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Abstract
NF-κB, a transcription factor first discovered in 1986, is now known to be closely connected to the
process of tumorogenesis based on a multiplicity of evidence. (1) NF-κB is activated in response
to tobacco, stress, dietary agents, obesity, alcohol, infectious agents, irradiation, and
environmental stimuli that account for as much as 95% of all cancers. (2) The transcription factor
has been linked with transformation of cells. (3) It is constitutively active in most tumor cells. (4)
It has also been linked with the survival of cancer stem cells, an early progenitor cell that has
acquired self-renewal potential. (5) NF-κB regulates the expression of most anti-apoptotic gene
products associated with the survival of the tumor. (6) It also regulates the gene products linked
with proliferation of tumors. (7) The transcription factor controls the expression of gene products
linked with invasion, angiogenesis, and metastasis of cancer. (8) While most carcinogens activate
NF-κB, most chemopreventive agents suppress its activation. These observations suggest that NF-
κB is intimately intertwined with cancer growth and metastasis. The mechanism that leads to
constitutive activation of NF-κB in hematological, gastrointestinal, genitourinary, gynecological,
thoracic head and neck, breast, and skin cancers, and the ways NF-κB is activated are the topics of
discussion in this review.
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Introduction
Nuclear factor of κB (NF-κB) is a sequence-specific transcription factor that is known to be
involved in the inflammatory and innate immune responses. It was so named because it was
found in the nucleus bound to an enhancer element of the immunoglobulin kappa light chain
gene in B cells [1]. It was initially considered to be a B-cell-specific transcription factor but
was later shown to be present in every cell type. The molecular identification of its p50
subunit as a member of the reticuloendotheliosis (REL) family provided the first evidence
that linked NF-κB to cancer, as v-REL is an oncoprotein of the REL retrovirus (REV-T) [2].

The REL proteins belong to two classes, which are distinguishable by their mode of
synthesis and transactivation properties. One class consists of RELA (also known as p65),
RELB, and c-REL, proteins that are synthesized in their mature forms. These proteins
contain an amino-terminal REL homology domain (RHD) that is required for dimerization
and DNA binding and transcription-modulating domains at their carboxy terminus. The
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second class consists of NF-κB1 (also known as p105) and NF-κB2 (also known as p100),
which are synthesized as large precursors (p105 and p100) with an N-terminal RHD and a
C-terminal series of ankyrin repeats. Ubiquitin-dependent proteolytic processing removes
this C-terminal domain, resulting in production of the mature DNA-binding proteins (p50
and p52). The final products contain the RHD, but lack transcription-modulating domains
[3].

These proteins form various NF-κB homo- and heterodimers, and their activity is regulated
by two main pathways. The first regulatory pathway—the canonical NF-κB activation
pathway—applies to dimers that are composed of RELA, c-REL, and p50, which are held
captive in the cytoplasm by specific inhibitors that are known as the inhibitor of κB (IκB)
proteins. IκB proteins consist of an N-terminal regulatory domain followed by a series of
ankyrin repeats, similar to those present within the C-terminal portions of p100 and p105.
The canonical pathway is normally triggered in response to microbial and viral infections
and exposure to proinflammatory cytokines, all of which activate the IκB kinase (IKK)
complex. IKK phosphorylates NF-κB-bound IκBs at two conserved serines within the IκB
N-terminal regulatory domain. This targets IκB for ubiquitin-dependent degradation and
allows the liberated NF-κB dimers to translocate to the nucleus [4]. IκB phosphorylation
depends mainly on the IKKβ catalytic subunit of the IKK complex [5]. In the non-canonical
pathway, inducible proteolytic processing of the NF-κB2 gene product, p100 are involved.
Different members of the TNF-receptor superfamily, such as B-cell activating factor
(BAFF) and CD40, selectively activate the NF-κB-inducing kinase (NIK), and IKK1,
leading to the phosphorylation of p100, followed by its ubiquitination, and partial
proteolytic processing of the 26S proteasome, yielding p52. NIK regulation is also through
its dynamic interaction with the tumor necrosis factor receptor-associated factor 3 (TRAF3).
TRAF3 physically associated with NIK via a specific sequence motif located in the N-
terminal region of NIK; this molecular interaction appears to target NIK for degradation by
the proteasome. This pathway principally generates p52–RELB heterodimers as opposed to
the p50–RELA heterodimers produced by the canonical pathway [6–9].

Activation of NF-κB is a tightly regulated event. In normal cells, NF-κB becomes activated
only after the appropriate stimulation, and then it upregulates the transcription of its target
genes. NF-κB is activated by many divergent stimuli, including proinflammatory cytokines
such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), epidermal growth factor
(EGF), T- and B-cell mitogens, bacteria and lipopolysaccharides (LPS), viruses, viral
proteins, double-stranded RNA, and physical and chemical stresses [10]. Cellular stresses
such as ionizing radiation and chemotherapeutic agents also activate NF-κB [11]. One of the
first genes that NF-κB activates is IκBα itself, which transports activated NF-κB from the
nucleus to the cytoplasm. NF-κB activation is therefore an inducible, but transient event in
normal cells. In tumor cells, different types of molecular alterations may result in an
impaired regulation of NF-κB activation. In such cases, NF-κB becomes constitutively
activated. This leads to deregulated expression of NF-κB controlled genes. According to
Hanahan and Weinberg [12], tumorigenesis requires six essential alterations to normal cell
physiology: self-sufficiency in growth signals, insensitivity to growth inhibition, evasion of
apoptosis, immortalization sustained angiogenesis, and tissue invasion and metastasis. NF-
κB is able to induce several of these cellular alterations by producing inflammation, and has
been shown to be associated with development of cancer (Fig. 1).

Constitutive expression of NF-κB in cancer cells
Although cancer is the second most frequent cause of death in the United States, the
molecular mechanisms involved in its initiation and progression, and the ultimate
development of metastatic disease are largely unknown. These processes undoubtedly
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involve multiple genetic events, including activation of oncogenes and tumor suppressor
genes alteration of mutant phenotypic leading to neoplastic changes. However, the diversity
of its clinical presentation, aggressiveness, and current treatment strategies imply an equally
diverse number of potential targets in the molecular pathways leading to its formation. NF-
κB activation participates at multiple steps in these pathways, and its suppression may lead
to the suppression of cancer development. The activation of NF-κB occurs as it is
transported from the cytoplasm to the nucleus upon degradation of the inhibitory subunit. In
the nucleus, it binds to specific κB sites on the DNA and mediates the expression of a
number of genes involved in the cellular response to various stresses. The persistence of NF-
κB in the nucleus is referred to as constitutive activation. Constitutive activation NF-κB is
shown in a wide variety of tumor types (Table 1), including those tumors induced in animal
models. The precise role of constitutive activation in tumors is not known, but it has been
linked to resistance to apoptosis in human cutaneous T-cell lymphoma cells [57]. It is
tempting to believe that a similar mechanism accounts for the progression of all tumors that
constitutively express NF-κB, but such a link has yet to be clearly identified.

Mechanisms of constitutive NF-κB activation
The mechanism of expression of constitutively active NF-κB is not fully understood;
however, several mechanisms have been proposed, as described in Table 2. Some explained
reasons for constitutive expression of NF-κB include infected virus proteins expression,
activation of kinases, overproduction of cytokines, dysregulation of cell surface receptors,
activation of oncoproteins etc.

The possible explanatory mechanisms include aberrant IKK activity and a shorter IκBα half-
life (as seen in B-cell lymphoma), IκBα mutation (as seen in Hodgkin lymphoma), IL-1b
production (as seen in AML), and TNF-α production (as seen in cutaneous T-cell lymphoma
and Burkitt’s lymphoma). There have been reports of autocrine or paracrine activation of
NF-κB resulting from overexpression of ligands and receptors of EGF [84], HER-2/neu [64,
69], TNF-α [57, 73], IL-1 [74, 85], hepatocyte growth factor [86], and integrins [87].
Epidermal growth factor receptor and HER-2/neu signaling involving phosphoinositide 3-
kinases (PI3K), IKK, and casein kinase-2 (CK2) has been demonstrated in breast cancer
[88]; hepatocyte growth factor/PI3K/p21-activated kinase (Pak)/IKK signaling in prostate
carcinoma [86]; kinase inhibitor of NF-κB1 in melanoma [89], receptor tyrosine kinase Flt3
in AML [90], and NF-κB activation via persistent IKK activation in colon carcinomas,
mantle cell lymphoma, melanomas, and brain [1, 54, 63, 91]. Recently, both glycogen
synthase kinase (GSK)-3 isoforms (GSK-3α and GSK-3β) were reported to be involved in
regulating NF-κB activation and cell proliferation in pancreatic cancer cell lines [29].
Wilson and Baldwin showed that GSK-3 isoforms are differentially required to maintain
basal NF-κB DNA-binding activity, transcriptional activity, and cell proliferation in Panc-1
and MiaPaCa-2 cells.

The BCR–ABL fusion oncogene has also been implicated in NF-κB activation, cell survival,
and tumorigenesis in human leukemias [67]. Activation by a translocation that produces a
MALT-1 fusion protein has been reported in diffuse large B-cell lymphomas [92].
Constitutive activation of NF-κBp52:p52 due to overexpression and association with the
transactivating family member Bcl-3 has been detected in breast carcinomas and lymphomas
[17, 93]. Overexpression of MUC1 in human carcinoma cells is also associated with
constitutive activation of NF-κB p65. MUC1 interacts with the high-molecular-weight IKK
complex. The MUC1 cytoplasmic domain binds directly to IKKβ and IKKγ [71]. Direct
mutation or altered expression of NF-κB molecules has been only rarely found in human
cancers and in Hodgkin lymphomas, where mutations of IκBα that favor activation have
been identified [94]. Oncogene CARD11 contributes to tumorigenesis by inducing NF-κB
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activation. Experimental introduction of CARD11 coiled-coil domain mutants into
lymphoma cell lines resulted in constitutive NF-κB activation and enhanced NF-κB activity
upon antigen receptor stimulation [22]. Mutations in the coil-zipper (CoZi) domain of IKKγ
also cause constitutive NF-κB activity. Mann et al. [28] reported an association between
transglutaminase (TG2, a family of Ca2+-dependent enzymes that catalyze acyl-transfer
reactions between peptide-bond glutamine residues and the E-amino group of lysine residues
of other peptides) overexpression and constitutive activation of NF-κB in various types of
cancer cells. They found that inhibition of TG2 activity by synthetic inhibitors or small
interfering RNA (siRNA) inhibits the constitutive activation of NF-κB. Moreover, they
observed a direct association between TG2 and the IκBα/p65:p50 complex and cross-linked
forms of IκBα in TG2-expressing cells. Immunohistochemical analysis of pancreatic ductal
carcinoma samples obtained from patients further support a strong correlation between TG2
expression and NF-κB activation [28]. The TGase family is composed of several members,
including plasma factor XIII, TG1 (keratinocyte TGase), TG2 (tissue TGase), TG3
(epidermal TGase), and TG4 (prostate TGase). Among them, TG2 has been most widely
identified in many cell types and implicated in diverse physiological functions. All
mammalian TGs are known to be activated by an increase in the cytosolic Ca2+

concentration and various tumor promoters.

Many viruses achieve their oncogenic effects via the NF-κB signaling cascade. A notable
example relevant to human cancer is the oncoprotein human T-cell leukemia virus-1
(HTLV-1) implicated in acute T-cell leukemia (ATL). Persistent activation of NF-κB by
HTLV-1 Tax causes nuclear accumulation of NF-κB dimers, helps to overcome their
inhibition by the p105/NF-κB1 subunit, and is an essential step in the transformation of T
cells [95]. The Tax oncoprotein HTLV-1 has been shown to directly interact with and
constitutively activate the IKK complex, which results in the activation of both the canonical
and non-canonical NF-κB signaling pathways [6]. Other viral oncoproteins have also been
shown to activate NF-κB by means of different mechanisms [96]. Another virus that
contributes to human cancer via NF-κB is the Epstein-Barr virus (EBV), implicated in
Burkitt’s and Hodgkin’s lymphomas. The EBV nuclear antigen (EBNA)-2 and latent
membrane protein (LMP)-1 enhance NF-κB activity, thereby preventing apoptosis in EBV-
transformed B cells [97]. The avian REV-T oncovirus produces the constitutively active v-
REL oncoprotein, which causes rapidly progressing lymphomas and leukemias [2].

Cancer-associated chromosomal translocations, deletions, and mutations might also disrupt
genes that encode NF-κB and IκB proteins, uncoupling NF-κB factors from their regulators
and causing constitutive NF-κB activation. Constitutively activated NF-κB transcription
factors have been associated with several aspects of tumorigenesis, including promoting
cancer-cell proliferation, preventing apoptosis, and increasing a tumor’s angiogenic and
metastatic potential. We have also shown that a TNF-TNFR1-TRADD-TRAF2-RIP-TAK1-
IKK pathway mediates constitutive NF-κB activation and proliferation in human head and
neck squamous-cell carcinoma [47]. In head and neck squamous cell cancer (HNSCC) cells,
constitutive NF-κB activation has been seen in association with autocrine expression of
TNF, TNF receptors, and receptor-activators of NF-κB and its ligand but not with autocrine
expression of IL-1β. Furthermore, treatment of HNSCC cells with anti-TNF antibody
downregulated the expression of constitutively active NF-κB, and was associated with
inhibition of IL-6 expression and cell proliferation.

Constitutive expression of NF-κB-regulated gene products in cancer cells
Nuclear factor of κB (NF-κB) regulates many genes involved in the promotion of cancer
(e.g., clonal expansion, growth, diversification, angiogenesis, adhesion, extravasation, and
degradation of extracellular matrix; Fig. 2).
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Metastatic genes
The metastasis of cancer requires the migration of cancerous cells both into and out of the
vessel walls that transport them to other parts of the body. The ability to cross vessel walls is
mediated by specific molecules that are expressed in response to a number of signals from
inflammatory cells, tumor cells, and others. Among those special molecules are ICAM-1,
ELAM-1, and VCAM-1, all of which have been shown to be regulated by NF-κB activation
[98–100]. The gene encoding granulocyte macrophage-colony stimulating factor (GM-CSF),
as a key target of NF-κB, mediates osteolytic bone metastasis of breast cancer by stimulating
osteoclast development [101].

Angiogenic genes
Tumor cells, just like normal cells, need oxygen to survive, and so poor access to oxygen
can limit progression of tumors. Vascularization of tumors requires the release of angiogenic
growth factors (e.g., VEGF, MCP-1) from tumor cells and/or inflammatory cells such as
macrophages and neutrophils or in response to pro-inflammatory cytokines (e.g., TNF)
[102–104]. NF-κB regulates the expression of the growth factors and cytokines (VEGF,
TNF, and MCP-1) necessary for angiogenesis [105–108].

Tumor promoting genes
NF-κB regulates many genes involved in the promotion of cancer (e.g., clonal expansion,
growth, diversification, angiogenesis, adhesion, extravasation, and degradation of
extracellular matrix). For example, NF-κB may regulate the production of prostaglandins via
the proinflammatory gene COX2, which has been shown to be overexpressed in a variety of
cancers including colorectal cancer and mesothelioma [109, 110]. Similar studies have
reported many other proinflammatory genes regulated by NF-κB including TNF [111], IL-1
[112], iNOS [113], matrix metalloproteinase (MMP-9) [114], urokinase-type plasminogen
activator (uPA) [115], and many other chemokines [116–118].

Apoptotic/survival genes
Nuclear factor of κB (NF-κB) has been shown to play a pro-apoptotic role in addition to its
more common anti-apoptotic role. Examples of its pro-apoptotic effects in cells include
those found in B cells [119], T cells [120, 121], neuronal cells [122, 123], and endothelial
cells [124]. The opposing effects of NF-κB are thought to be cell-type specific and/or
dependent on the inducing signal (e.g., IL-1, TNF-α, and UV radiation). Different activation
pathways of NF-κB may cause the expression of proteins that promote apoptosis (e.g., Fas,
c-myc, p53, and IκBα) or inhibit apoptosis (e.g., TRAF2, IAP proteins, and Bcl-2 like
proteins) [123, 125, 126]. In addition, NF-κB activation variably controls the regulation of
cell cycle proteins (e.g., cyclin D1 and CDK2 kinase) [127–129] and the interaction with
various cellular components (e.g., p300 and p53) that promote or induce apoptosis [130,
131].

Induction of NF-κB by carcinogens
Several studies revealed that NF-κB is activated by various carcinogens, such as 7,12-
dimethylbenz(a)anthracene (DMBA) and cigarette smoke and tumor promoters, such as
phorbol 12-myristate 13-acetate (PMA) and benzoapyrene diol-epoxide (BaPDE) [132,
133]. The mechanisms of NF-κB activation by these carcinogens are not clear. However,
some carcinogens, e.g., DMBA and 12-O-tetra-decanoylphorbol-13-acetate (TPA), degrade
IκBα by its phosphorylation. PMA also activates NF-κB by phosphorylating IκBα as
observed in BEAS-2B human lung epithelial cells [134]. It has been observed that topical
treatment of DMBA–TPA on mouse skin activates the NF-κB and its nuclear translocation
through an increase in the phosphorylation of IκBα [135]. TPA also induces activation of
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IKK, NF-κB transcriptional, and DNA-binding activity [136]. Hepatic tumor-promoting
agent phenobarbital activates NF-κB in the rat liver and promotes DNA-binding activity of
NF-κB [137]. Numerous studies indicate that TNF, which can also mediate carcinogenesis
through induction of proliferation, invasion and metastasis of tumor cells [138, 139], is
perhaps the most potent activator of NF-κB.

Ultraviolet (UV) radiation can cause inflammatory changes and may further contribute to
carcinogenesis. UVB caused NF-κB (p65) translocation from the cytosol to the nucleus, and
it induced phosphorylation of IκBα, an inhibitor of NF-κB activity, which results in the
degradation of IκB and subsequent release of NF-κB, which translocates to the nucleus
where it is active in regulation of gene transcription [140]. Other than UV, gamma-radiation
also activates NF-κB. Treatment of Ramos cells with gamma-irradiation leads to marked
phosphorylation of IκB and translocation of p65/NF-κB to the nucleus [141].

Suppression of NF-κB by chemopreventive agents
Chemoprevention was described as the use of natural or synthetic chemicals allowing
suppression, retardation, or reversal of carcinogenesis [142]. Chemopreventive products
produce low side effects and toxicity and neutralize carcinogens as well as their effects on
cells. Several phytochemicals from different plants have been identified that can suppress
NF-κB activation effectively (Table 3). These include curcumin (turmeric), resveratrol (red
grapes), guggulsterone (guggul), ursolic acid (from holy basil), betulinic acid (birch trees),
eugenol (cloves), gingerol (ginger), oleandrin (oleander), silymarin (artichoke), emodin
(aloe), capsaicin (red chili), anethole (anise), and others. How these agents suppress NF-κB
activation is becoming increasingly apparent. For example, curcumin blocks IKK activation
[14], resveratrol suppresses p65 phosphorylation [161], ferulic acid inhibits p65
translocation to the nucleus [162], asiatic acid inhibits IκBα degradation [163], and lupeol
inhibits binding of NF-κB to the DNA [164]. All these blockers of NF-κB have potential in
the treatment of a wide variety of diseases. Pharmacological safety, bioavailability, and
efficacy in vivo will determine their therapeutic potential in particular diseases. Since NF-
κB regulates the expression of numerous genes that are involved in carcinogenesis, the
suppression of expression of these genes through inhibition of NF-κB activation may be one
of the mechanisms by which chemopreventive and chemotherapeutic agents mediate their
effects. Recently, in a phase II clinical trial, curcumin was found to beneficial for patient
with advanced pancreatic cancer [165]. Characterization of NF-κB pathway in zebra fish
[166] opens up a significant opportunity to screen for various inhibitors and look for toxicity
and other preclinical issue using this whole vertebrate organism.

Conclusion
Constitutive activation of NF-κB is an emerging hallmark of various types of tumors. NF-κB
is activated in response to oncogenes, viral proteins, carcinogens, tumor promoters, and
inflammatory stimuli. Its activation controls the expression of genes that mediate
transformation, proliferation, invasion, angiogenesis, and metastasis (Fig. 3). While NF-κB
is required for the normal function of the immune system and for hematopoiesis; its
deregulation has been implicated in a variety of cancers in which NF-κB is constitutively
expressed. Suppression of constitutive NF-κB activation by various agents including
bioactive components of natural compounds inhibits the oncogenic potential of transformed
cells and thus makes NF-κB an interesting new therapeutic target in cancer. Overall, this
review describes our current understanding of the mechanism of the constitutive expression
of NF-κB in tumor cells, its suppression by natural compounds, and the future direction of
the research.
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Fig. 1.
Link between NF-κB, inflammation, and cancer
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Fig. 2.
Role of NF-κB and NF-κB-regulated gene products in cancer development
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Fig. 3.
Various targeted therapies discovered within last 10 years for the treatment of cancer
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Table 1

A list of human cancer cell line and tumor that express constitutive nuclear factor-κB activation

Cell/Tumor References

Hematological cancer

 Burkitt lymphoma Rath [13], Hussain et al. [14]

 Acute lymphoblastic leukemia Kordes et al. [15], Munzert et al. [16]

 Anaplastic large-cell lymphoma Mathas et al. [17]

 Hodgkin’s lymphoma Bargou et al. [18]

 Mantle cell lymphoma Shishodia et al. [1], Yang et al. [19], Rudelius et al. [20]

 Diffuse large B-cell lymphoma Davis et al. [21], Lenz et al. [22]

 Acute myelogenous leukemia Brauns et al. [23], Jenkins et al. [24]

 Multiple myeloma Bharti et al. [25], Markovina et al. [26]

Gastrointestinal cancer

 Pancreatic cancer Wang et al. [27], Mann et al. [28], Wilson and Baldwin [29]

 Colorectal cancer Yu et al. [30], Hochwald et al. [31]

 Gastric cancer Lee et al. [32], Wu et al. [33]

 Esophageal carcinoma Izzo et al. [34]

 Laryngeal cancer Du et al. [35]

 Liver cancer Qiao et al. [36], Tai et al. [37]

Genitourinary cancer

 Prostate cancer Shukla et al. [38], Rettig et al. [39]

 Bladder cancer Warren et al. [40]

 Renal cell carcinoma Oya et al. [41]

Gynecologic cancer

 Ovarian cancer Lu et al. [42], Chu et al. [43]

 Cervical cancer Kato et al. [44]

 Vulvar carcinoma Seppanen et al. [45]

Thoracic and head and neck cancer

 Lung cancer Baby et al. [46]

 Head and neck cancer Jackson-Bernitsas et al. [47]

 Thyroid cancer Ludwig et al. [48], Pacifico et al. [49]

 Oral cancer Nakayama et al. [50]

Other

 Breast cancer Buchholz et al. [28], Mann et al. [51]

 Fibrosarcoma Higgins et al. [52], Kohno et al. [53]

 Melanoma Yang and Richmond [54], Uffort et al. [55]

 Squamous-cell carcinoma Tamatani et al. [56]
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Table 2

A list of mechanisms for constitutive activation of NF-κB in tumor cells

Mechanism Tumor References

Viruses

 HTLV-1 Tax protein induction T-cell leukemia Azran-Shaish et al. [58]

 Human herpesvirus infection T-lymphoma cells Chugh et al. [59]

 Hepatitis B virus infection Hepatocellular carcinoma Tai et al. [37]

 Expression of LMP1 of EBV Nasopharyngeal carcinoma Shair et al. [60]

 Expression of vFLIP from KSHV Dendritic cells Rowe et al. [61]

Kinases

 Overexpression of GSK-3β Pancreatic cancer Wilson and Baldwin [29]

 Overexpression of NIK Melanoma Dhawan et al. [62]

 Aberrant IKK activation Brain Politi et al. [63]

 Overexpression of Akt Breast cancer Pianetti et al. [64]

 Overexpression of TEL–Jak2 Acute leukemia Santos et al. [65]

 Overexpression of Raf Multiple myeloma Keats et al. [66]

 Overexpression of Bcr–Abl ALL and CML Reuther et al. [67]

Receptors

 Activation of Flt3 Acute myeloid leukemia Grosjean-Raillard et al. [68]

 Overexpression of EGFR and Her-2 Breast cancer Le Page et al. [69]

 Overexpression of TEL-PDGFR Hematopoietic Ba/F3 cells Besancon et al. [70]

 Overexpression of LT-βR Melanoma Dhawan et al. [62]

 Overexpression of BAFF or BAFF-R African monkey kidney cells Kohno et al. [53]

Oncoproteins

 Aberrant overexpression of MUC1 Breast cancer Ahmad et al. [71]

 Mutation of CARD11 B-cell lymphoma Lenz et al. [22]

 Overexpression of oncogenic Ras Mouse embryo fibroblast Joneson and Bar-Sagi [72]

Cytokines

 TNF production Breast cancer Braunstein et al. [73]

 IL-1β production AML Estrov et al. [74]

Miscellaneous

 IκBα degradation Gastric carcinoma Wu et al. [75]

 TRAF1 production Cervical cancer Kato et al. [44]

 p53 mutations Head and neck, lung tumors Weisz et al. [76]

 DNA histone deacetylase AML Fabre et al. [77]

 Transglutaminase production Pancreatic cancer Mann et al. [28]

 Mutations CoZi domain Somatic cells Bloor et al. [78]

 Helicobacter pylori infection Gastric epithelial cells Kim et al. [79]

 IRF-2 production African monkey kidney cells Chae et al. [80]

 Nitric oxide synthase activation Osteoarthritic chondrocytes Rosa et al. [81]

 Tyrosine nitration of IκBα CHO cells Yakovlev et al. [82]

 Dbl/Dbs transformation Mouse embryo fibroblast Whitehead et al. [83]
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ALL acute lymphoblastic, CML chronic myelogenous leukemia, AML acute myeloid leukemia, HTLV-1 human T-cell leukemia virus type 1, LMP1
latent membrane protein 1, EBV epstein bar virus, GSK-3β glycogen synthase kinase-3beta, NIK NF-κB-inducing kinase, LTβ-R lymphotoxin-beta
receptor, KINK-1 kinase inhibitor of nuclear factor-κB-1, KSHV Kaposi’s sarcoma-associated herpesvirus, IRF-2 Interferon regulatory factor-2
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Table 3

A list of mechanism of inhibition of NF-κB activation by different natural products in different cancers

Mechanisms Cancer type/cells Natural compounds (Source) References

Inhibition of activity of IKK:

Human prostate cancer PC-3 cells Apigenin (Peppermint parsley, thyme) Shukla and Gupta [143]

Human prostate cancer PC-3 cells Boswellin (Boswellia serrata) Syrovets et al. [144]

Malignant meanoma cells Capsaicin (Chili peppers) Patel et al. [145]

Human CF bronchial gland cells Genistein (Soy) Tabary et al. [146]

Multiple myeloma U266 cells Xanthohumol (hops) Harikumar et al. [147]

Inhibition of p65 phosphorylation:

Human prostate cancer Du145 cells Pomegranate (Pomegranate fruit) Rettig et al. [39]

Multiple myeloma U266 cells Resveratrol (Grape, red wine) Bhardwaj et al. [148]

Inhibition of activity of IKKK:

Multiple myeloma U266 cells AKBA (Boswellia serrata) Takada et al. [10]

Multiple myeloma U266 cells ACA (Languas galangal) Ichikawa et al. [149]

Human prostate cancer Du145 cells Anacardic acid (Cashew nuts) Sung et al. [150]

Human prostate cancer PC-3 cells Betulinic Acid (Bark of white birch) Rabi et al. [151]

Multiple myeloma U266 cells Coronarin D (Hedychium coronarium) Kunnumakkara et al. [152]

Burkitt’s lymphoma cell lines Curcumin (Turmeric) Hussain et al. [14]

SCC-4 cells Deguelin (Mundulea sericea) Nair et al. [153]

Multiple myeloma U266 cells Embelin (Embelia ribes) Ahn et al. [154]

Pancreatic cancer BxPC3 cells Gossypin (Hibiscus vitifolius) Kunnumakkara et al. [155]

Multiple myeloma U266 cells Guggulsterone (Commiphora mukul) Shishodia et al. [156]

Multiple myeloma MM.1 Indole-3-carbinol (Cabbage) Takada et al. [157]

Multiple myeloma MM.1 Isodeoxyelephantopin (Elephantous scaber) Ichikawa et al. [158]

Multiple myeloma U266 cells Plumbagin (Plumbago rosea) Sandur et al. [159]

SCC-4 cells Simvastatin (Aspergillus terreus) Ahn et al. [154]

Multiple myeloma U266 cells Withanolide (Withania somnifera) Ichikawa et al. [158]

Inhibition of p65 translocation:

HNSCC cells (−)-Epicatechin (Green tea) Kim et al. [160]

Inhibition of DNA binding of NF-κB:

Multiple myeloma U266 cells Celastrol (Celastrus species) Sethi et al. [84]

ACA 1′-acetoxychavicol acetate, AKBA acetyl 11-keto-b-boswellic acid, SCC squamous cell carcinoma, HNSCC head and neck squamous cell
carcinoma, CF cystic fibrosis, IKKK IKK kinase
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