we end up with the sum rule

F̂ 2Ke−Λ̄/t =

ω0
∫

0

ds

ω0
∫

0

ds′ e−(s+s′)/(2t)

(

αs(2t)
−γ0/β0

[

− 3

π2
s4 δ(s − s′)

{

1 +
αs(2t)

π

(

41

9
+

4

9
π2

−2δ +
γ0

2
ln

s

t

)}

− αs(2t)

π

2

π2
(s + s′)

(

s2 + s′2 − |s2 − s′2|
)

]

+
4

3

αs

π
O3

×
{

sδ(s′) + s′δ(s) + (s + s′)δ(s − s′)

}

− 1

4
αs(2t)

−γ0/β0 O4 δ(s − s′)

+
3

8
αs(2t)

(γ(5)−2γ0)/(2β0) O5 δ(s) δ(s′)
)

. (4.9)

In both the sum rules (4.4) and (4.9) the continuum contribution is subtracted also from the
imaginary part of the running coupling αs(−2ω). The term ln s/t comes from the expansion
of {αs(2s)/αs(2t)}−γ0/β0 to first order [3].

In the numerical evaluation of (4.9) we use the values of the condensates as given in the
last section and the two–loop formula for the running coupling,

αs(µ) =
4π

2β0 ln(µ/Λ
(nf )

MS
)







1 − β1

β0

ln(2 ln(µ/Λ
(nf )

MS
))

2 ln(µ/Λ
(nf )

MS
)







, (4.10)

with Λ
(4)

MS
= 260 MeV for four running quark flavors [23]. As in the analysis of the leading–

order sum rule (3.14), we vary the Borel parameter t in the range 0.3 GeV < t < 0.6 GeV
and the continuum threshold in the range 1 GeV < ω0 < 1.2 GeV. In Fig. 6(a) we show
the coupling F̂ 2, calculated according to (4.4) and scaled up to µ = mB according to
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(4.3). Figure 6(b) contains the kinetic energy K, calculated by taking the ratio of (4.9) and
(4.4). Both quantities are plotted as functions of the Borel parameter t for ω0 = 1 GeV
(Λ̄ = 0.4 GeV) (solid lines) and ω0 = 1.2 GeV (Λ̄ = 0.5 GeV) (dashed lines). The working
region is indicated by the shaded areas. As can be seen when comparing the two figures
with each other, K is less sensitive to the value of ω0 than F̂ 2, and we get the final result

K = −(0.60 ± 0.10) GeV2. (4.11)

The errors include the dependence of the sum rule (4.9) on variations of the Borel pa-
rameter t and the continuum threshold ω0. In the range of parameters considered, the
non–perturbative terms contribute approximately 25%.

The value (4.11) is very close to the leading order result (3.17). The two–loop radiative
corrections in the sum rules are large and change the value of the coupling F 2(mB) by a
factor two, cf. Figs. 5(a) and 6(a). Nevertheless, their net effect on the value of K is small
due to a strong cancellation in the ratio of (4.9) and (4.4). It is interesting to note that the
Coulombic radiative corrections, which contain an extra factor π2, are identical for the two–
and the three–point sum rules. A similar effect was observed in the study of the Isgur–Wise
function in [26].

V. DISCUSSION

We have derived sum rules for three–point correlation functions in the heavy quark effec-
tive theory, from which we obtain estimates for the matrix elements of the chromomagnetic
interaction and the kinetic energy operator over heavy–light mesons. Our final results read

〈M(v)|K|M(v)〉
〈M(v)|h̄vhv|M(v)〉 = −(0.60 ± 0.10) GeV2

〈M(v)|S|M(v)〉µ=mB

〈M(v)|h̄vhv|M(v)〉 =
dM

4
[(0.46 ± 0.14) GeV2] . (5.1)

Note that the value of kinetic energy is renormalization group invariant, while the chro-
momagnetic interaction depends on the heavy quark mass scale. The latter dependence is
actually significant. The given value (in square brackets) at µ = mB ≃ 5.3 GeV corresponds
to (0.60 ± 0.18) GeV2 at the lower scale µ = 1 GeV.

Our result for the kinetic energy is two times lower than the value obtained in [4] from
the expansion of two–point sum rules in QCD in the heavy quark limit. The approach of the
present paper should be much more accurate, since the consideration of three–point functions
allows one to suppress contaminating contributions of non–diagonal transitions. Still, this
disagreement is disturbing, since QCD sum rules normally have a (20–30)% accuracy. The
large value of the kinetic energy obtained in [4] may be an artifact of the used procedure
with a redefinition of the Borel parameter by terms of order 1/mQ. From our point of view,
no such redefinitions are allowed.

The corrections to B–meson masses, corresponding to (5.1), are

mB = mb + Λ̄ +
1

2mb

[(0.25 ± 0.20) GeV2] ,
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mB∗ = mb + Λ̄ +
1

2mb
[(0.70 ± 0.20) GeV2] , (5.2)

respectively. Note that the 1/mb correction to the pseudoscalar B–meson is very small.
This gives strong support to the procedure of the evaluation of the 1/mQ correction to the
leptonic decay constant in [3], where the 1/mQ correction to the pseudoscalar meson mass
have been neglected. For completeness, we quote the result of [3]

F̂ (mQ) = F̂

[

1 − (0.8 − 1.1)GeV

mQ

]

(5.3)

which agrees to all other QCD sum rule calulations [27,28], with the only exception of [4],
where a much larger correction is claimed.

The phenomenological applications of our results include 1/mQ corrections to semilep-
tonic form factors and inclusive B–decays. The rather small value of the kinetic energy
obtained in this paper may require the reconsideration of recent estimates of these correc-
tions in [29].
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APPENDIX A: THE 1/mQ EXPANSION OF CORRELATION FUNCTIONS

The aim of this Appendix is to establish a formal connection between the 1/mQ expansion
of correlation functions in QCD, and the corresponding correlation functions in the HQET.
Let us consider the following two–point correlation functions of vector and pseudoscalar
currents:

Πµν(q) = i
∫

d4x eiqx〈0|T
{

q̄(x)γµb(x)b̄(0)γνq(0)
}

|0〉

=

(

−gµν +
qµqν

q2

)

Πv(q
2) +

qµqν

q2
Πs(q

2) ,

Π5(q
2) = i

∫

d4x eiqx〈0|T
{

q̄(x)iγ5b(x)b̄(0)iγ5q(0)
}

|0〉 . (A1)

The correlation functions Πv(q
2) and Π5(q

2) have poles at q2 = m2
V and q2 = m2

P , respec-
tively, and the contribution of the ground state mesons in the vector chanel, V , and in the
pseudoscalar chanel, P , equals

Πv(q
2) =

f 2
V m2

V

m2
V − q2

+ . . . ,

Π5(q
2) =

f 2
Pm4

P

m2
Q(m2

P − q2)
+ . . . (A2)
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where the couplings fP and fV are defined as in (2.16). Our objective is to make a systematic
expansion of the correlation functions in (A1) near the poles (A2) in powers of the large
quark mass mQ. Each correlation function has symmetric pairs of poles at q0 = ±mM ,
which correspond in an obvious way to contributions of particles and antiparticles. For
definiteness, we consider the expansion near the particle–type discontinuity, and to this end
define a new variable ω by

qµ = vµ(mQ + ω). (A3)

The physical couplings and masses of the mesons are expanded as

fM

√
mM = FM + δFM ,

mM = mQ + Λ̄ + δmM , (A4)

where δFM and δmM are of order 1/mQ. We anticipate here that the mass splitting between
pseudoscalar, M = P , and vector mesons, M = V , is an 1/mQ effect. Note that as a quite
general feature of QCD, the extraction of asymptotic behavior (in our case in the heavy
quark mass) introduces divergences. The separation of the asymptotic value of the coupling
F tacitly assumes some regularization and the summation of logarithms of the heavy quark
mass, which is made explicit using the formalism of the heavy quark effective theory.

Putting together Eqs. (A2), (A3), and (A4), we obtain, e.g. for the vector correlation
function:

f 2
B∗m2

B∗

m2
B∗ − q2

=
F 2

2∆
− 2δmF 2

(2∆)2
+

2FδF

2∆
+ non–singular terms, (A5)

where

∆ = Λ̄ − ω. (A6)

The expansion of the correlation functions in (A1) is not so immediate. Using the heavy
quark expansion of currents, Eq. (2.11), and the 1/mQ expansion of the Lagrangian,
Eq. (2.3), we obtain for the vector correlation function

i
∫

d4x ei(v·x)(mQ+ω)〈0|T
{

q̄(x)γµQ(x)Q̄(0)γνq(0)
}

|0〉 =

=

(

1 − 8

3

αs(mQ)

π

)

i
∫

d4x eiω(v·x)〈0|T
{

q̄(x)γ⊥µ hv(x)h̄v(0)γ⊥ν q(0)
}

|0〉(µ=mQ)

+
1

2mQ
i
∫

d4x eiω(v·x)〈0|T
{

q̄(x)γ⊥µ (i 6D⊥)hv(x)h̄v(0)γ⊥ν q(0)
}

|0〉(µ=mQ)

+
1

2mQ
i
∫

d4x eiω(v·x)〈0|T
{

q̄(x)γ⊥µ hv(x)h̄v(0)(−i
←

6D
⊥

)γ⊥ν q(0)

}

|0〉(µ=mQ)

+
1

2mQ

i2
∫

d4x d4y eiω(v·x)〈0|T
{

q̄(x)γ⊥µ hv(x)K(y)h̄v(0)γ⊥ν q(0)
}

|0〉(µ=mQ)
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+
1

2mQ
i2
∫

d4x d4y eiω(v·x)〈0|T
{

q̄(x)γ⊥µ hv(x)S(y)h̄v(0)γ⊥ν q(0)
}

|0〉(µ=mQ)

+ longitudinal part + O

(

1

2mQ

αs(mQ)

π

)

+ O(1/m2
Q). (A7)

Most of the correlation functions in (A7) have been introduced already in the main text. In
addition to them, we encounter one more invariant function,

i
∫

d4x eiωvx〈0|T
{

q̄(x)Γ1(iD
⊥
α )hv(x)h̄v(0)Γ2q(0)

}

|0〉 = −1

2
Tr{Γ1P+Γ2}Π1(ω), (A8)

which can be related, however, to the invariant function Π(ω) in (3.4), choosing Γ1 = γα,
integrating by parts, and using the equations of motion for the effective heavy quark field

(vD)h+ = 0 and for the light antiquark q̄(−i
←

6D) = 0. One obtains [4]:

Π1(ω) = −1

3
ω Π(ω). (A9)

Combining everything we arrive at

Πv(q
2 = (mQ + ω)2) =

(

1 − 8

3

αs(mQ)

π

)

Π(ω) +
ω

3mQ
Π(ω) +

1

mQ
TK(ω, ω)− 1

mQ
TΣ(ω, ω).

(A10)

The expansion of the correlation function of pseudoscalar currents is obtained by similar
manipulations. The result reads

Π5(q
2 = (mQ + ω)2) =

(

1 − 4

3

αs(mQ)

π

)

Π(ω) +
ω

mQ
Π(ω) +

1

mQ
TK(ω, ω) +

3

mQ
TΣ(ω, ω).

(A11)

Note that these relations are valid up to constant terms only, which come from distances
∼ 1/mQ and are lost in the heavy quark expansion. Using the operator product expansion
results for the vector and pseudoscalar correlation functions in QCD, it is easy to verify that
the answers for the contributions to the correlation functions in HQET of the quark and the
mixed quark-gluon condensate given in the main text indeed satisfy the general relations in
(A11) and (A10). For contributions of the pertubation theory and the gluon condensate this
check is not so immediate, since in the process of calculation we have discarded contributions
which vanish after the double Borel transformation.

The last step is to insert a complete set of meson states in the correlation functions
and to separate the contribution of the lowest energy. Note that at ω = ω′ the three–point
correlation functions TK(ω, ω′) and TΣ(ω, ω′) contain contributions with both a double pole
and a single pole at ω = Λ̄:

TK(ω, ω) =
F 2(µ)K

[2(Λ̄ − ω)]2
+

2F 2(µ)GK

2(Λ̄ − ω)
+ non–singular terms,

TΣ(ω, ω) =
F 2(µ)Σ

[2(Λ̄ − ω)]2
+

2F 2(µ)GΣ

2(Λ̄ − ω)
+ non–singular terms, (A12)
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where K and Σ are matrix elements of the kinetic energy and the chromomagnetic interaction
operator over the heavy–light meson in the effective theory. The quantities GK and GΣ are
defined as

〈0| i
∫

dxK(x)h̄v(0)Γq(0)|M(v)〉 =
1

2
F (µ)GK(µ)Tr{ΓM(v)} ,

〈0| i
∫

dxS(x)h̄v(0)Γq(0)|M(v)〉 =
1

2
F (µ)GΣ(µ)2dMTr{ΓM(v)} , (A13)

where it is implied that the matrix elmements of the two–point correlation functions on the
left–hand side include summation over all intermediate states except for the lowest–lying
one. For example,

〈0|i
∫

dxK(x)h̄v(0)Γq(0)|M(v)〉 =

=
∑

M ′ 6=M

〈0|K|M ′(v)〉 1

2mB(Λ′ − Λ̄)
〈M ′(v)|h̄vΓq|M(v)〉 (A14)

where Λ′ = mM ′ − mQ. Up to this remark, our formulæ coincide with the ones derived in
[4].

Collecting everything and comparing to the expansion of the relativistic expression in
Eq. (A4), we obtain

δm = − 1

2mQ

[K + dMΣ] ,

δF

F
= − Λ̄

6mQ
dM +

1

2mQ
GK +

dM

mQ
GΣ,

2mP (mV − mP ) = m2
V − m2

P = 4Σ, (A15)

which is the desired result. The relations in (A15) can of course be derived in a variety of
ways and are by no means new. Our derivation is suited best for the application of the sum
rule technique to the evaluation of relevant parameters.

APPENDIX B: CALCULATION OF SPECTRAL DENSITIES TO TWO–LOOP

ACCURACY

In this appendix we give all the formulæ necessary to calculate the spectral densities
of the correlation functions (3.1) and (3.2) to two–loop accuracy. To this end, we use
a technique proposed by [30] which amounts to calculate double spectral densities by a
repeated application of the Borel transformation to the amplitude itself. Let A be some
amplitude depending on the virtualities ω and ω′, which we want to write as a dispersion
relation (subtracted if necessary) in both variables:

A(ω, ω′) =
∫

ds ds′
ρ(s, s′)

(s − ω)(s′ − ω)
+ subtractions. (B1)
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Let us assume that the amplitude A(ω, ω′) is calculated, e.g. in the from of a Feynman
parameter integral. Then, applying a Borel transformation in ω and ω′, we obtain, as the
second step:

B̂ω(t) B̂ω′(t′) A(ω, ω′) = Â(t, t′) =
1

tt′

∫

ds ds′ ρ(s, s′) e−s/t−s′/t′ . (B2)

Finally, we apply a Borel transformation in τ = 1/t and τ ′ = 1/t′ to get

B̂τ (1/s) B̂τ ′ (1/s′)
1

ττ ′
Â (1/τ, 1/τ ′) = ss′ρ(s, s′), (B3)

which is (apart from a trivial factor) just the desired spectral density.
Here we made repeated use of the formula (with ωE = −ω)

B̂ω(t) e−αωE = δ(1 − αt). (B4)

We spend one subsection to derive necessary formulæ for each of the above three steps, and
finally illustrate the whole procedure by the sample calculation of a one and a two–loop
diagram.

1. Reduction of Loop–Integrals to One–Parameter Integrals

The general one–loop integral is defined as

I1(α, p, q) =
∫

dDk

(2π)D

1

[k2]α(ω + vk)p(ω′ + vk)q
. (B5)

Using the parametrisation

1

AαP p
=

Γ(α + p)

Γ(α)Γ(p)

∞
∫

0

dy
yp−1

(A + yP )α+p
(B6)

we find

I1(α, p, q) = (−1)α+p+q i

4απD/2
J(α, p, q) F (q − 1, p − 1, 2α + p + q − D) (B7)

with

J(α, p, q) =
Γ(2α + p + q − D)Γ(D/2 − α)

Γ(α)Γ(p)Γ(q)
, (B8)

F (a, b, c) =

1
∫

0

dz za (1 − z)b [(ω′Ez + ωE(1 − z)]−c, (B9)

where we have already continued to Euclidean space: ωE = −ω, ω′E = −ω′. In the limit
q → 0 we find
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I1(α, p, 0) = (−1)α+p i

4aπD/2
I(α, p) ωD−2α−p

E (B10)

with

I(α, p) =
Γ(2α + p − D)Γ(D/2 − α)

Γ(α)Γ(p)
(B11)

and a corresponding formula for p → 0.
The general two–loop integral can be expressed as

I2(α, β, γ, p, q, r, s) =

=
∫

dDk

(2π)D

dDl

(2π)D

1

[k2]α [l2]β [(k − l)2]γ (ω + vk)p (ω + vl)q (ω′ + vk)r (ω′ + vl)s
. (B12)

Simple cases are

I2(α, β, 0, p, q, r, s) = I1(α, p, r) I1(β, q, s), (B13)

I2(α, 0, γ, p, 0, r, s) =
(−1)α+γ+p+r+s+1

4α+γπD
I(γ, s) J(γ, p, r + s + 2α − D)

×F (r + s + 2α − D − 1, p − 1, 2(α + γ − D) + p + r + s), (B14)

I2(α, 0, γ, 0, q, 0, s) =
Γ(D/2 − α)Γ(D/2 − γ)Γ(2(α + γ − D) + q + s)

Γ(α)Γ(γ)Γ(q)Γ(s)

×(−1)α+γ+q+s+1

4α+γπD
F (s − 1, q − 1, 2(α + γ − D) + q + s), (B15)

I2(α, 0, γ, p, 0, 0, s) =
(−1)α+γ+p+s+1

4α+γπD
I(γ, s) J(α, p, s + 2γ − D)

×F (s + 2γ − D − 1, p − 1, 2(α + γ − D) + p + s), (B16)

I2(α, β, γ, p, 0, r, 0) =
(−1)α+β+γ+p+r+1

4α+β+γπD
F (r − 1, p − 1, 2(α + β + γ − D) + p + r)

× J(α + β + γ − D/2, p, r)
Γ(β + γ − D/2)Γ(D/2 − β)Γ(D/2− γ)

Γ(β)Γ(γ)Γ(D − β − γ)
. (B17)

Similar formulæ can be obtained be exchanging ω and ω′ or the loop momenta. The special
case r = s = 0 is considered in [17] where recursion relations for I2 were derived by using
the method of integration by parts (cf. [17,31]). We employ the same technique to relate
the general I2 to the special cases solved above and find the following recursion relations:

I2(α, 0, γ, p, q, r, s) =

=
1

2γ + q + s − D
{ q I2(α, 0, γ, p − 1, q + 1, r, s) + s I2(α, 0, γ, p, q, r − 1, s + 1) }, (B18)
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I2(α, 0, γ, 0, q, r, s) =
1

2γ + s − D
{ q I2(α, 0, γ, 0, q + 1, r − 1, s)

− q I2(α, 0, γ, 0, q + 1, r, s − 1) + s I2(α, 0, γ, 0, q, r − 1, s + 1) }, (B19)

I2(α, β, γ, 0, q, r, 0) =
1

β − γ − ω′

ω
(2β + γ + q − D)

{β I2(α, β + 1, γ − 1, 0, q, r, 0)

− β I2(α − 1, β + 1, γ, 0, q, r, 0)− qI2(α, β, γ, 0, q + 1, r − 1, 0)

+ γ

(

1 − ω′

ω

)

[ I2(α − 1, β, γ + 1, 0, q, r, 0) − I2(α, β − 1, γ + 1, 0, q, r, 0) ] }, (B20)

I2(α, β, γ, p, q, r, 0) =
1

D − 2γ − β − q
{β I2(α, β + 1, γ − 1, p, q, r, 0)

− β I2(α − 1, β + 1, γ, p, q, r, 0)− q I2(α, β, γ, p− 1, q + 1, r, 0)}. (B21)

Note that one has I2(α, β, γ, p, q, r, s) = I2(β, α, γ, q, p, s, r).
Finally, we encounter the integrals

A =
∫

dDk dDl

(2π)2D

k2

l2(l − k)2(ω + vk)(ω′ + vk)(ω′ + vl)
, (B22)

B =
∫

dDk dDl

(2π)2D

k2

l2(l − k)2(ω + vk)(ω + vl)(ω′ + vk)(ω′ + vl)
. (B23)

After a change in variables, k → k + l, and noting that the integral over l can depend on v
only, we find

A = 2
∫

dDk dDl

(2π)2D

(vl)(vk)

l2k2(ω′ + vk)(ω + vk + vl)(ω′ + vk + vl)
(B24)

= 2ω′E I2(0, 1, 1, 1, 0, 0, 1)− 2i
(−1)D/2

(4π)D/2

Γ(D/2)Γ(D/2− 1)Γ(2 − D/2)

Γ(D − 1)

×ωE I1(2 − D/2, 1, 1). (B25)

Similarly, one obtains

B = 2ωE {ω′E I2(0, 1, 1, 1, 1, 0, 1)− I2(0, 1, 1, 1, 0, 1, 0)− ωE I2(0, 1, 1, 1, 1, 1, 0)}. (B26)

2. First Application of the Borel Transformation

In this appendix we are concerned with the calculation of

K̂(p, q; α, β, γ) = B̂ω(t) B̂ω′(t′) ωα
E ω′βE F (p, q, γ). (B27)
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For non–negative integer α, β we can write

K̂(p, q, α, β, γ) = B̂ω(t) B̂ω′(t′)
1

Γ(γ)
ωα

E ω′βE

1
∫

0

dz zp (1 − z)q

∞
∫

0

ds sγ−1 e−s(ω′

E
z+ωE(1−z))

=
(−1)α+β

Γ(γ)
tα t′β

dα+β

dtα dt′β
t1+α+p−γ t′1+β+q−γ (t + t′)γ−p−q−2. (B28)

Likewise we need K̂(0, 0, α 6∈ N, β ∈ N, γ). In the case 1 + β + [α] ≤ 0, where the Gaussian
bracket [α] denotes the integer part of α, one finds

K̂(0, 0, α 6∈ N, β ∈ N, γ)

=
(−1)β

Γ(−α)Γ(γ)
tαt′β

dβ

dt′β
t′1+α+β−γ

(t + t′)1+α

1
∫

t

t+t′

dz z1+α−γ
(

z − t

t + t′

)−(1+α)

. (B29)

The integral apparently becomes singular for α ≥ 0. It is convenient to collect divergent
terms in Γ functions rather than in terms of hypergeometric functions. This can be achieved
performing (1 + β + [α]) integrations by parts, if this number is greater than zero. Defining

A(α, β) =

1
∫

t

t+t′

dz zα
(

z − t

t + t′

)β

=
1

1 + β

tα t′β+1

(t + t′)1+α+β 2F1(−α, 1 + β, 2 + β,−t′/t) (B30)

we find, if P denotes an operator for partial integration:

PA(α, β) =
1

1 + β
(t + t′)−(1+β) t′β+1 − α

β + 1
A(α − 1, β + 1),

d

dt′
A(α, β) = β

t

(t + t′)2
A(α, β − 1). (B31)

This yields finally (for (1 + β + [α]) > 0)

K̂(0, 0, α 6∈ N, β ∈ N, γ) =
(−1)β

Γ(−α)Γ(γ)

× tαt′β
dβ

dt′β
t′1+α+β−γ

(t + t′)1+α
[P]1+β+[α]

1
∫

t

t+t′

dz z1+α−γ
(

z − t

t + t′

)−(1+α)

. (B32)
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3. Second Application of the Borel Transformation

In terms of the new variables τ = 1/t and τ ′ = 1/t′, a typical contribution to the Borel
transformed amplitude is of the generic form

1

τατ ′β(τ + τ ′)γ
(B33)

with integer α, β, γ. Some terms are accompanied by logarithms of τ , τ ′ or τ + τ ′, which
we take into account by replacing α by α + ǫ, e.g., and expanding around ǫ = 0 afterwards.
The expressions we are dealing with have mass dimension five, thus it is feasible by repeated
replacements τ → (τ + τ ′) − τ ′ to reduce all powers in the denominator to non–negative
values (plus ǫ for logarithms). We are left with the calculation of (with in general non–integer
values of α, β, γ)

L̂(α, β, γ) ≡ B̂τ (1/s) B̂τ ′(1/s′)
1

τατ ′β(τ + τ ′)γ
. (B34)

As usual, we express the denominator in terms of integrals of exponential functions that
have a simple behaviour under the Borel transformation (cf. Eq. (B4)):

L̂(α, β, γ) =

= B̂τ (1/s) B̂τ ′(1/s′)
1

Γ(α)Γ(β)Γ(γ)

∞
∫

0

du1 du2 du3 uα−1
1 uβ−1

2 uγ−1
3 e−u1τ−u2τ ′−u3(τ+τ ′)

=
s s′

Γ(α)Γ(β)Γ(γ)







Θ(s′ − s)

s
∫

0

du uγ−1 (s − u)α−1 (s′ − u)β−1 + (s ↔ s′, α ↔ β)







=
1

Γ(α)Γ(β)

{

sα+γ s′β
Γ(α)

Γ(α + γ)
2F1(1 − β, γ, α + γ, s/s′) + (s ↔ s′, α ↔ β)

}

. (B35)

As special cases we find

B̂τ (1/s) B̂τ ′(1/s′)
1

τα(τ + τ ′)γ
=

ss′

Γ(α)Γ(γ)
Θ(s − s′) (s − s′)α−1 s′γ−1, (B36)

B̂τ (1/s) B̂τ ′(1/s′)
1

(τ + τ ′)γ
=

ss′

Γ(γ)
sγ−1 δ(s − s′). (B37)

Fortunately enough, in the sum of all diagrams most logarithmic terms cancel and the
remaining ones are of type

1

(τ + τ ′)γ
ln(τ + τ ′), (B38)

so we need not expand the hypergeometric function in (B35).
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4. A Sample Calculation

In this appendix we calculate the diagrams Da, Fig. 2(a), and Db, Fig. 2(b), which
contribute to the kinetic energy. We use dimensional regularization in D = 4+2ǫ dimensions
and work in Feynman gauge. We use Γ1 = Γ2 = iγ5 (cf. Eq. (3.1)) and do the traces
explicitly, which adds a factor two. Thus, each diagram contributes to the spectral density
ρK , Eq. (3.14), with a weight factor 1/2.

In momentum–space, the lowest order triangle diagram Da can be expressed as

Da = −6i
∫

dDk

(2π)D

(vk)(k2 − (vk)2)

k2(ω + vk)(ω′ + vk)
. (B39)

Since we are interested in the Borel transformed expression only, we write vk = (vk+ω)−ω
and keep terms with non–polynomial dependence on both ω and ω′:

D̂a = −6i B̂ω(t) B̂ω′(t′)
∫

dDk

(2π)D

(

ω2 1

(ω + vk)(ω′ + vk)
+ ω3 1

k2(ω + vk)(ω′ + vk)

)

. (B40)

The first loop–integral vanishes, thus we are left with

D̂a = − 6i B̂ω(t) B̂ω′(t′)ω3
∫

dDk

(2π)D

1

k2(ω + vk)(ω′ + vk)
. (B41)

The integral encountered here is a special case of the general one–loop integral (B5):

I1(1, 1, 1) =
i

8πD/2
g1g2

1
∫

0

dx (ω′Ex + ωE(1 − x))D−4, (B42)

where we have changed to the Euclidean variables ωE = −ω, ω′E = −ω′. As a shorthand,
we use the notations g1 = Γ((D − 4)/2) and g2 = (4 − D)Γ(4 − D). Although the integral
can easily be solved in the present case, the above form is convenient for applying the Borel
transformation afterwards. In general, we have to apply the Borel transformation to terms
like

K̂(p, q; α, β, γ) ≡ B̂ω(t) B̂ω′(t′) ωα
E ω′βE

1
∫

0

dx xp (1 − x)q (ω′Ex + ωE(1 − x))−γ . (B43)

With the formulæ given in App. B2 we find

K̂(0, 0; 3, 0, 4− D) =
1

g2
(D − 4)(D − 2)(D − 1)D tD t′D (t + t′)−1−D. (B44)

Taking altogether, we have

D̂a = − 3

4πD/2
g1 (D − 4)(D − 2)(D − 1)D tD t′D (t + t′)−1−D

= − 36

π2

1

tt′

(

tt′

t + t′

)5

+ O(ǫ). (B45)
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Finally, to calculate the double spectral density of Da, we apply to D̂a a Borel transformation
once again. More accurately: if ρa is the spectral density, we have

ρa(s, s
′) =

1

ss′
B̂τ (1/s) B̂τ ′(1/s′)

[

D̂a (s → 1/τ, s′ → 1/τ ′)
]

= − 3

4πD/2
g1

D − 4

Γ(D − 2)
sD δ(s − s′). (B46)

We have checked explicitly that in D = 4 dimensions this result agrees with that obtained
by Cutkosky rules.

Next we turn to the two–loop diagram Db given by

D̂b = B̂ω(t) B̂ω′(t′) 32παs { 2ωEω′E (ωE + ω′E) I2(1, 1, 1, 0, 1, 1, 0)

− 1

2
(3ωE + ω′E) I2(0, 1, 1, 0, 1, 1, 0)− 1

2
(3ω′E + ωE) I2(1, 0, 1, 0, 1, 1, 0)

+
1

2
(ωE + ω′E) I2(1, 1, 0, 0, 1, 1, 0)} (B47)

with the two–loop integrals

I2(α, β, γ, p, q, r, s) =

=
∫

dDk

(2π)D

dDl

(2π)D

1

[k2]α [l2]β [(k − l)2]γ (ω + vk)p (ω + vl)q (ω′ + vk)r (ω′ + vl)s
. (B48)

In the above case all integrals can be related to one–loop integrals, except for
I2(1, 1, 1, 0, 1, 1, 0). Here it proves useful to employ the method of integration by parts
[17,31]. From

∫

dDk

(2π)D

dDl

(2π)D

∂

∂lµ

lµ
[k2]α[l2]β[(k − l)2]γ(ω + vl)q(ω′ + vk)r

= 0 (B49)

we get

(D − 2β − γ − q) I2(α, β, γ, 0, q, r, 0)− γ I2(α, β − 1, γ + 1, 0, q, r, 0)

+ γ I2(α − 1, β, γ + 1, 0, q, r) + qω I2(α, β, γ, 0, q + 1, r, 0) = 0. (B50)

This relation still contains the term I2(α, β, γ, 0, q + 1, r, 0), which is as difficult to calculate
as the original expression. We can, however, make use of a corresponding relation that
follows from

∫

dDk

(2π)D

dDl

(2π)D

∂

∂lµ

kµ

[k2]α[l2]β[(k − l)2]γ(ω + vl)q(ω′ + vk)r
= 0 (B51)

to eliminate I2(α, β, γ, 0, q + 1, r, 0) and get
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I2(α, β, γ, 0, q, r, 0) =
1

β − γ − ω′

ω
(2β + γ + q − D)

{β I2(α, β + 1, γ − 1, 0, q, r, 0)

− β I2(α − 1, β + 1, γ, 0, q, r, 0)− qI2(α, β, γ, 0, q + 1, r − 1, 0)

+ γ

(

1 − ω′

ω

)

[ I2(α − 1, β, γ + 1, 0, q, r, 0)− I2(α, β − 1, γ + 1, 0, q, r, 0) ] }. (B52)

Using this expression, one can relate D̂b to K̂, and apply the second Borel transformation
according to the formulæ given in App. B3. Note that both the diagram and its double
spectral function are finite in the limit D → 4, whereas all the other two–loop diagrams in
Fig. 2 have to be renormalized. The calculation of the remaining diagrams proceeds along
the same lines. The results are given in App. C.

APPENDIX C: EXPRESSIONS FOR THE TWO–LOOP DIAGRAMS

In this appendix we collect the explicit expressions for the renormalized Feynman dia-
grams in Fig. 2, after application of the Borel transformation in both external momenta.
The missing diagrams with a gluon line connecting the operator vertex with a heavy quark
line vanish in the limit of equal heavy quark velocities. D̂a, D̂b, . . . , denote the Borel trans-
formed diagrams in Fig. 2(a), (b), . . . , respectively. Each diagram contributes with a weight
1/2 to the spectral density Eq. (4.6).

D̂pert
a = −36

π2

1

tt′

(

tt′

t + t′

)5

, (C1)

D̂pert
b =

αs(µ)

π

2tt′

(t + t′)4π2

{

tt′(t + t′)3 − 2t3 ln
t

t + t′
(t2 + 5tt′ + 10t′2)

− 2t′3 ln
t′

t + t′
(t′2 + 5tt′ + 10t2)

}

, (C2)

D̂pert
c+d =

αs(µ)

π

2tt′

(t + t′)5π2

{

−tt′(t + t′)4 − 12t2t′2(t + t′)2

+ 24t3t′3
(

3

4
− π2

3
+ ln 2 + ln

t + t′

µ

)

+ 2t3 ln
t

t + t′
(t3 + 6t2t′ + 15tt′2 + 22t′3)

+ 2t′3 ln
t

t + t′
(t′3 + 6t′2t + 15t′t2 + 22t3)

}

, (C3)

D̂pert
e =

αs(µ)

π

4

π2

t2t′2

(t + t′)2

{

−(t + t′)4 + tt′(t + t′)2

+ 12t2t′2
(

5

4
+ γE − ln 2 − ln

t + t′

µ

)}

, (C4)
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D̂pert
f =

αs(µ)

π

48

π2

t4t′4

(t + t′)5

(

−1 − γE + ln 2 + ln
t

µ

)

, (C5)

D̂pert
g = D̂pert

f (t ↔ t′), (C6)

D̂pert
h =

αs(µ)

π

6

π2

t4t′4

(t + t′)5

(

−1 + 4γE − 4 ln 2 − 4 ln
tt′

µ(t + t′)

)

. (C7)
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FIG. 5. The sum rules (3.12) to leading–order accuracy (i.e. using the spectral densities (3.10))

as functions of the Borel parameter t for different values of the continuum threshold ω0 (solid

lines: ω0 = 1.0GeV [Λ̄ = 0.4GeV], dashed lines: ω0 = 1.2GeV [Λ̄ = 0.5GeV]). The shaded areas

indicate the working regions of the sum rules. (a) F 2(µ = mB), (b) the kinetic energy K, (c)

m2
V − m2

P = 4Σ at the scale µ = mB .
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FIG. 6. The sum rules (4.4) and (4.9) in next–to–leading order accuracy. The parameter values

are the same as in Fig. 5. (a) F 2(µ = mB), (b) the kinetic energy K.
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