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A major pathological feature of chronic airway diseases is the
elevated expression of gel-forming mucins. NF-kB activation in
airway epithelial cells has been shown to play a proinflammatory
role in chronic airway diseases; however, the specific role of NF-kB in
mucin gene expression has not been characterized. In this study, we
show that the proinflammatory cytokines, IL-1b and IL-17A, both of
which use the NF-kB pathway, are potent inducers of MUC5B mRNA
expression in both well differentiated primary normal human
bronchial epithelial cells and the human bronchial epithelial cell
line, HBE1. MUC5B induction by these cytokines was both time- and
dose-dependent, and was attenuated by the small molecule in-
hibitor, NF-kB inhibitor III, as well as p65 small interfering RNA,
suggesting that the regulation of MUC5B expression by these
cytokines is via an NF-kB–basedtranscriptional mechanism. Deletion
analysis of the MUC5B promoter demonstrated that IL-1b– and
IL-17A–induced promoter activity resides within the 24.17-kb
to 22.56-kb region relative to the transcriptional start site. This
region contains three putative kB-binding sites (NF-kB-1, 23,786/
23,774; NF-kB-2, 23,173/23,161; and NF-kB-3, 22,921/22,909).
Chromatin immunoprecipitation analysis confirmed enhanced
binding of the p50 NF-kB subunit to the NF-kB-3 site after cytokine
stimulation. We conclude that an NF-kB-based transcriptional
mechanism is involved in MUC5B regulation by IL-1b and IL-17A
in airway epithelium. This is the first demonstration of the partic-
ipation of NF-kB and its specific binding site in cytokine-mediated
airway MUC5B expression.
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Homeostasis in mucus production is essential for proper
mucociliary clearance and innate immune function in normal
airways (1, 2); excessive production of mucin in inflamed
airways can increase morbidity and mortality by obstructing
mucociliary clearance and air flow (3, 4). To date, 11 mucin
(MUC) genes (MUC1, 2, 3, 4, 5AC, 5B, 6, 7, 8, 13, and 19) have
been described as being expressed in the lung (2). Among these,
MUC5AC and MUC5B are the most prominent mucins in the
airway. MUC5B is mainly expressed in mucous glands under
normal conditions; however, the airway epithelium is also
known to express MUC5B as well as MUC5AC, particularly

in disease states, such as chronic obstructive pulmonary disease
(COPD) and usual interstitial pneumonia (5, 6). In a mouse
model of asthma, airway epithelial cells have also been shown to
up-regulate Muc5b expression in association with mucous cell
hyperplasia (7). Although extensive work has been done to
elucidate the molecular mechanism of cytokine-induced
MUC5AC expression (8–11), there are few studies describing
the regulation of cytokine-mediated MUC5B gene expression.
We have previously reported that IL-6 and IL-17A could stim-
ulate MUC5B gene expression via a c-Jun kinase/extracellular
signal–regulated kinase signaling pathway in normal human
bronchial epithelial (NHBE) cells (12); however, the transcrip-
tion factors involved in cytokine-induced MUC5B expression
still remain to be determined.

NF-kB is a pleiotropic transcription factor with multiple
critical roles in regulation of immune responses (13–15). NF-kB
becomes activated in response to inflammatory cytokines,
mitogens, physical and oxidative stress, infection, and microbial
products (16). Before stimulation, NF-kB subunits are seques-
tered in the cytoplasm by IkB. After cell stimulation, IkB-a is
phosphorylated by IkB kinase (IKK) 2. Phosphorylation of
IkB-a results in the ubiquitination and degradation of IkB-a,
leading to the nuclear localization of NF-kB, and transcriptional
activation of target genes (14). The proinflammatory role of
NF-kB in chronic airway diseases has been well documented.
Enhanced activation of NF-kB has been implicated in both
asthma and COPD (17, 18). Through the use of transgenic mice
and conditional ablation strategies, activation of NF-kB within
the airway epithelium has been shown to be necessary to induce
airway inflammation and mucus overproduction (19, 20). How-
ever, little is known about the direct involvement of NF-kB in
airway mucin gene regulation. The few studies published point
to the involvement of NF-kB in MUC5B up-regulation by cig-
arette smoke (21) and MUC5AC up-regulation by lipoproteins
of Haemophilus influenza or Mycoplasma pneumonia (22, 23).
However, these NF-kB studies were not performed in a primary
human cell system, nor did they address the role of NF-kB in
proinflammatory cytokine–induced MUC5B expression.

IL-1b is a proinflammatory cytokine that has been shown to
play an important role in airway diseases characterized by
increased mucus production (24–26), and has been shown to
be capable of activating the classical NF-kB signaling pathway
(27). IL-17A is a member of a novel family of proinflammatory
cytokines that is composed of six members: IL-17A, -B, -C, -D,
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Mucin overproduction is a major clinical hallmark associ-
ated with airway inflammation. The elucidation of the
molecular mechanism involved in cytokine-induced MUC5B
expression will provide a therapeutic basis for the treatment
to reduce the overproduction.
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-E, and -F (28). IL-17A has been shown to play important roles
in a variety of inflammatory lung conditions, including asthma,
COPD, and Gram-negative bacterial pneumonia infection (29–
31). IL-17A stimulates the production of inflammatory cyto-
kines and chemokines, and mediates pulmonary neutrophil
migration (32, 33). Our recent studies have demonstrated that
IL-17A stimulates the degradation of IkB-a, followed by the
nuclear translocation of p50 and p65 subunits of NF-kB (34, 35),
and induces mucin gene expression (11, 12) and production of
human b-defensin-2 (36), CCL-20 (37), CXCL-1, -2, -3, -5, -6,
and IL-19 (34) production by primary NHBE cells. Although
NF-kB plays a central role in both IL-1b and IL-17A signaling
cascades, no evidence is available about an NF-kB–based
transcriptional mechanism in IL-1b– and IL-17A–induced
MUC5B expression.

The purpose of this current study was to elucidate the
molecular events associated with IL-1b– and IL-17A–induced
MUC5B expression. Here, we demonstrate that IL-1b and
IL-17A induced MUC5B expression in an NF-kB–dependent
manner. Using promoter analysis and chromatin immunopre-
cipitation (ChIP) studies, we have identified an NF-kB–binding
element in the promoter region of the MUC5B gene.

MATERIALS AND METHODS

Culture Conditions

Human bronchial tissues were obtained with informed consent from
patients of the University of California–Davis Medical Center (Sacramento,
CA) and the National Disease Research Interchange (Philadelphia,
PA). The University Human Subjects Review Committee approved
and periodically reviewed the protocol. Primary NHBE cells were
isolated and cultured under an air–liquid interface condition, as
described previously (11) The immortalized NHBE cell line, HBE1
(38), was used for most of the transfection experiments that were
performed with a Lipofectamine 2000–mediated protocol (Invitrogen,
Carlsbad, CA). Culture conditions for the HBE1 cell line have been
described previously (11).

Cytokine and Inhibitor Treatments

Recombinant human cytokines, IL-1b and IL-17A or IL-17F, were
obtained from Invitrogen and R&D systems (Minneapolis, MN),
respectively. NF-kB activation inhibitor III (20 mM; Calbiochem, San
Diego, CA), a thiazoloamide, was dissolved in DMSO before use. We
observed no cytotoxic effects of the inhibitor (determined by trypan
blue exclusion) at the dose used in this study (data not shown).

Real-Time RT-PCR

Isolated DNA-free RNA was used for quantitative real-time RT-PCR
to obtain relative mRNA amounts of each gene after normalizing to
the b-actin or GAPDH message abundance, as described previously
(33–36). The primer sequences were as follows: GAPDH forward,
TGGGCTACACTGAGCACCAG; GAPDH reverse, GGGTGTCG
CTGTTGAAGTCA; b-actin forward, AGTCGGTTGGAGCGAG
CAT; b-actin reverse, AAAGTCCTCGGCCACATTGT; MUC5B
forward, GTGAGGAGGACTCCTGTCAAGT; MUC5B reverse,
CCTCGCAGAAGGTGATGTTG; p65 forward, AGCTCAAGAT
CTGCCGAGTG; p65 reverse, ACATCAGCTTGCGAAAAGGA.

Mucin ELISA and Western Blot Analysis

Mucin secreted by primary NHBE cells was measured by a double-
sandwich ELISA method using a monoclonal antibody specific to
airway sputum mucin, 17B1, as described previously (39). The amount
of mucin secreted in the culture was expressed as nanogram protein per
million cells per day.

For Western blot analysis of MUC5B expression in NHBE cells,
a deglycosylation step was performed on the blotted membrane before
immunoreaction with monoclonal antibody 5B19-2E (Santa Cruz Bio-
technology, Santa Cruz, CA), as described previously (40, 41).

Promoter–Reporter Constructs and Small Interfering RNA

Two MUC5B 4.17 kb and 2.56 kb promoter-luciferase reporter
constructs previously constructed in our laboratory (7, 40) were used
for the MUC5B promoter study. Cells were cotransfected with pRL-
TK (Promega, Madison, WI) to control for transfection efficiency. NF-
kB p65 small interfering RNA (siRNA) and random oligomer negative
control were purchased from Ambion Biotech (Austin, TX).

ChIP Assay

ChIP assays were performed according to the ChIP protocol from
Millipore (Billerica, MA), with minor modifications as described pre-
viously (34, 40, 41). Primers used for putative NF-kB sites of MUC5B
were: NF-kB-1 (from 23,861 to 23,712): forward primer, 59-GTG
CGTCTGGCCTGGTAAG-39; reverse primer, 59-CCCAGGATGTG
TACTCAGAGC-39; NF-kB-2 (from 23,195 to 23,070): forward
primer, 59-GCAAGTTCCTGGCACGTC-39; reverse primer, 59-AAG
GCGCTGAAAACAGAAGA-39; NF-kB-3 (from 23,006 to 22,851):
forward primer, 59-CCGGGATGTCTCAATAGCTG-39; reverse primer,
59-GGCACACAGTGACACCAAAC-39.

Statistical Analysis

Data are expressed as means (6SE). Experiments were performed in
triplicate, and performed in at least two independent cultures. Group
differences were calculated using the Student’s t test. Differences were
considered significant for P values less than or equal to 0.05.

RESULTS

IL-1b and IL-17A Stimulate MUC5B Gene Expression

in NHBE Cells

We examined the potency of IL-1b and IL-17A stimulation of
MUC5B expression in well differentiated NHBE cells cultured
under air–liquid interface conditions. As shown in Figure 1,
both IL-1b and IL-17A induced MUC5B mRNA expression in
primary NHBE cells in both a dose- and time-dependent
manner. For IL-1b, a significant stimulation of MUC5B was
observed at concentrations as low as 0.2 ng/ml (Figure 1A). A
time-course analysis indicated that maximum stimulation of
MUC5B expression occurred at 24 hours (Figure 1B) after
addition of 10 ng/ml IL-1b. A similar dose–response curve was
seen for IL-17A, except that a decrease in MUC5B gene
expression occurred with concentrations higher than 10 ng/ml
(Figure 1C). Maximum stimulation was seen 24 hours after
treatment with 10 ng/ml of IL-17A (Figure 1D). These results
confirm that both IL-1b and IL-17A are potent stimulators of
MUC5B gene expression in well differentiated NHBE cells.
Similar time- and dose-dependent results were seen in studies
with the HBE1 cell line (data not shown).

We performed both mucin ELISA and Western blot analysis
to examine effects on protein expression. As shown in Figure
2A, both IL-17A and IL-17F were able to stimulate mucin
production significantly, approximately threefold, over un-
treated cells, from 30 to nearly 100 ng/106 cells/day, whereas
IL-1b provoked a twofold increase in mucin production. West-
ern blot analysis using a MUC5B N-terminal–specific antibody
confirmed the enhanced accumulation of high–molecular weight
MUC5B protein after cytokine stimulation (Figure 2B).

NF-kB Is Required for Both IL-1b– and IL-17A–Induced

MUC5B Expression

To evaluate the involvement of NF-kB in cytokine-induced
MUC5B expression, an NF-kB activation inhibitor and NF-kB
siRNA were used. As shown in Figures 3A and 3B, both IL-1b–
and IL-17A–induced MUC5B expression was sensitive to the
NF-kB activation inhibitor in NHBE cells. To further these
results confirm, HBE1 cells were transfected with p65 NF-kB
siRNA. As shown in Figure 4A, transfection with p65 NF-kB
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siRNA significantly attenuated p65 message in HBE1 cells. A
similar inhibition at the protein level was seen with p65 siRNA
treatment (11). p65 siRNA also attenuated IL-1b–induced
MUC5B expression, compared with the negative control (Fig-
ure 4B). A similar attenuation was seen for IL-17A–induced
MUC5B expression (Figure 4C). These results demonstrate that
NF-kB is involved in IL-1b– and IL-17A–induced MUC5B
expression.

Deletion Analysis of Cytokine-Induced MUC5B

Promoter Activity

As shown in Figure 5A, IL-1b significantly increased luciferase
activity of the MUC5B 4.17-kb promoter construct; however,
there was no significant induction of the MUC5B 2.56-kb
promoter construct. Similar results were observed for IL-17A
(Figure 5B). Together, these results indicate that the region of
the MUC5B promoter spanning 24.17 kb to 22.56 kb contains
cis-acting element(s) that are required for both IL-1b– and
IL-17A–stimulated gene expression.

Demonstration of NF-kB Binding to MUC5B Promoter

by ChIP Assay

To identify the putative enhancer element(s) in the MUC5B
promoter, sequence analysis using MatInspector (Genomatix
Software GmbH, Ann Arbor, MI) revealed three putative kB-
binding sites between 24.17 kb and 22.56 kB of the MUC5B
promoter (Figure 6A). These are as follows: NF-kB-1, antisense
(2) 59 gtGGGAccctcca 39 (23,786/23,774); NF-kB-2, sense (1)
59 gtGGGAggctcct 39 (23,173/23,161); and NF-kB-3, sense (1)
59 cgGGGAggtgcct 39 (22,921/22,909). To determine if these
putative NF-kB sites are involved in cytokine-induced MUC5B
expression, a ChIP assay was performed. Because of the dif-
ficulty in obtaining consistent results with the anti-p65 antibody
during ChIP analyses, an antibody to the p50 subunit of NF-kB
was used for these experiments. As shown in Figure 6B, IL-1b

enhanced the binding of the p50 subunit of NF-kB to the

promoter region containing the NF-kB-3 site, which was
detected by real-time PCR quantification. On the other hand,
the binding of p50 to either the NF-kB-1 or the NF-kB-2 site
was not enhanced by cytokine treatment (Figure 6B). IL-17A
treatment resulted in similar p50 binding patterns (data not
shown). These results confirm the presence of an NF-kB–
binding element in the MUC5B promoter region, and show
that cytokine treatment enhances binding of the p50 subunit of
NF-kB to this region.

DISCUSSION

In the present study, we demonstrate that NF-kB plays a role in
both IL-1b– and IL-17A–induced MUC5B expression in both
well differentiated primary NHBE cells and the HBE1 cell line.
Both IL-1b and IL-17A stimulated MUC5B gene expression in
a time- and dose-dependent manner. Attenuation of NF-kB
activity by use of a specific inhibitor or treatment of the cells
with a p65 siRNA both suppressed MUC5B induction by either
cytokine. Using a reporter-based promoter study, we showed
that enhancer elements located in the MUC5B promoter
between 24.17 kb and 22.56 kb of the transcriptional start site
play a critical role in IL-1b– and IL-17A–induced promoter
activation. Importantly, we also provide an in vivo ChIP
evidence to demonstrate an enhanced physical interaction
between the NF-kB p50 subunit and the MUC5B promoter
after cytokine treatment. This is the first report describing
a critical role for NF-kB in transcriptional regulation of airway
MUC5B expression by IL-1b and IL-17A, as well as the
identification of an NF-kB–binding element in the promoter
of the MUC5B gene. A similar demonstration has been recently
reported for induced MUC5AC gene expression (11). For
IL-1b, this is the first demonstration that IL-1b is capable of
stimulating MUC5B expression in addition to MUC5AC. This is
in contrast to a previous report (42), which could only demon-
strate the stimulation of MUC5AC, but not MUC5B message by

Figure 1. Stimulation of MUC5B mRNA expression

by IL-1b and IL-17A. (A and C ) Dose–response

effects of IL-1b and IL-17A on MUC5B mRNA
expression. Normal human bronchial epithelial

(NHBE) cells grown in air–liquid interface (ALI)

conditions for 1 week were starved for 16 hours
(without growth factors) before being treated with

various concentrations of IL-1b (0–20 ng/ml) and

IL-17A (0–50 ng/ml). At 24 hours after cytokine

treatment, total RNA was harvested, and MUC5B
mRNA was analyzed using SYBR Green quantitative

real-time PCR and normalized to a housekeeping

gene, GAPDH, as described in MATERIALS AND

METHODS. (B and D) Time course effects of IL-1b

and IL-17A treatment on MUC5B mRNA expres-

sion. NHBE cells were treated with 10 ng/ml IL-1b

(B) or 20 ng/ml IL-17A (D). RNA samples were

harvested from these cultures at different time
points (0, 12, 24, 48 h) after treatment. MUC5B

and GAPDH mRNA levels were quantified using

real-time PCR. Triplicate dishes were used for each
experiment, and experiments were repeated with

cultures derived from two different human donors.

Statistically significant: *P , 0.05, **P , 0.01,

compared with unstimulated control.
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IL-1b. This difference may be difficult to explain due to the
variation in different culture conditions among different labo-
ratories.

We previously reported that IL-17A could stimulate
MUC5B expression in primary NHBE cultures (12), and that
this stimulation could be partially blocked by an anti–IL-6
receptor neutralizing antibody. This result suggests that an IL-
17A–mediated IL-6 autocrine/paracrine loop could be involved
in regulation of mucin gene expression. Further studies have
shown that this mechanism reached a maximum stimulation at
48–72 hours (Y.C., unpublished data). In contrast, the IL-1b and
IL-17A induction of MUC5B in this study is an early event that
occurs within 24 hours after treatment.

NF-kB activation in airway epithelial cells plays a central
role in airway inflammation (20, 43–45); however, no report has
demonstrated the involvement of an NF-kB–based mechanism
in cytokine-stimulated MUC5B up-regulation. Here, we show
that NF-kB activation is indispensable for IL-1b– and IL-17A–
induced MUC5B gene expression. Our findings indicate that

NF-kB activation in airway epithelium results in airway in-
flammation and mucus overproduction, which are two major
features of chronic airway disease, and highlight the potential
clinical benefit of focused targeting on the NF-kB pathway in
inflamed airways.

Few published studies have addressed involvement of
NF-kB in MUC5B induction. Preciado and colleagues (21)
reported that cigarette smoke could activate NF-kB and
induce Muc5b expression in mouse middle ear cells, but they
did not address whether or not NF-kB is directly responsible
for Muc5b induction. In the present study, attenuation of
NF-kB activity using both inhibitor and siRNA approaches
significantly decreased IL-1b– and IL-17A–induced MUC5B
gene expression in NHBE and HBE1 cells. In addition, we
recently demonstrated that both IL-1b and IL-17A stimulation
of HBE1 cells induced the degradation of IkB-a, and led to
nuclear localization of NF-kB subunits, p50 and p65 (35).

Figure 2. Effects of cytokines on mucin production and MUC5B
glycoprotein expression in NHBE cells. NHBE cells were treated with

10 ng/ml IL-1b and 20 ng/ml IL-17A/F. (A) Medium was collected 24

hours after stimulation for mucin ELISA quantification, as described in

the text and Ref. 39. (B) Cells were harvested 24 hours after stimulation
and lysed for Western blot analysis with monoclonal antibody (Mab)

5B19-2E specific for MUC5B N-terminal peptide (40) and anti–b-actin

antibody, which was used to monitor the protein input. *P , 0.05.

CTL, unstimulated control.

Figure 3. Effects of NF-kB inhibitor III on cytokine-induced MUC5B

expression. NF-kB inhibitor III (20 mM) or an equal amount of vehicle
(DMSO) was added 1 hour before 10 ng/ml IL-1b (A) or 20 ng/ml

IL17A (B) treatment on primary NHBE cells, as described in MATERIALS

AND METHODS. At 12 and 24 hours after treatment, RNA samples were

collected from these cultures. SYBR Green quantitative RT-PCR was
used to quantify the message levels of MUC5B and GAPDH (or b-actin)

in these RNA samples. Triplicate dishes were used for each time point,

and experiments were repeated three times for different cultures

derived from different donors. Statistically significant: *P , 0.05,
**P , 0.01.
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These findings provide evidence that NF-kB activation is
involved in IL-1b– and IL-17A–stimulated MUC5B induction.
Furthermore, using MUC5B promoter luciferase constructs,

we also demonstrate that cytokine-mediated transcriptions act
on cis element(s) located within the 24.17 kb to 22.56 kb
region of the MUC5B promoter. Importantly, sequence anal-
ysis revealed three potential kB-binding sites located within
this region. Using ChIP analysis, we demonstrated that IL-1b

stimulation enhanced the binding of p50 to the region of
MUC5B promoter from 23,006 to 22,851, which contains the
kB-binding site (NF-kB-3 site, 22,921/22,909). Further exper-
iments, such as site-directed mutagenesis, should been done to
verify the functionality of the NF-kB–binding site in MUC5B
promoter activation.

Although a significant role for NF-kB in the transcriptional
regulation of IL-1b– and IL-17A–stimulated MUC5B expres-
sion has been shown in this study, the possibility that other
transcription factors are involved cannot be ruled out. Recently,
we reported that specificity protein 1 (SP1) activation plays
an important role in both basal MUC5B promoter activity and
phorbol 12-myristate 13-acetate–induced MUC5B gene expres-
sion in NHBE cells (41). Choi and coworkers (46) reported
that the cAMP response element–binding protein and a cAMP-
response element site on the 2956 region of the MUC5B
promoter is required for 17b-estradiol–induced MUC5B expres-
sion in normal human nasal epithelial cells and NCI-H292 cells.
It is possible that an intricate network of transcriptional factors is
involved in the regulation of MUC5B expression under various
conditions. Given the broad nature of NF-kB activation, it seems
likely that other factors might be involved in the regulation of
IL-1b– and IL-17A–induced MUC5B expression, which will be a
topic of exploration in future studies.

In conclusion, we have found that both IL-1b and IL-17A,
two prominent proinflammatory cytokines associated with
chronic airway inflammation, can mediate MUC5B induction
in airway epithelial cells. We further show that NF-kB activation
is an essential mechanism for both IL-1b– and IL-17A–induced
MUC5B expression, and we have identified the functional region
(from 24.17 kb to 22.56 kb) of the MUC5B promoter that
contains the NF-kB–binding site (22,921/22,909). As IL-1b and
IL-17A have both been demonstrated as positively promoting
airway inflammation in various disease states, our results are

Figure 4. Effects of p65 small interfering RNA (siRNA) on

cytokine-induced MUC5B expression. HBE1 cells were

treated with p65 siRNA or random oligomer (RO) siRNA
as the control treatment (CTL), as described in the text.

Two days after siRNA treatment, cells were starved for 6

hours, then treated with IL-1b (B) or IL-17A (C ) for 16

hours. The efficiency of siRNA-p65 in reducing endoge-
nous p65 mRNA was confirmed by performing real-time

PCR (A). Relative MUC5AC message levels were averaged

from triplicate dishes, and the experiment was repeated

three times with HBE1 cells from different passage num-
bers. Statistically significant: **P , 0.01.

Figure 5. Deletion analysis of MUC5B promoter–reporter gene activ-

ities in response to cytokines. HBE1 cells were cotransfected with

various MUC5B promoter luciferase reporter constructs and the control

pRL-TK plasmid, as described in MATERIALS AND METHODS. At 2 days after
transfection, cells were left unstimulated (CTL) or simulated with IL-1b

(A) or IL-17A (B) at the 10-ng/ml level for 16 hours. Luciferase activities

in these cells were measured and normalized as described in MATERIALS

AND METHODS. Data from triplicate dishes were averaged and experi-
ments performed in three independent cultures. Statistically significant:

**P , 0.01 compared with the CTL case without cytokine treatment.
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consistent with these findings, and further suggest one manner

in which these cytokines contribute to the pathogenesis of

airway inflammatory diseases. This study highlights the im-
portance of NF-kB as a transcriptional regulator of mucin
gene expression in airway epithelium, and may provide new
strategies for controlling mucus overproduction in chronic
airway diseases.
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