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Next-to-next-to-leading-logarithm resummation for
s-channel single top quark production

Nikolaos Kidonakis

Kennesaw State University, Physics #1202,

1000 Chastain Rd., Kennesaw, GA 30144-5591

Abstract

I present the next-to-next-to-leading-logarithm (NNLL) resummation of soft and collinear
gluon corrections to single top quark production in the s channel. Attaining NNLL ac-
curacy involves the calculation of the two-loop soft anomalous dimension for the par-
tonic subprocesses. Finite-order expansions of the resummed cross section are calculated
through next-to-next-to-leading order (NNLO). Numerical results are presented for s-
channel single top quark production at the Tevatron and the LHC, including the depen-
dence of the cross sections on the top quark mass and the uncertainties in the theoretical
prediction. The higher-order corrections are significant for energies at both colliders and
they decrease the theoretical uncertainty.

1 Introduction

The recent observation of single top quark production at the Tevatron [1, 2, 3] and the new era
that the Large Hadron Collider (LHC) is ready to embark on have made accurate theoretical
calculations of single top quark cross sections imperative. The study of single top quark pro-
cesses provides unique opportunities for understanding the electroweak properties of the top
quark, including a direct measurement of the Vtb CKM matrix element, and for further insights
into electroweak theory and future discoveries of new physics (for top physics reviews see Ref.
[4]).

The production of single top quarks can proceed via three distinct partonic processes that
involve the exchange of a space-like W boson (t channel), the exchange of a time-like W boson
(s channel), and W emission in association with a top quark (tW channel). In this paper we
concentrate on the s channel. In the s channel we have lowest-order processes of the form
qq̄′ → b̄t (Fig. 1), which include the dominant process ud̄ → b̄t as well as processes involving
the charm quark and Cabibbo-supressed contributions. The QCD corrections for s-channel
production at next-to-leading order (NLO) are known at the differential level [5] and are found
to increase the cross section and stabilize the dependence on the factorization scale [5, 6].

Further improvement of the theoretical calculations was achieved in Ref. [7] where the soft-
gluon logarithms were resummed for single-top quark production processes at next-to-leading-
logarithm (NLL) accuracy. NLL resummation requires the calculation of one-loop diagrams
in the eikonal approximation. The higher-order soft-gluon contributions further increase the
cross section at Tevatron and LHC energies [7, 8, 9]. Recent developments in the calculation
of two-loop soft anomalous dimensions with massive and massless quarks [10, 11] now allow
the calculation of two-loop eikonal corrections and thus of next-to-next-to-leading-logarithm
(NNLL) resummation for single top quark production.
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Figure 1: Leading-order s-channel diagram for single top quark production.

In the next section we employ the resummation formalism of [7] and extend it to NNLL
accuracy. To achieve NNLL accuracy we calculate the soft anomalous dimension for s-channel
single-top production through two-loops. We then expand the NNLL resummed cross section
through next-to-next-to-leading order (NNLO) in the strong coupling, αs. NNLL resummation
allows the determination of all soft-gluon terms at NNLO, thus improving the results of [7]
where only the first two powers of logarithms were fully computed. The approximate NNLO
expression thus derived here is then used in the following sections to compute numerical results
for the single top and single antitop cross sections at the Tevatron and the LHC.

2 Threshold resummation

In this section we present the analytical form of the resummed cross section for single top quark
production in the s channel. Details of the general resummation formalism for hard-scattering
cross sections [12, 13] and the specific implementation for single top quark processes [7, 8, 9]
have been presented elsewhere, so here we explicitly show only the expressions directly relevant
to NNLL single top quark s-channel production, without a detailed review.

For the process q + q̄′ → b̄ + t, the partonic kinematical invariants are s = (pq + pq̄′)
2,

t = (pq−pb̄)
2, u = (pq̄′ −pb̄)

2, s4 = s+ t+u−m2
t , with mt the top quark mass while the b-quark

is taken to be massless [7]. As we approach kinematical threshold the invariant s4 approaches
zero. The soft-gluon logarithms that appear in the perturbative partonic cross section are of
the form lnk(s4/m

2
t )/s4. Resummation of the soft-gluon contributions is performed in moment

space, where we define moments of the cross section by σ̂(N) =
∫

(ds4/s) e
−Ns4/sσ̂(s4), with N

the moment variable. In the cross section the logarithms of s4 transform into logarithms of N ,
which exponentiate. The resummed cross section in moment space is derived by factorizing the
cross section into hard, soft, and jet functions and solving their renormalization group equations
[12]. For s-channel single top production the resummed partonic cross section is then given by

σ̂res(N) = exp





∑

i=1,2

E(Ni)



 exp [E ′(N ′)] exp





∑

i=1,2

2
∫

√
s

µF

dµ

µ
γq/q

(

Ñi, αs(µ)
)
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×Tr

{

Hqq̄′→b̄t
(

αs(
√
s)
)

exp

[

∫

√
s/Ñ ′

√
s

dµ

µ
Γ† qq̄′→b̄t
S (αs(µ))

]

×Sqq̄′→b̄t
(

αs(
√
s/Ñ ′)

)

exp

[

∫

√
s/Ñ ′

√
s

dµ

µ
Γqq̄′→b̄t
S (αs(µ))

]}

. (2.1)

The first exponent [14, 15] in the above expression resums soft and collinear corrections
from the incoming quark and antiquark

E(Ni) =
∫ 1

0
dz

zNi−1 − 1

1− z

{

∫ (1−z)2

1

dλ

λ
A (αs(λs)) +D

[

αs((1− z)2s)
]

}

. (2.2)

Here N1 = N [(m2
t − u)/m2

t ] and N2 = N [(m2
t − t)/m2

t ]. The quantity A has a perturbative
expansion, A =

∑

n(αs/π)
nA(n). Here A(1) = CF with CF = (N2

c − 1)/(2Nc) where Nc = 3 is
the number of colors, while A(2) = CFK/2 with K = CA (67/18 − π2/6) − 5nf/9 [16], where
CA = Nc, and nf = 5 is the number of light quark flavors.

Also D =
∑

n(αs/π)
nD(n), with D(1) = 0 in Feynman gauge (D(1) = −CF in axial gauge)

and [17]

D(2) = CFCA

(

−101

54
+

11

6
ζ2 +

7

4
ζ3

)

+ CFnf

(

7

27
− ζ2

3

)

(2.3)

in Feynman gauge where ζ2 = π2/6 and ζ3 = 1.2020569 · · ·.
The second exponent [14, 15] resums soft and collinear corrections from the outgoing b-quark

and can be written in the form [18]

E ′(N ′) =
∫ 1

0
dz

zN
′−1 − 1

1− z

{

∫ 1−z

(1−z)2

dλ

λ
A (αs (λs)) +B [αs((1− z)s)] +D

[

αs((1− z)2s)
]

}

,

(2.4)
where N ′ = N(s/m2

t ) and A and D are defined above. Here B =
∑

n(αs/π)
nB(n) with B(1) =

−3CF/4 and

B(2) = C2
F

(

− 3

32
+

3

4
ζ2 −

3

2
ζ3

)

+ CFCA

(

77

864
− 11

4
ζ2 − ζ3

)

+ nfCF

(

23

432
+

ζ2
2

)

. (2.5)

In the third exponent γq/q is the moment-space anomalous dimension of the MS parton
density φq/q and it controls the factorization scale, µF , dependence of the cross section. We

have γq/q = −A ln Ñi + γq where A was defined above, Ñi = Nie
γE with γE the Euler constant,

and the parton anomalous dimension γq =
∑

n(αs/π)
nγ(n)

q where γ(1)
q = 3CF/4.

Hqq̄′→b̄t is the hard-scattering function while Sqq̄′→b̄t is the soft function describing non-
collinear soft gluon emission [12]. The evolution of the soft function is controlled by the soft

anomalous dimension Γqq̄′→b̄t
S . Here Ñ ′ = Ñ(s/m2

t ) with Ñ = NeγE . Note that H , S, and
ΓS are matrices in a basis consisting of color exchange (i.e. for the process with color indices
a + b → c + d a color basis is e1 = δabδcd and e2 = T e

baT
e
dc) and the color trace is taken of

their product, which at lowest order is the Born cross section. We expand the soft anomalous
dimension as ΓS =

∑

n(αs/π)
nΓ

(n)
S . Because of the simple color structure of the hard scattering

for single top s-channel production, the hard and soft matrices take a very simple form and only
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Figure 2: One-loop vertex-correction eikonal diagrams for Γ
(1)
S 11.

the first diagonal element of the one-loop soft anomalous dimension matrix, Γ
(1)
S 11, is needed in

the NNLO expansion at NLL accuracy.
The required element Γ

(1)
S 11 of the one-loop soft anomalous dimension for s-channel single-top

production, necessary for NLL accuracy, was calculated in Ref. [7]. The calculation involves
one-loop eikonal diagrams, which include the one-loop vertex corrections in Fig. 2 plus the
one-loop self-energy correction for the top quark line in Fig. 4 (top left diagram). We employ
dimensional regularization and determine the soft anomalous dimension from the coefficients of
the ultraviolet poles. The result presented in [7] used the axial gauge for the gluon propagator.
Here we use the Feynman gauge and thus the result takes the slightly different form

Γ
(1)
S 11 = CF

[

ln

(

s−m2
t

mt

√
s

)

− 1

2

]

. (2.6)

The change is of course compensated by different expressions for the D coefficient (see above)
so that the final result for the resummed cross section is identical in the two gauges.

The off-diagonal one-loop elements are needed in the NNLO expansion at NNLL accuracy.
We find

Γ
(1)
S 21 = ln

(

u(m2
t − u)

t(m2
t − t)

)

, Γ
(1)
S 12 =

CF

2Nc

Γ
(1)
S 21 . (2.7)

At NNLL accuracy we also need to calculate the two-loop soft anomalous dimension. In the
NNLO expansion at NNLL accuracy we need the element Γ

(2)
S 11 which we calculate by evaluating

two-loop eikonal diagrams involving the four quarks in the hard scattering. Since only one of
the eikonal lines (the top quark line) has mass, we can use the results of Ref. [10, 11], which
involve pairs of massive quarks, and take the massless limit for one or two quarks [11]. There are
many eikonal diagrams to be calculated at two loops: the two-loop vertex correction diagrams
shown in Fig. 3 plus the two-loop self-energy corrections for the top quark line in Fig. 4.
Again, we employ dimensional regularization and calculate the soft anomalous dimension from
the coefficients of the ultraviolet poles of the two-loop diagrams. Note that diagrams for this
process involving three eikonal lines do not contribute. This is because three-parton diagrams
with at least two massless eikonal lines vanish [19]. Analyzing all the diagrams we find

Γ
(2)
S 11 =

K

2
Γ
(1)
S 11 + CFCA

(1− ζ3)

4
(2.8)
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Figure 3: Two-loop vertex-correction eikonal diagrams for Γ
(2)
S 11. The shaded blob in the fifth

and sixth diagrams denotes quark, gluon, and ghost loops. Note that for each of the bottom six
diagrams there is an additional diagram (not shown) with the gluon attached to the opposite
quark line.
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Figure 4: One-loop (top left diagram) and two-loop top-quark self-energy eikonal diagrams.
The shaded blob in the bottom left diagram denotes quark, gluon, and ghost loops.

where K is the two-loop constant defined previously. The two-loop result above is written in
terms of the one-loop element Γ

(1)
S 11.

The resummed cross section, Eq. (2.1), can be expanded in the strong coupling, αs, and
inverted to momentum space, thus providing fixed-order results for the soft-gluon corrections.
The NLO expansion of the resummed cross section after inversion to momentum space is

σ̂(1) = σBαs(µR)

π
{c3D1(s4) + c2D0(s4)} , (2.9)

where µR is the renormalization scale and we use the notation Dk(s4) = [lnk(s4/m
2
t )/s4]+ for

the plus distributions involving logarithms of s4. Here σB is the Born term, and the coefficient
of the leading term is

c3 = 3A(1) . (2.10)

The coefficient of the next-to-leading term, c2, can be written as c2 = cµ2 + T2, with

cµ2 = −2A(1) ln

(

µ2
F

m2
t

)

(2.11)

denoting the terms involving logarithms of the scale, and

T2 = −2A(1) ln

(

(m2
t − t)(m2

t − u)

m4
t

)

+ 3D(1) − 3A(1) ln

(

m2
t

s

)

+B(1) + 2Γ
(1)
S 11 (2.12)
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denoting the scale-independent terms. As discussed in [7] the expansion can also determine the
terms involving logarithms of the factorization scale in the coefficient, c1, of the δ(s4) terms. If
we denote these terms as cµ1 , then

cµ1 =

[

A(1) ln

(

(m2
t − t)(m2

t − u)

m4
t

)

− 2γ(1)
q

]

ln

(

µ2
F

m2
t

)

. (2.13)

The full virtual terms are not derivable from resummation, which addresses soft-gluon contri-
butions, but can be taken from the complete NLO calculation.

As has been shown in [7, 8] the NLO expansion of the resummed cross section approximates
well the complete NLO result for both Tevatron and LHC energies. In fact when damping
factors are used to limit the soft-gluon contributions far away from threshold, as was also
used for tt̄ production [20], then the approximation is excellent. Thus, it is clear that for
s-channel single top quark production the soft-gluon corrections dominate the cross section
while contributions from other classes of corrections are negligible, so higher-order expansions
of the soft-gluon resummed cross section can be reasonably expected to closely approximate
the complete cross section. This is an important consideration since it is not always true for
every process that the soft corrections dominate the cross section. For example, for single
top production via the t channel at the LHC it was shown in [8] that this is not so. In such
cases other classes of corrections, such as hard-gluon and virtual terms, can be important. In
Higgs production via bb̄ → H (and gg → H), for example, it was shown that purely collinear
corrections are large and that together with the soft corrections they provide an excellent
approximation to the complete corrections at both NLO and NNLO [21]. For tt̄ production
another class of corrections, subleading Coulomb terms, were shown to be very small in [20].
The contribution of hard-gluon radiation terms becomes smaller near threshold, where there
is limited available energy. Each process needs to be studied separately because of different
kinematics, proximity to threshold, and color structures, and for each process the dominant
terms need to be identified. For s-channel single top production, which is the process studied
in this paper, the soft terms are dominant and they provide an excellent approximation to the
complete cross section, which is why they are studied in detail here.

The NNLO expansion of the resummed cross section after inversion to momentum space is

σ̂(2) = σBα2
s(µR)

π2

{

1

2
c23D3(s4) +

[

3

2
c3c2 −

β0

4
c3 +

β0

8
A(1)

]

D2(s4)

+

[

c3c1 + c22 − ζ2c
2
3 −

β0

2
T2 +

β0

4
c3 ln

(

µ2
R

m2
t

)

+ 3A(2) +
β0

4
B(1) + 4Γ

(1)
S 12Γ

(1)
S 21

]

D1(s4)

+

[

c2c1 − ζ2c3c2 + ζ3c
2
3 +

β0

4
c2 ln

(

µ2
R

s

)

− β0

2
A(1) ln2

(

m2
t − t

m2
t

)

− β0

2
A(1) ln2

(

m2
t − u

m2
t

)

+

(

−2A(2) +
β0

2
D(1)

)

ln

(

(m2
t − t)(m2

t − u)

m4
t

)

+B(2) + 3D(2) +
β0

4
A(1) ln2

(

µ2
F

s

)

− 2A(2) ln

(

µ2
F

s

)

+
3β0

8
A(1) ln2

(

m2
t

s

)

−
(

A(2) +
β0

4
(B(1) + 2D(1))

)

ln

(

m2
t

s

)

+ 2Γ
(2)
S 11 + 4Γ

(1)
S 12 Γ

(1)
S 21 ln

(

m2
t

s

)]

D0(s4)

}
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(2.14)

where β0 = (11CA − 2nf)/3 is the lowest-order beta function and all other quantities have
been defined previously. Note that all NNLO soft-gluon corrections are derived from the NNLL
resummed cross section, i.e. the coefficients of all powers of logarithms in s4 are given, from
D3(s4) down to D0(s4). In Ref. [7] where NLL accuracy was attained, only the coefficients of
D3(s4) and D2(s4) were fully determined. Thus, at NNLL accuracy the theoretical improvement
over NLL is significant. In the notation of Ref. [20], where logarithmic accuracy in the expansion
rather than the resummed exponent was used, the expansion from NNLL resummation is a
NNLO-NNNLL result. To be clear, in the following sections we will use the notation NLL
and NNLL to denote the corresponding accuracy in the resummed exponent, as we have done
in this section. As discussed in [7, 13] additional δ(s4) terms involving ζ2 and ζ3 constants
from the inversion to momentum space as well as δ(s4) terms involving the factorization and
renormalization scales are also computed.

In the following sections we add the NNLO soft-gluon terms of Eq. (2.14) to the NLO cross
section to derive an approximate NNLO cross section for s-channel single top and single antitop
production at the Tevatron and LHC.

3 Single top or antitop production at the Tevatron

We begin our numerical study for s-channel single top quark production in proton-antiproton
collisions at the Tevatron with

√
S = 1.96 TeV. We note that the results for single antitop

production at the Tevatron are identical. We use the MSTW2008 NNLO parton distribution
functions (pdf) [22] in the calculation of the hadronic cross section.

In Fig. 5 we plot the NNLO approximate cross section for s-channel single top quark
production at the Fermilab Tevatron as a function of top quark mass in the range 165 GeV
≤ mt ≤ 180 GeV. The factorization and renormalization scales are set equal to each other
and this common scale, denoted by µ, is set equal to the top quark mass. Results are shown
for the NNLO expansion from both NLL and NNLL resummation. The NLL result uses the
expressions in [7] while the NNLL result uses the new expression in Eq. (2.14). It is clear that
the approximate NNLO cross section is larger at NNLL than at NLL, i.e. the additional NNLL
numerical contributions are positive.

It is important to know the additional contribution of the NNLO soft-gluon corrections
at both NLL and NNLL accuracy relative to the NLO cross section. The corresponding K
factors, defined as the ratio of the NNLO approximate cross section to the NLO cross section,
are displayed in Fig. 6. It is clear that the K factors are quite insensitive to the value of the top
quark mass. At NLL there is an 11% enhancement over NLO, while at NNLL there is a 15%
enhancement over NLO. Thus the enhancement from soft-gluon corrections is quite significant
at both NLL and NNLL accuracy. Also the new NNLL contributions increase the approximate
NNLO cross section of NLL accuracy by an additional 3.7%.

Table 1 lists the values of the approximate NNLO cross section at NNLL accuracy for
top quark masses between 170 GeV and 175 GeV and with µ = mt. There are theoretical
uncertainties associated with these values that arise from the dependence on the scale µ as well
as from pdf errors. The scale uncertainty is most commonly estimated by varying the scale by

8
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Figure 5: The cross section for s-channel single top quark production at the Tevatron with√
S = 1.96 TeV and MSTW2008 NNLO pdf.
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Figure 6: The K factor for s-channel single top quark production at the Tevatron with
√
S =

1.96 TeV.
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NNLO approx (NNLL) single top s-channel cross section (pb)
mt (GeV) Tevatron 1.96 TeV LHC 7 TeV LHC 10 TeV LHC 14 TeV

170 0.565 3.39 5.50 8.45
171 0.551 3.31 5.38 8.27
172 0.537 3.24 5.27 8.10
173 0.523 3.17 5.16 7.93
174 0.510 3.10 5.05 7.76
175 0.497 3.03 4.94 7.60

Table 1: The single top quark s-channel production cross section in pb in pp collisions at the
Tevatron with

√
S = 1.96 TeV, and in pp collisions at the LHC with

√
S = 7 TeV, 10 TeV,

and 14 TeV, with µ = mt and using the MSTW2008 NNLO pdf [22]. The approximate NNLO
results are shown at NNLL accuracy.

a factor of two, i.e. between mt/2 and 2mt. For the approximate NNLO cross section at NNLL
at the Tevatron the scale uncertainty is +0.1% −1.0%, which is a significant improvement over
NLO [5, 6] as well as over the NLL approximation [7]. The pdf uncertainty is calculated using
the 40 different MSTW2008 NNLO eigensets as provided by MSTW at 90% confidence level
(C.L.) [22] which provides a conservative estimate of pdf error. For s-channel single top quark
production at the Tevatron this 90% C.L. pdf uncertainty is +5.7% −5.3%. If instead one uses
the 68% C.L. NNLO eigensets provided by MSTW, the pdf uncertainty of the cross section
becomes considerably smaller, +2.7% −2.4%, but it is still larger than the scale uncertainty.
Clearly at Tevatron energies the pdf uncertainty dominates the theoretical uncertainty in our
approximate NNLO cross section at NNLL whether one uses the conservative 90% C.L. or the
68% C.L. pdf eigensets.

The best current value of the top quark mass is 173 GeV [23]. For this top quark mass we
write the cross section and its associated uncertainties expilicitly as

σtop
s−ch(mt = 173GeV,

√
S = 1.96TeV) = 0.523+0.001

−0.005
+0.030
−0.028 pb (3.1)

where the first uncertainty is from scale variation and the second is the pdf uncertainty at 90%
C.L.

4 Single top quark production at the LHC

We continue with numerical results for s-channel single top quark production at the LHC. We
present results for three different energies: the design energy of 14 TeV, the planned starting
energy of 7 TeV, and a possible intermediate run at 10 TeV. Again we use the MSTW2008
NNLO pdf [22]. We note that at the LHC the single top and single antitop cross sections
are different. In this section we focus on single top production, and we discuss single antitop
production in the following section.

In Fig. 7 we plot the NNLO approximate cross section for s-channel single top quark
production at the LHC at its design energy of

√
S = 14 TeV as a function of top quark mass.
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Figure 7: The cross section for s-channel single top quark production at the LHC with
√
S = 14

TeV and MSTW2008 NNLO pdf.

Results are shown for the NNLO expansion from both NLL and NNLL resummation. The
NNLL result is larger than the NLL one.

TheK factor, i.e. the ratio of the NNLO approximate cross section to the NLO cross section,
is displayed in Fig. 8 at both NLL and NNLL. Again the K factors are quite insensitive to the
value of the top quark mass. At NLL there is nearly a 10% enhancement over NLO, while at
NNLL there is a 13% enhancement over NLO. The enhancement from soft-gluon corrections is
similar to that for Tevatron collisions and is again quite significant at both NLL and NNLL
accuracy.

Table 1 lists the NNLO approximate cross section at NNLL accuracy for top quark masses
between 170 GeV and 175 GeV for µ = mt at 14 TeV. The scale uncertainty of the results is
±1.8% and the pdf uncertainty at 90% C.L. is +3.9% −3.5%, which is about twice as big as
the scale uncertainty, while at 68% C.L. it is +2.0% −2.2%. For a top quark mass of 173 GeV
the explicit result is

σtop
s−ch(mt = 173GeV,

√
S = 14TeV) = 7.93± 0.14+0.31

−0.28 pb (4.1)

where the first uncertainty is from scale variation and the second is from the pdf error at 90%
C.L.

Fig. 9 shows the NNLO approximate cross section at NNLL accuracy for s-channel single
top quark production at the LHC at the starting energy of

√
S = 7 TeV and also at 10 TeV

and at 14 TeV. The enhancement over NLO at 7 TeV and 10 TeV is very similar to that at 14
TeV, over 13%.

Results for the cross section with µ = mt at 10 TeV and 7 TeV are also displayed in Table
1. At 10 TeV the scale uncertainty of the results is ±1.8% while the pdf uncertainty at 90%

11
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Figure 9: The cross section for s-channel single top quark production at the LHC with
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TeV, 10 TeV, and 14 TeV, and MSTW2008 NNLO pdf.
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Figure 10: The cross section for s-channel single top quark production at the LHC for energies
2 ≤

√
S ≤ 14 TeV.

C.L. is +3.9% −2.8% and at 68% C.L. it is +2.2% −1.4%. For a top mass of 173 GeV we have

σtop
s−ch(mt = 173GeV,

√
S = 10TeV) = 5.16± 0.09+0.20

−0.14 pb (4.2)

where the first uncertainty is from scale variation and the second from the pdf at 90% C.L.
At 7 TeV the scale uncertainty is ±1.9% while the pdf uncertainty is +4.2% −3.1% at 90%

C.L. and +2.2% −1.6% at 68% C.L. For mt = 173 GeV we have

σtop
s−ch(mt = 173GeV,

√
S = 7TeV) = 3.17± 0.06+0.13

−0.10 pb (4.3)

where the first uncertainty is from scale variation and the second from the pdf at 90% C.L.
The dependence of the NNLO approximate cross section at NNLL accuracy on the LHC

energy is plotted in Fig. 10 for the range 2 ≤
√
S ≤ 14 TeV with mt = 173 GeV. We see that

the cross section at 14 TeV is about twenty four times bigger than at 2 TeV.

5 Single antitop production at the LHC

We continue with results for single antitop production at the LHC in the s channel.
Fig. 11 shows the NNLO approximate cross section at NNLL accuracy for s-channel single

antitop production at the LHC for energies of 7 TeV, 10 TeV, and 14 TeV, using the MSTW2008
NNLO pdf [22]. The cross sections are smaller than the corresponding ones for single top quark
production by a factor of around two.
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Figure 11: The cross section for s-channel single antitop production at the LHC with
√
S = 7

TeV, 10 TeV, and 14 TeV, and MSTW2008 NNLO pdf.

Table 2 lists the values of the single antitop approximate NNLO cross section at NNLL
accuracy in the s-channel for antitop masses between 170 GeV and 175 GeV and µ = mt for
the three LHC energies.

At 14 TeV the scale uncertainty is ±1.3%. The pdf uncertainty is +3.4% −5.2% at 90%
C.L. and +1.7% −3.4% at 68% C.L. For mt = 173 GeV, we find

σantitop
s−ch (mt = 173GeV,

√
S = 14TeV) = 3.99± 0.05+0.14

−0.21 pb (5.1)

where the first uncertainty is from scale variation and the second from the pdf at 90% C.L.
At 10 TeV the scale uncertainty is ±0.9% while the pdf uncertainty is +3.5% −5.3% at 90%

C.L. and +1.5% −3.3% at 68% C.L. For mt = 173 GeV, we find

σantitop
s−ch (mt = 173GeV,

√
S = 10TeV) = 2.48± 0.02+0.09

−0.13 pb (5.2)

where the first uncertainty is from scale variation and the second from the pdf at 90% C.L.
At 7 TeV the scale uncertainty is ±0.7%, and the pdf uncertainty is +4.2% -5.0% at 90%

C.L. and +1.9% −2.6% at 68% C.L. For mt = 173 GeV, we find

σantitop
s−ch (mt = 173GeV,

√
S = 7TeV) = 1.42± 0.01+0.06

−0.07 pb (5.3)

where the first uncertainty is from scale variation and the second from the pdf at 90% C.L.
The dependence of the NNLO approximate cross section at NNLL accuracy for single antitop

production on the LHC energy is plotted in Fig. 12 for the range 2 ≤
√
S ≤ 14 TeV and

mt = 173 GeV.
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NNLO approx (NNLL) single antitop s-channel cross section (pb)
mt (GeV) LHC 7 TeV LHC 10 TeV LHC 14 TeV

170 1.53 2.65 4.26
171 1.49 2.59 4.17
172 1.46 2.53 4.08
173 1.42 2.48 3.99
174 1.39 2.42 3.91
175 1.36 2.37 3.83

Table 2: The single antitop s-channel production cross section in pp collisions at the LHC with√
S = 7 TeV, 10 TeV, and 14 TeV, with µ = mt and using the MSTW2008 NNLO pdf [22].

The approximate NNLO results are shown at NNLL accuracy.

6 Conclusion

The single top quark production cross section in the s-channel receives significant contributions
from soft-gluon corrections which increase the overall cross section and decrease the scale de-
pendence of the theoretical prediction. The resummation of these corrections was performed
at NNLL accuracy in this paper using an explicit calculation of the two-loop soft anomalous
dimension. Approximate NNLO cross sections, which include NNLO soft-gluon corrections
added to the NLO result, were calculated. Detailed numerical results were presented for single
top and single antitop production at the Tevatron and the LHC. The enhancement at the Teva-
tron over NLO is 15% and at the LHC it is 13%. In addition to the scale uncertainty, the pdf
uncertainty was calculated using 90% C.L. and 68% C.L. eigensets. At 90% C.L. the pdf uncer-
tainty clearly dominates the theoretical error at both Tevatron and LHC energies. The overall
theoretical uncertainty of the approximate NNLO cross section from NNLL resummation is
reduced compared to that at NLO or at NLL accuracy.
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