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Abstract

NF-kB plays an important role in cancer initiation and progression. CD44, a cell surface glycoprotein, is involved in many
cellular processes including cell adhesion, migration and proliferation. However, whether and how the two molecules
interact in breast cancer is not clear. In recent years, the up-regulation of CD44 has served as a marker for tumor initiating
cells in breast cancer and other cancer types. Despite the important role of CD44 in cellular processes and cancer, the
mechanism underlying CD44 up-regulation in cancers remains poorly understood. Previously, we have identified a novel cis-
element, CR1, located upstream of the CD44 promoter. We demonstrated that NF-kB and AP-1 are key trans-acting factors
that interact with CR1. Here, we further analyzed the role of NF-kB in regulating CD44 expression in triple negative breast
cancer cells, MDA-MB-231 and SUM159. Inhibition of NF-kB by Bay-11-7082 resulted in a reduction in CD44 expression.
CD44 repression via NF-kB inhibition consequently decreased proliferation and invasiveness of breast cancer cells. These
findings provide not only new insight into the molecular mechanism underlying CD44 regulation but also potential
therapeutic targets that may help eliminate chemo- and radiation-resistant cancer cells.
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Introduction

Breast cancers are known to contain a heterogeneous popula-

tion of cells. Within a tumor, there is a small subset of cells with a

unique cell surface marker signature (e.g., up-regulation of CD44

and down-regulation of CD24) as well as characteristics similar to

stem cells such as the ability to self-renew, differentiate and they

have been shown to be chemo-and radiation resistant [1–6]. These

cells, known as cancer stem-like cells or tumor initiating cells

(TICs), have been observed in other cancers including prostate,

pancreatic, brain and leukemia [7–9], making CD44 an important

target for cancer therapies.

CD44 is a cell surface glycoprotein that is ubiquitously

expressed on most cells throughout the body [5,6]. CD44 is

involved in cellular processes including cell-cell and cell-extracel-

lular matrix adhesion, migration, proliferation, differentiation and

survival [5,6,10,11]. Studies have shown that human acute

myeloid leukemic stem cells can be eradicated by targeting

CD44 [9]. In addition, CD44 repression by miR-34a inhibits

prostate TICs and metastasis [12].

Despite intense research focused on CD44 as a target for cancer

therapies, the mechanism by which the protein is up-regulated in

cancer and TICs is not well understood. In our recently published

study, we have identified an evolutionarily conserved region (CR1)

located upstream of the CD44 transcription start site, that

functions as a cis-element [13]. We have demonstrated that

CR1 has the ability to direct reporter gene expression in a cell-

specific manner. We showed that CR1 activity is modulated by the

transcription factors NF-kB and AP-1 via electrophoretic mobility

shift assays (EMSA), EMSA supershift, and chromatin immuno-

precipitation (ChIP) assays. Site directed mutagenesis of the NF-

kB and AP-1 binding sites diminished the ability of CR1 to direct

reporter gene expression in breast cancer cells [13].

The NF-kB family (RelA (p65), c-Rel, RelB, p50/105 and p52/

100) has been at the forefront of cancer research [14,15]. There

are more than 100 known targets of NF-kB, including CD44 [16].

NF-kB exists as a homo- or heterodimer in the cytoplasm,

inhibited by bound IkB proteins. It is not until IkB is

phosphorylated that NF-kB can enter the nucleus, bind to DNA

and activate transcription of its target genes [14,17,18]. Recent

studies have demonstrated that CD44 expression and NF-kB

activation correlate with poor radiation response and shorter

survival in glioblastoma patients [19]. However, the mechanism

underlying CD44 regulation by NF-kB is not clear.

In this study, we examine the effect of NF-kB inhibition on

CD44 expression and the activities associated with CD44

dysregulation, including cell proliferation and invasiveness in
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breast cancer cells. We show that in triple negative breast cancer

cells (e.g., MDA-MB-231 and SUM159 cells), inhibition of NF-kB

via the chemical compound Bay-11-7082 results in CD44

repression. Furthermore, NF-kB inhibition and subsequent

CD44 repression decreases cell proliferation and invasiveness of

breast cancer cells. Thus, our findings provide new insights into

the mechanism underlying CD44 up-regulation in breast cancers

and potential therapeutic strategy against breast cancers.

Materials and Methods

Cell Lines
The breast cancer cell lines SUM159 and MDA-MB-231 were

describe previously [8]. SUM159 cells (Asterand Inc. Detroit, MI)

and MDA-MB-231 cells (ATCC) were cultured according to the

guidelines from the suppliers. All cell lines were maintained at

37uC in a humidified incubator with 5% CO2.

Bay-11-7082 Treatment
Bay-11-7082 (Calbiochem) in DMSO was diluted in serum free

medium to a concentration of 1.0 mM. As a control, 10 mL of

DMSO was added per 1.0 ml of media. This was the maximum

amount of DMSO cells were exposed to for Bay-11-7082

treatment.

Electrophoretic mobility shift assay (EMSA)
A double stranded DNA probe with the sequence 59–

GATCCGGCAGGGGAATCTCCCTCTC-39 was labeled with

the 39 Biotin End Labeling Kit (Thermo Scientific) as per

manufacturer’s suggestions. Nuclear extracts were collected from

each breast cancer cell line using NE-PER nuclear and

cytoplasmic extraction reagents (Thermo Scientific). Binding

reactions were performed using 5 mg of nuclear extract from cells

and detected using the LightShift Chemiluminescent EMSA kit

(Thermo Scientific) per manufacturer’s recommendations. DNA-

protein complexes were run on 6% non-denaturing poly-

acrylamide gels and transferred onto Biodyne Plus membrane

(Pall). Membranes were cross-linked in a UV imager for

15 minutes.

Western Blot
Western blots were performed using 15 mg cytoplasmic extract.

Cytoplasmic extracts were collected using NE-PER (Thermo

Scientific). Cytoplasmic extracts in SDS-PAGE sample buffer,

were incubated at 95uC for 5 min. Samples were run on a 10%

SDS-PAGE gel and transferred onto nitrocellulose. Membranes

were incubated in 5% non-fat dry milk for 1 hr and incubated with

primary antibody (CD44 (Santa Cruz) or alpha-Tubulin (DSHB)

over night at 4uC. Membranes were incubated with secondary

antibody (Santa Cruz) for 1 hr at room temperature. Membranes

were exposed with a chemiluminescence kit (Thermo Scientific)

and imaged.

qRT-PCR
RNA was isolated from cells using Tri-Reagent (Ambion).

cDNA was prepared by reverse transcription using the qScript

cDNA SuperMix (Quanta), and used as a template for RT-PCR

(SYBR Green FastMix (Applied Biosystems)). RT-PCR reaction

was run on a Roche 480 96 well LightCycler using primer

sequences obtained from the Harvard Primer Bank (Table 1).

Threshold cycles were normalized relative to GAPDH expression.

Experiments are the mean of 2 independent experiments done in

triplicate. Error bars represent the standard deviation of the mean.

Immunocytochemistry
For immunocytochemistry, cells were plated on PLL treated

coverslips and incubated for 24 hours and then fixed to coverslips

using 4% paraformaldehyde, blocked with 10% Donkey Serum

(Jackson Immunology) and then incubated with the primary

antibody for 2 hours at room temperature. The following

antibodies were used CD44 (Chemicon); Ki67 (BD Pharmingen).

Following incubation with primary antibody, cells were incubated

with a fluorescent secondary antibody (Jackson Immunology) for

60 minutes at room temperature. Nuclei were stained with

Hoechst33342. Cell counts were obtained from independent

experiments performed in triplicate. Error bars represent the

standard deviation of the mean.

Measurement of Cell Size
Cells were measured using ImageJ measurement tool. Images of

cells were taken on Zeiss AxioImager A1 fluorescence microscope.

Only cells that could be completely identified and were not

blocked by other cells or cut off by the image were measured.

Measurements were taken from the furthest two points on the cell.

A minimum of 200 cells were measured from 2 independent

experiments. Error bars represent the standard deviation of the

mean.

Cell Proliferation Assay
Cell proliferation assay was performed using CyQuant Cell

Proliferation kit (Life Technologies) as per manufacturer’s

recommendation. Cells were seeded in 96 well plates at different

densities and left for 24 hrs in 37uC incubator. Cells were treated

with DMSO or Bay-11-7082 and incubated for 24, 48 or 72 hrs.

Assay was read on a Tecan Infinite M200 Pro 96 well plate reader.

Data was compared to standard curve. Results of each data time

point represent the mean of 3 independent experiments. A

standard curve was created for each cell type. Cell number was

calculated from the standard curve. Fold change was calculated by

the following equation:

Fold change~

Cell number calculated from standard curveð Þ= Number of cells seededð Þ

Invasion Assay
Invasion assays were performed as per manufacturer’s recom-

mendations (BD Biosiences). MDA-MB-231 cells and SUM159

cells were treated with 2.5 mM Bay-11-7082 for 72 hrs and 48 hrs

respectively. Cells were detached with trypsin, counted and

resuspended in serum free media at a concentration of 50,000

cells/ml. Complete media was placed in wells as chemo-attractant

and 0.5ml of resuspended cells were seeded into control chambers

and BD BioCoat Matrigel invasion chambers and incubated for 24

hrs. Following incubation, media was removed from the wells and

chambers, cells were fixed in 90% methanol for 3 min. Cells were

stained with Hoechst33342. Membranes were removed, adhered

to slides, and then imaged. Cells were counted and percent

migration and invasion was calculated the following equations:

Percent migration~

the number of treated cells in control chamberð Þ=
the number of untreated

cells in control chamber

 !
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Percent invasion~

the number of cells in invasion chamberð Þ= the number of cells in control chamberð Þ

Data Quantification
Results of each data time points were from at least 3 samples.

Error bars represent the standard error of the mean. In cases

where results were tested for statistical significance, a student’s t-

test was applied.

Results

Chemical compound Bay-11-7082 inhibits NF-kB binding
to DNA in breast cancer cells
To determine the role of NF-kB in regulating CD44 expression,

NF-kB activation was inhibited using the chemical compound

Bay-11-7082. Bay-11-7082 has previously been shown to inhibit

NF-kB binding to DNA by preventing phosphorylation of the

Inhibitor of kB (IkB) by the IkB Kinase (IKK) [20–23]. Inhibiting

phosphorylation of IkB inhibits the activation of NF-kB and

subsequent binding to DNA. We chose breast cancer cells MDA-

MB-231 and SUM159 for this study as both are triple negative

breast cancer cells (ER-, PR-, HER2-) with high levels of CD44

expression and contain a subpopulation of cells characterized as

TICs [24,25].

Breast cancer cells were treated with Bay-11-7082 at various

concentrations for 24, 48 or 72 hrs to determine which

concentration and duration of treatment have the greatest effect

on inhibiting NF-kB activation. Treatment with DMSO was used

as a control. Electrophoretic mobility shift assays (EMSA) were

performed to determine the ability of NF-kB to bind to DNA

following treatment. A double stranded, biotin labeled oligonu-

cleotide corresponding to the NF-kB binding site was used to

assess binding activity.

In MDA-MB-231 cells, treatment with 5.0 mM Bay-11-7082

resulted in a diminished band at all three time points (Fig. 1A–C),
indicating an inhibition effect of NF-kB binding. A strong band in

EMSA was seen in 24 and 48 hrs of treatment with DMSO control

and Bay-11-7082 at 0.625 mM and 1.25 mM (Fig. 1A–C),

suggesting that DMSO control and low concentrations of Bay-

11-7082 have no obvious effect on NF-kB binding. Noticeable

decrease in EMSA bands was observed at 2.5 mM Bay-11-7082

after 48 hrs (indicated by asterisks in Fig. 1B); and after 72 hrs

treatment decreased NF-kB binding was seen at all concentrations

(indicated by asterisks in Fig. 1C).

In SUM159 cells, loss of NF-kB binding was observed with

5.0 mM Bay-11-7082 treatment after 24 and 48 hrs (Fig. 1D,E),

with little change in binding occurring at 0.625 mM and 1.25 mM

concentration. A significant decrease in NF-kB binding was

observed with 2.5 mM treatment after 48 hrs (Fig. 1E). Interest-

ingly, weak EMSA bands could be seen with 2.5 mM and 5.0 mM

Bay-11-7082 after 72 hrs of treatment (Fig. 1F), suggesting that

SUM159 cells may have developed a drug resistance to Bay-11-

7082 after 72 hrs of treatment.

Although applying higher concentrations of Bay-11-7082 (e.g.,

5.0 and 10.0 mM) showed the greatest effect on NF-kB binding at

all-time points, a live/dead cell assay showed toxicity of the

treatment, which resulted in significant levels of cell death in both

cell types (Fig. S1). Based on these observations, the maximum

concentration of Bay-11-7082 used in further analyses was

determined at 2.5 mM.

NF-kB inhibition results in CD44 repression
Next, we assessed the effect of NF-kB inhibition on CD44

expression by Western blotting using the cytoplasmic extracts of

Bay-11-7082 treated cells at each of the three time points

individually. Resulting bands were analyzed using ImageJ to

quantify the relative amount of CD44 protein compared to the

control DMSO treatment. In MDA-MB-231 cells, CD44 expres-

sion decreased 10% after 24 hrs treatment at 2.5 mM while lower

concentrations (0.625 mM and 1.25 mM) did not show a noticeable

difference (Fig. 2A,G). CD44 expression decreased ,30% after

48 hrs treatment at 2.5 mM, (Fig. 2B,G). A significant decrease in

CD44 expression was observed at all concentrations after 72 hrs

with the greatest reduction of CD44 expression (,30%) occurring

at 2.5 mM treatment (Fig. 2C,G). In SUM159 cells, no changes in

CD44 expression were seen following 24 hrs of treatment

(Fig. 2D,H). A significant decrease in CD44 expression (,28%

and 25%) was detected after 48 hrs treatment at 1.25 mM and

2.5 mM, respectively (Fig. 2E,H). Interestingly, after 72 hrs, a

decrease in CD44 expression was only seen with 2.5 mM Bay-11-

7082 treatment (Fig. 2F,H). This result may suggest that CD44

expression recovers after SUM159 cells develop a drug resistance

to Bay-11-7082 after 72 hrs of treatment.

To further confirm the effects of Bay-11-7082 on NF-kB

inhibition, the mRNA level of NF-kB and its known key targets,

e.g., CD44, BCL-XL, and cMyc, was determined using quanti-

tative PCR (qPCR) method. Cells were treated with 2.5 mM Bay-

11-7082 to obtain the greatest loss of CD44 expression as

determined in Western blotting (Fig. 2). In MDA-MB-231 cells,

the mRNA level of NF-kB (48 and 72 hrs; Fig. 3A), CD44 (48 hrs;

Fig. 3B), BCL-XL (48 and 72 hrs; Fig. 3C), and cMyc (72 hrs;

Table 1. qPCR primer sequences obtained from Harvard Primer Bank (http://pga.mgh.harvard.edu/primerbank/).

Name Primer Sequence

NF-kB2 Forward ATGGAGAGTTGCTACAACCCA

Reverse CTGTTCCACGATCACCAGGTA

CD44 Forward TGCCGCTTTGCAGGTGTATT

Reverse CCGATGCTCAGAGCTTTCTCC

BCL-XL Forward GATCCCCATGGCAGCAGTAAAGCAAG

Reverse CCCCATCCCGGAAGAGTTCATTCACT

cMyc Forward ATGGCCCATTACAAAGCCG

Reverse TTTCTGGAGTAGCAGCTCCTAA

doi:10.1371/journal.pone.0106966.t001
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Fig. 3D) decreased markedly after treatment. In SUM159 cells,

decrease in the mRNA level of NF-kB (48 hrs; Fig. 3E), CD44 (48

and 72 hrs; Fig. 3F), and cMyc (48 hrs; Fig. 3H) was observed. A

trend of significant decrease was seen after 48 hrs. However, after

72 hrs, the mRNA level of NF-kB and cMyc was increased to a

level similar to the control DMSO treatment. No obvious

difference was seen in BCL-XL mRNA after treatment.

The qPCR results correlated well with the results from both

EMSA and Western blotting, suggesting that Bay-11-7082 inhibits

NF-kB expression at both mRNA and protein level. Furthermore,

NF-kB inhibition via Bay-11-7082 treatment represses the

expression of CD44 and other NF-kB target genes, e.g., BCL-

XL and cMyc.

NF-kB inhibition induced CD44 repression decreases cell
proliferation in breast cancer cells
To determine the effect of NF-kB inhibition induced CD44

repression on breast cancer cell properties, we first examined cell

morphology (e.g., size and CD44 staining pattern) after Bay-11-

7082 treatment to determine if the cells were healthy after

treatment. No obvious changes in morphology and cell size (Fig.
S2) and CD44 staining pattern (Fig. S3) were observed in breast

cancer cells treated with Bay-11-7082.

Next, we performed a cell proliferation assay by immunostain-

ing with Ki67, a nuclear protein associated with cell proliferation.

A significant decrease in the percentage of Ki67 positive cells was

observed with treatment of 1.25 mM and 2.5 mM Bay-11-7082

after 72 hrs in MDA-MB-231 cells (Fig. 4A–D,I) and after 48 hrs

in SUM159 cells (Fig. 4E–H,J). An increase in the percentage of

Ki67 positive cells was observed at 48 hrs treatment with

0.625 mM of Bay-11-7082 in MDA-MB-231 cells. This result

may suggest that Bay-11-7082 stimulates cell proliferation at a low

concentration. Interestingly, in SUM159 cells, the percentage of

Ki67 positive cells was comparable to the DMSO control after 72

hrs treatment at all concentrations (Fig. 4J), suggesting that

prolonged treatment has no lasting effect on cell proliferation in

SUM159 cells, possibly due to development of drug resistance in

this cell line.

CD44 repression by inhibition of NF-kB binding to DNA
decreases invasiveness and migration in breast cancer
cells
CD44 has previously been shown to play a role in migration

and invasiveness of breast cancer cells [3,26]. We, therefore,

performed a matrigel invasion assay to determine the effect of

CD44 down-regulation by NF-kB inhibition on the metastatic

potential of breast cancer cells. Matrigel was used to block pores of

a chamber membrane (invasion chamber) and, in-turn, prevent

non-invading cells from migrating through the membrane. Cells

with invasive properties will be able to migrate and penetrate

through the matrigel and subsequently the membrane pores. As a

Figure 1. Bay-11-7082 inhibits NF-kB binding to DNA in breast cancer cells. Breast cancer cells, MDA-MB-231 (A–C) and SUM159 (D–F),
were treated with either a DMSO control or Bay-11-7082 at different concentrations (0.625 mM - 5.0 mM) for 24, 48 or 72 hrs. Electrophoretic mobility
shift assays (EMSA) showed decreased NF-kB binding at 2.5 mM of Bay-11-7082 treatment for 72 hrs in MDA-MB-231 cells (indicated by an asterisk in
C) and 48 hrs treatment in SUM159 cells (indicated by an asterisk in E). NF-kB binding was completed abolished at 5.0 mM concentration, except 72
hrs treatment in SUM159 cells (F).
doi:10.1371/journal.pone.0106966.g001
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control, cells were seeded into a control chamber containing no

matrigel, just the porous membrane (control chamber). We found

that the control DMSO treated MDA-MB-231 cells and SUM159

cells invaded both the matrigel and control chambers (Fig. 5).
Quantification showed that 52% of the control DMSO treated

MDA-MB-231 cells (Fig. 5A–B,E) and 64% of SUM159 cells

(Fig. 5F–G,J) were able to invade the matrigel chamber (the

number of cells in the control chamber was used as the base line).

However, after cells were treated with 2.5 mM Bay-11-7082 for 72

hrs (with the greatest CD44 repression see Figs 2–3), only about

27% of MDA-MB-231 cells (Fig. 5C–E) and 24% of SUM159

cells (Fig. 5H–J) were able to invade the matrigel chamber. This

significant decrease in number of cells invaded the matrigel

chamber indicates that Bay-11-7082 treatment decreases the

invasiveness of breast cancer cells. To assess the effect of Bay-11-

7082 treatment on cancer cell migration, we quantified and

compared the number of cells that penetrated the membrane

pores in the control chamber (Fig. 5B,D,G,I). We observed a

significant decrease in the percentage of cells that penetrated the

membrane pores with Bay-11-7082 treatment as compared with

DMSO control treatment (60% vs 40% in MDA-MB-231 cells

(Fig.S4A) and 86% vs 14% in SUM159 cells (Fig.S4B)). Thus,
NF-kB inhibition by Bay-11-7082 treatment decreases both

invasiveness and migration in breast cancer cells.

Discussion

In this study, we determined the effects of NF-kB inhibition on

the expression of its target genes, e.g., CD44, BCL-XL, and cMyc,

as well as proliferation, migration and invasiveness of breast cancer

cells. We showed that the chemical compound Bay-11-7082

inhibits NF-kB activation by limiting NF-kB binding to DNA

(Fig. 1). NF-kB inhibition causes a moderate decrease in CD44

expression at both the protein (Fig. 2) and mRNA (Fig. 3) level.

In addition, repression of NF-kB target genes, e.g., CD44 and

possibly other genes (e.g., BCL-XL, cMyc, and MMP9), decreased

proliferation (Fig. 4) and invasiveness (Fig. 5) of breast cancer

cells.

Previously studies have shown that CD44 expression in

hepatoma and cervical cancer cells was regulated via NF-kB

binding in the promoter of CD44 gene [27]. NF-kB was also

identified as a regulator of CD44 expression in melanocytes,

however, no NF-kB binding site in the CD44 promoter has been

identified [28]. Thus, the molecular mechanism underlying NF-kB

mediated CD44 regulation remains controversial. Our analysis of

the human CD44 promoter confirmed that there were no NF-kB

binding sites (Table S1). We thus suggest that CD44 repression

by NF-kB inhibition is via its binding to the CD44 cis-element

CR1 [13]. Our previous studies using EMSA, ChIP, and site-

directed mutagenesis and reporter assays have confirmed that NF-

kB binds with CR1 and represses CD44 expression [13]. Our

findings in this study, thus, established a direct correlation with

NF-kB inhibition and CD44 repression in breast cancer cells, and

provide new insight in the molecular mechanism of CD44

regulation.

As a therapeutic target, NF-kB is limited by its cross-talk with

other pathways, poor drug specificity, and drug resistance [29].

Bay-11-7082 has been shown to prevent IKK (IkB kinase) from

phosphorylating IkB (inhibitor of kB) thus preventing NF-kB from

translocating to the nucleus to activate target genes [28]. Our

study has found Bay-11-7082 was able to inhibit NF-kB binding to

Figure 2. Bay-11-7082 treatment leads to NF-kB inhibition and down-regulation of CD44 in breast cancer cells. Western blots showed
that inhibition of NF-kB decreases CD44 expression in MDA-MB-231 (A–C) and SUM159 cells (D–F). Quantification showed a significant decrease in
CD44 protein expression in MDA-MB-231 (G) and SUM159 cells (H). Band density was quantified using ImageJ (n = 3; * p # 0.01).
doi:10.1371/journal.pone.0106966.g002
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Figure 3. Bay-11-7082 treatment decreases RNA expression of NF-kB and CD44 in breast cancer cells. Real-time PCR (qPCR) analyses
showed Bay-11-7082 treatment decreases the expression of NF-kB and its target genes (e.g., CD44, BCL-XL, and cMyc) in MDA-MB-231 (A–D) and
SUM159 cells (E–H) (n = 3; * p#0.05, ** p#0.01).
doi:10.1371/journal.pone.0106966.g003
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DNA in breast cancer cells at concentrations lower than previously

reported [22,30,31]. Consistent with earlier studies performed on

gastric cancer cells [32,33], we found the use of Bay-11-7082 at

higher concentrations was toxic to breast cancer cells and caused a

significant amount of cell death that was time and dosage

dependent. When NF-kB expression was silenced using retrovi-

rus-mediated RNAi gene knockdown approach, we also observed

a massive cell death (data not shown). These results allowed us to

determine that a complete loss of NF-kB activation is not needed

to obtain CD44 repression.

Equally important, our study showed a modest level of CD44

repression by NF-kB is sufficient to significantly reduce the cell

proliferation and invasiveness of the triple negative breast cancer

cells. This suggests that it is possible to achieve a therapeutic effect

without a complete repression of CD44 and has an impact on

future development of breast cancer treatment.

Despite a maximum of 30% decrease in CD44 expression at

both the mRNA (qPCR in Fig. 3) and protein (Western blotting

in Fig. 2) level, immunocytochemistry analysis of CD44 showed

little difference in CD44 staining pattern (Fig. S3). Previous

studies have shown CD44 expression can occur in sparsely

dispersed patches or plaques [34]. These patterns of expression are

important for CD44 cellular activities including cell-cell adhesion,

migration and invasion. It is thus possible that such a small

percentage decrease in CD44 expression on the surface of the cells

is not detectable by immunocytochemistry. Further analysis will be

needed to identify changes in expression in these patches and

plaques [5,35].

NF-kB-p65 phosphorylation has been implicated in the up-

regulation of TICs in breast cancer. Following NF-kB inhibition, it

was shown that the number of CD44 high expressing breast TICs

diminished [36]. Up-regulation of CD44 has been shown to

increase proliferation and invasiveness of cancer cells [3,36,37].

TICs, in particular, have been implicated in cancer progression

and tumor cell proliferation [32,38,39].

Figure 4. NF-kB inhibition and CD44 down-regulation result in decreased cell proliferation in breast cancer cells. Cell proliferation
assays were performed using Ki67 staining. MDA-MB-231 (A–D) and SUM159 cells (E–H) were treated with either a DMSO control or Bay-11-7082 at
different concentrations. Ki67 negative cells are indicated by arrowheads. Quantification showed decreased cell proliferation in MDA-MB-231 cells
after 72 hrs treatment (I) and in SUM159 cells after 48 hrs treatment (J). (n = 3; * p#0.05, ** p#0.01). Scale bar = 50 mm.
doi:10.1371/journal.pone.0106966.g004
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Interestingly, cell proliferation was not affected in SUM159 cells

following 72 hrs Bay-11-7082 treatment (Fig. 4D). Similarly, we

found NF-kB binding as well as CD44 protein and RNA levels

returned to its base level following 72 hrs of treatment in SUM159

cells (Figs. 1–3). This may be due to drug-resistance in SUM159

cells as they are triple negative breast cancer cells and known to

develop chemotherapy resistance [40,41]. Multiple drug resistance

in SUM159 cells is one of the major causes resulting in increased

severity of breast cancer [1,42]. Therefore, it is possible that

SUM159 cells develop resistance to Bay-11-7082 treatment after

prolonged exposure.

Cancer cells with up-regulated CD44 expression are responsible

for metastasis in breast cancer [26,35,43]. High expression of

CD44 coupled with low expression of CD24 has been shown to

correlate with an invasive phenotype [35]. Our observation that

CD44 repression results in decreased invasiveness (Fig. 5) and

migration (Fig. S4) in breast cancer cells is consistent with the

notion that CD44 expression is one of the key determinants of the

migration and invasiveness of cancer cells. NF-kB has also been

shown to decrease proliferation and invasiveness via its regulation

of matrix metalloproteinase 9 (MMP9) [44–47]. MMP9, along

with numerous inflammation-related cytokines and chemokines,

could have affected cell behavior and contributed to the observed

cellular phenotype. CD44 and MMP9 have previously been

shown to form a complex and together promote invasiveness in

cancer cells [37,48–50]. Thus, repression of CD44 and MMP9 by

the inhibition of NF-kB could be responsible for the decreased

invasiveness seen in breast cancer cells.

It is also important to note that the loss of only 30% of CD44

expression due to NF-kB inhibition is not uncommon when

studying regulation at the enhancer level. A recent study of a

PTF1A enhancer in the pancreas found that point mutations had

the ability to decrease enhancer activity in half or completely,

depending on the specific mutation [51]. Therefore, we suggest

that CD44 is regulated by the interaction of NF-kB with the cis-

element CD44CR1, however, we do not rule out other proteins or

regulator regions responsible for the up-regulation of CD44 in

cancer and TICs.

Together, our data suggest that targeting NF-kB activation

reduces the expression of its target genes (e.g., CD44, BCL-

XL,and cMyc) and subsequently affects proliferation and inva-

siveness of triple negative breast cancer cells. Future studies, such

Figure 5. Bay-11-7082 treatment results in NF-kB inhibition and decreased invasiveness in breast cancer cells. An invasiveness assay
was performed using matrigel with MDA-MB-231 (A-D) and SUM159 cells (F–I) after treatment with DMSO control or 2.5 mM Bay-11-7082.
Quantification of the number of MDA-MB-231 (E) and SUM159 cells (F) penetrated the matrigel showed a decreased invasiveness in breast cancer
cells after Bay-11-7082 treatment (n = 3; ** p#0.01). Scale bar = 200 mm.
doi:10.1371/journal.pone.0106966.g005
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as xenograft models, will be needed to confirm these findings in
vivo. Furthermore, analysis of other transcription factors that bind

to CD44CR1, e.g., AP-1 [13], may prove to have a synergetic

effect on CD44 expression and cellular activities. Thus, our

findings provide potential therapeutic targets in the fight against

breast cancer.

Supporting Information

Figure S1 High concentration of Bay-11-7082 causes
dramatic cell death. Significant cell death occurs in MDA-MB-

231 (A) and SUM159 cells (B) when treated with 5.0 mM and

10.0 mM Bay-11-7082 after 24 hrs, 48 hrs, and 72 hrs of

treatment. 100% cell death was seen with 10 mM treatment. D

represents complete cell death at 10.0 mM treatment (n = 3; * p#

0.05, ** p#0.01).

(TIF)

Figure S2 Bay-11-7082 treatment does not affect cell
size. MDA-MB-231 (A) and SUM159 cells (B) treated with

different concentrations of Bay-11-7082 showed no significant

changes in cell size following 24 hrs, 48 hrs, or 72 hrs of treatment

at any concentration.

(TIF)

Figure S3 Immunocytochemistry does not reveal signif-
icant changes in cell surface expression of CD44 in
breast cancer cells. Immunostaining of breast cancer cells with

CD44 antibody following treatment with Bay-11-7082. MDA-

MB-231 (A-L) and SUM159 cells (M-X) showed no obvious

changes in CD44 expression after Bay-11-7082 treatment for 24

hrs, 48 hrs, and 72 hrs. Scale bar = 50 mm.

(TIF)

Figure S4 Bay-11-7082 treatment decreases cell migra-
tion in breast cancer cells. Migration assays were performed

using control chamber with MDA-MB-231 (see Fig. 5B, D) and

SUM159 cells (see Fig. 5G,I) after treatment with either a

DMSO control or 2.5 mM Bay-11-7082. Quantification showed a

significant decrease in the percentage of MDA-MB-231 (A) and
SUM159 cells (B) penetrated the membrane pores in the control

chamber (n = 3; ** p#0.01).

(TIF)

Table S1 Transcriptioin factor binding sites on CR1 of
CR44 locus as predicted using Genomatix.

(XLS)
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