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ARTICLE
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Neurofibromatosis type 1 patients with a submicroscopic deletion spanning the NF1 tumor suppressor gene are
remarkable for an early age at onset of cutaneous neurofibromas, suggesting the deletion of an additional locus

that potentiates neurofibromagenesis. Construction of a 3.5 Mb BAC/PAC/YAC contig at chromosome 17g11.2 and
analysis of somatic cell hybrids from microdeletion patients showed that 14 of 17 cases had deletions of 1.5 Mb in

length. The deletions encompassed the entire 350 kb NF1 gene, three additional genes, one pseudogene and 16
expressed sequence tags (ESTS). In these cases, both proximal and distal breakpoints mapped at chromosomal
regions of high identity, termed NF1REPs. These REPs, or clusters of paralogous loci, are 15-100 kb and harbor at

least four ESTs and an expressed SH3GL pseudogene. The remaining three patients had at least one breakpoint
outside an NF1REP element; one had a smaller deletion thereby narrowing the critical region harboring the
putative locus that exacerbates neurofibroma development to 1 Mb. These data show that the likely mechanism of

NF1 microdeletion is homologous recombination between NF1REPSs on sister chromatids. NF1 microdeletion is
the first REP-mediated rearrangement identified that results in loss of a tumor suppressor gene. Therefore, in
addition to the germline rearrangements reported here, NFIREP-mediated somatic recombination could be an
important mechanism for the loss of heterozygosity at NF1in tumors of NF1 patients.

INTRODUCTION Over 70% of germline mutations of tiéF1 gene are intra-
genic and predict a premature truncation of neurofibromin (8).
These mutations are distributed throughout the coding region.

. ) ) ey are generally unigue for a given patient or family, and are
d|sqrder that predisposes o th_e devel_opment of be_mgn_a t predictive for any of the diverse clinical manifestations that
malignant tumors. Genetic, biochemical and proliferative

> . - "—can develop in this multisystemic disorder. Nearly all NF1
studies of cells from NF1-associated tumors are consistefbients develop café-au-lait macules, axillary and inguinal
with a tumor suppressor functlon_for neurofibromin. Tumorfreckling, multiple neurofibromas, and Lisch nodules, which
suppressor activity is due, at least in part, to a ras-GTPase acljre hamartomas of the iris of the eye. Other significant, but less
vating protein (ras-GAP) domain which accelerates thgommon, manifestations of the disorder include learning disa-
conversion of activated GTP-ras to inactivated GDP-ras (1kjlities, optic glioma, bony abnormalities (sphenoid bone
Evidence in human and mouse shows that neurofibromingysplasia, pseudoarthrosis, scoliosis), increased risk of specific
deficient tumor cells have increased activated ras anghalignancies, and others (9,10). NF1 has been considered to be
dysregulated proliferative properties (2,3), which may beprimarily a disorder of cells derived from the neural crest,
mediated by the ras-dependent mitogen-activated proteighich is supported by recent evidence consistent with neuro-
kinase signaling pathway (4). Both benign and malignantibromas arising by clonal proliferation of a neurofibromin-
tumors show homozygous inactivationMiF1 resulting in lack  deficient Schwann cell (11).

of functional neurofibromin. AlthougiNF1 inactivation in a Previously, we identified five patients that carried a deletion
tumor progenitor cell can occur by numerous mechanisms, thef one entireNF1 allele. These patients were remarkable for an
identification of defined intrageniblF1 mutations in primary early age (<10 years) at onset of dermal neurofibromas, an
tumor tissue argues that lack of neurofibromin is central tancreased number or heavy burden of neurofibromas relative to
their development (5-7). their age, and certain atypical facial features (12,13). The asso-

Haploinsufficiency for neurofibromin is the likely molecular
basis of neurofibromatosis type 1 (NF1), a common autosom
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ciation of an NF1 microdeletion with this phenotype was pter
subsequently confirmed by us and other investigators (14—18). 1 Interval
In addition, the identification of families segregating ldf1 cen
microdeletion demonstrated that the rearrangement was co- A
inherited with the remarkable facial and tumor features D17533 —
(17,19,20).
The molecular basis for precocious neurofibromagenesis in B
microdeletion patients is unknown. Previously, we estimated
the microdeletions at 0.7-2 Mb, which, even accounting for the .
large 350 kbNF1 gene, implies that many additional genes are D1782120 — ’
deleted (13,14,19). Theoretically, early age at onset of neuro- UTA;? —] ’
fibromagenesis could be attributed to: (i) deletion of Niel ’
gene alone; (ii) co-deletion MiF1 and one of the three genes 5
of unknown function that are embedded in HiF1 intron;
(iii) co-deletion of NF1 and a novel contiguous gene(s); or
(iv) dysregulation of a gene at the deletion breakpoint. We D1751800 —
consider it unlikely that neurofiboromin haploinsufficiency D1751880 —
alone could account for early onset of tumorigenesis. Over e
70% of NF1 patients are heterozygous for a mutation that
predicts premature truncation of neurofibromin, yet in a popu-
lation-based study only14% of subjects developed dermal
neurofibromas before 10 years of age (21,22). However, it is
unknown whether neurofibroma development could be amel-
iorated in any of these patients due to possible residual activity
from the mutaniNF1 allele. The role of a putative co-deleted
locus has been difficult to assess because the number of dele-
tion patients is small and information regarding number and Yy
age at onset of neurofiboromas and deletion magnitude are not qter
always evaluated or reported. Recently, however, we described
12 unrelatedNF1 microdeletion patients with early onset and/ Figure 1. Hybrid mapping panel for thBlF1 region. The location of markers
or high burden of neurofibromas with deletion breakpoints thain theNF1region are depicted, along with thé=1 deletion previously defined
clustered in the same centromeric and telomeric locus intervalg patients, with open bars representing the breakpoint cluster regions (K.
(K. Maruyama, M. Weaver, K. Leppig, A.S. Aylsworth, M.O. Maruyamaet al., submitted for publication). !_om were mapped to one of five
Dorschner. R. Farber. J. Ortenbera. A. Rubenstein. L. Immke intervals (A—E) on chromospme 17 by the_lr presence or absence in human/
' ' g g, . h Nodent somatic cell hybrid lines. The hybrid line UWA106-3-#36 was con-
C. Curry and K. Stephens, submitted for publication). Towardstructed fromNF1 microdeletion patient UWA106-3 and carries a chromo-
mapping and identifying a locus that potentiates neurofibromasome 17 deleted for the indicated segment (13). Line SP3-10 carries human
genesis in NF1 patients, we constructed a 3.5 Mb physical ma:ﬂyromosome segment 17q11.2 to gter (76) and NF13 carries a segment from
of the NF1 region, precisely mapped the deletion, and examNFLintron 27bto gter (7).
ined deletion genotype with patient phenotype. We report that . )
the breakpoints in the majority of patients are clustered a@cation of the deletion breakpoints, we sought to construct a
flanking genomic segments of paralogous sequence (sequerig@ysical map encompassing both breakpoint cluster regions.
similarity due to duplication). These results have importaninitially, chromosome 17 loci reported to map at or near band

implications regarding germline and somatic rearrangemen@l1.2 were gleaned from the literature and publicly available
involving NF1. electronic databases and screened by PCR against a somatic

cell hybrid mapping panel. This placed each locus into one of
five possible chromosomal intervals (Fig. 1). Loci that mapped
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RESULTS to intervals C and D were used to identify and construct a
) . contig of novel and previously reported bacterial artificial
Construction of a 3.5 Mb contig chromosome (BAC) and P1-derived artificial chromosome

Recently, we determined that both the centromeric and telon{PAC) clones. Initial database searches identified five
eric breakpoints in 14 of 15 NF1 patients with submicroscopicequenced clones that served as a framework for contig
deletions were clustered in two distinct marker intervalsconstruction. Two BACs, 468F23 and 41C23, were found to
Quantitative PCR and the analysis of somatic cell hybrid lineharborAH1 andAN2, respectively, which are end sequences of
carrying deleted chromosome 17 of each patient mapped tife previously described\F1 yeast artificial chromosome
centromeric breakpoints between marker 1Bdi7S2120and  (YAC) contig (23) (Fig. 2). A 297 kb sequence carrying a large
UT172and the telomeric breakpoints betweeh7S51800and  portion of theNF1 gene (GenBank accession no. AC004526),
D1751880(K. Maruyamaet al, submitted for publication) and clones 542B22 and 307A16, were identified from database
(Fig. 1). Although these data were suggestive of breakpoirgearches. Together, the three clones 499120, AC004526 and
clustering, the length of each interval was unknown. In addi41C23 comprise a 476 kb contiguous seguence spanning from
tion, the number and unique order of other markers within eacimtron 1 of theNF1 gene toD17S180QFig. 2). The remainder

of these initial breakpoint intervals was unknown. To refine theof the contig was assembled by screening a BAC library with
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Figure 2. Physical contig of thé&lF1region. The thick black bar is a schematic of the chromosome 17g11.2 region with STS loci placed above the bar and genes
and EST loci below. The BAC, PAC and YAC clones comprising the contig are shown above; open elipses are aligned with the loci on the chromosome schemat
and indicate a positive hit in the clone; sequenced BAC/PAC clones are indicated with an asterisk. Vertical bars at the ends of BACs represamniribatt te

were sequenced and submitted to GenBank, but not converted to amplimers. The scale in Mb is at the top of the figure. The size and extent of midrodeletion
NF1 patients are shown below the chromosome. The conmitdndeletion region was identified in 14 of 17 unrelated patients; whereas three patients had novel
deletions as shown. The open boxes represent flanking repetitive sequences (NF1REP) where the majority of breakpoints mapped.

selected loci that mapped in intervals C and D (Figs 1 and 2) arlsreakpoints of all 17 microdeletion patients. Fourteen micro-
by utilizing newly released chromosome 17 sequences from thdeletion patients had proximal breakpoints in the locus interval
Whitehead Institute for Biomedical Research/MIT Center forof SH3GLP2to CYTOR4(SHGG37343 and distal break-
Genome Research (http://www-genome.wi.mit.edu/ ). The clongsoints in the interval betweeBH3GLP1landD17S188(Fig.
comprising the BACs are listed in Table 1. 2). The remaining three deletion cases had at least one novel
The contig consisted of 39 BAC/PAC and two YAC clonesbreakpoint (Fig. 2). Patient UWA113-1 had a novel centro-
(Fig. 2, Table 1). The new markén6INTlinked together the two Meric breakpoint betweeRB12A2and exon 1 of theNF1
YACs y947g11 and y815b11 (http:/Mmw-genome.wi.mit.edu/ )gene. Both breakpoints of patient UWA155-1 were novel and
creating a YAC contig of the region. In addition, loci located between the intervals defined $HGC35088
prominent for their previous use in genetic mapping and loss df B12A2andD1751656stSG50857Patient UWA106-3, who
constitutional heterozygosity (LOH) analyses were mappe&ad the I_argest deletion in our cohort_ (13), also h_ad two unique
precisely.UT172 previously estimated to be 1.5 Mb centro- breakpoints. The telomeric breakpoint ma_pped in th_e interval
meric of NF1 (24), is only ~250 kb distant within BAC of D17S73to _FBGFlO and the centromeric breakpom_t was
468F23.D17S117and D17S120are located-1 Mb centro-  Mapped previously between1751294and SCLE6A4during
meric of NF1; the latter marker actually lies within an intron of Sonstruction of a physical contig of the latter gene that encodes

the carboxypeptidase DCPD) gene.D17S798is located € Serotonin transporter (25). _ _
~1.8 Mb telomeric oNFL The contig provided more precise estimates of the physical

lengths of both the region and the patient deletions. Because
YACs 947911 and 815b11, each estimated at 1.7 Mb (http://
www-genome.wi.mit.edu/ ), are completely contained within
Over 10 loci were placed precisely in each of the breakpointhe deletion of UWA106-3, this patient’s deletion is approxi-
cluster regions (Fig. 1), thereby facilitating fine mapping of themated at 3.5 Mb. YAC 947911 spans fr@hC6A4to A16INT

Fine mapping of the NF1 microdeletion breakpoints
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Table 1.BAC/PAC clones from 17q11.2 D1751863
SH3GLP2- P
Clone source Clone name GenBank accession no. Size (kb) sts“e"s'?égl;ﬁ Ei ¢ NF1REP-P
hRPK 110809 Wii2s0sp :g
hRPK 268 F 2 AC006050 163 cYTOR4 :i
hRPK 994D 8 :2
hRPK 946G 8 :§
hRPK 271K 11 AC005562 199 17q11.2 ‘3
WI-11887 5
hRPK 943 L 10 \ SHEGLP1-M Ve
hRPK 1124G 9 I tapeite Ei NF1REP-M
hRPK 932D 9 oo
hCIT 33532 D1751880
hCIT 468 F 23 AC004666 120
WI-9571
Rk erscas e I
- NF1REP-D
hRPK 997 D 19 stSG40093-D
WI-12393-D
hCIT 499 120 AC004222 119
AC004526 297
hRPK 1093 P 22 Figure 3. NFIREP domains on chromosome 17. The locations of the three
PREK 109594 are Shown a1ong with the Tve o hey are Know to contain. n adtion, the
hCIT 41C23 AC003101 208 2{(?525?\3/;;% %arker flanking each )FIQEP is indicated. The ;:ross-hatchéd bar
hRPK 1078113 represents the 1.5 Mb region commonly deleteN#1 microdeletion patients.
hRPK 1126 E 16
:2:1 23? i iz AAggggg’i ;zl library were subtyacted from the YAC lengths to give _the esti-
mated scale in Figure 2. The length of the commiéL micro-
hRPK 904 A12 deletion was estimated at 1.5 Mb.
hRPK 999 E 22
hRPK 95306 NF1 microdeletion breakpoints cluster at repetitive
hRPK 951 F11 sequences
hRPK 9s3c1s Fine mapping of the region led to the discovery of t8ld3GL
hRPC 144022 expressed pseudogene§H3GLP2 and SH3GLP] that
hRPK 952K8 mapped near the breakpoints of the comnifil deletions
hCIT 347H5 AC002119 109 (Fig. 2). Because low copy repeats are known to flank dele-
hCIT 453 H 10 tions/duplications responsible for some contiguous gene
hRPK 227G 15 AC005899 184 syndromes (26), a search for additional multicopy transcripts
hRPK 1147 M 22 was initiated. A third expressed pseudogeBel3GLP3 was
hRPK 1100 N 24 reported to map distally at 17q24 (27). BLAST analyses of the
hRPK 1103 B 13 SH3GL pseudogenes identified BACs 271K11 and 147L13,
hRPC 29 G 21 AC003687 141 which carried SH3GLP2 and SH3GLP3 respectively. The
hRPK 1037 L 15 sequence-tagged site (STS)/expressed sequence tag (EST)
hRPK 1106 E 7 content of the BAC clones was obtalneq (ht‘gp_://www_—
genome.wi.mit.edu/ ) and BLAST analyses identified their
hRPK 152D 17 locations within each clone. This revealed that two ESV,
hRPK 1014116 12393and WI-9461, were present in both BACs and located
hRPK 1144121 near each respectiv@H3GLpseudogene. Systematic BLAST
hRPK 1130A2 analyses of loci reportedly mapping nedF1 in publicly
hRPK 1105A3 available genome databases revealed #®t&G40093and
hCIT 304117 AC004147 139 stSG31654vere not only in BAC 271K11 centromeric MF1,
hRPK 215 E 13 AC005549 147 but were also harbored by BAC 147L13 at chromosome 17q24

(http://www.ncbi.nlm.nih.gov/genemap98 ). Together these
hRPK, clones from RPCI-11 Human Male BAC library; hCIT, clones from analyses identified two clusters of five transcripts for which
CITB Caltech Human BAC library; hRPC, clones from RPCI Human PACthe order and relative distance between markers was
library. conserved. These clusters of paralogous loci were designated
“Contiguous sequence of two overlapping BAC clones. as NF1REP, using the suffixes -P and -D to distinguish the
proximal repeat at 17q11.2 from the distal repeat at 1724
and overlaps 815b11, which extends to just beypdd@S798  (Figs 2 and 3).
The known lengths of sequenced BACs and the average lengthTo determine whether the unsequenced region surrounding
of 185 kb for non-sequenced BACs derived from the RPC1-15H3GLPIcomprised an additional NFIREP, PCR primers for
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WI-9461, stSG31654stSG4009andWI-12393were used to families inherited NF1 microdeletions. Family UWA166
amplify these loci from BACs overlapping th8H3GLP1 includes the affected mother UWA166-1 and her three affected
locus. BAC clones 953C18, 951F11 and 95306 were positivehildren UWA166-2, -3 and -4 (19), patient UWA169-1 inher-
for each of the transcripts; 999E22 was positive for all but théted NF1 from his affected mother (19,28), and UWA155-1
WI-12393locus. This medially positioned repeat cluster wasinherited NF1 from his affected father.

designated NF1REP-M (Fig. 3). These results demonstrated

that chromosome 17 carries at least three clusters of paraI%-

gous loci: WI-9461, stSG31654stSG40093and WI-12393  DPISCUSSION

each in association with a specifiti3GLpseudogene (Fig. 3).

The absence diVI-12393from BAC 999E22 and preliminary NF1REP elements

sequence analysis (M. Dorschner, unpublished data) strongishree NF1REPs were mapped to chromosome 17. NFIREP-P
suggests that NFIREP-P and -M are direct repeats of 15-1Qfq -M flank theNF1 locus at 17q11.2 and are separated by
kb in length. The repetitive sequences may extend furthery 5 mb of DNA. The third, NFIREP-D, is located at 17q24.
beyondwI-12393 The breakpoints of the patients carrying thegach REP is composed of at least five transcripts/ESTs
common NF1 microdeletion lie within, or adjacent to, including an SH3GL pseudogeneWI-9461, stSG31654
NF1REP regions. The centromeric breakpoints were betweeg{sG40093and WI-12393 (Fig. 3). In a search for proteins
SH3GLP2and CYTOR4 whereas the telomeric breakpoints containing SH3 (src homology region 3) domains, three func-
occurred betweeSH3GLPland KBCEN Finer mapping of  tional genes were identified from a fetal brain cDNA library,
the breakpoints will require the development of REP-specifiis3G L1 SH3GL2andSH3GL3 These genes map at chromo-
primers or Southern blot analyses that identify junction fragsomes 19p13.3, 9p22 and 1524, respectively (27), and func-
ments. The size and orientation of NFIREP-D is unknown.  tjon in signal transduction, cytoskeleton and aggregation of
Several lines of evidence confirmed that, despite carryinguntingtin (29-31). In addition, three expres&d3GLpseu-
sequences with a high degree of identity, BACs spanningogenes were identified that mapped by FISH to chromosome
NF1REP-P and -M were localized unambiguously. First, the17 (Fig. 3) (27). It will be important to characterize the expres-
primers for amplification ofSH3GLPland SH3GLP2were sjon of the other paralogous loc\WI-9461, stSG31654
locus specific, exploiting base differences in tHerégion of  stSG40092indWI-12393 at each of the NFIREPs. Although
the transcripts (27). BACs 943L10 and 946G8 were the onlyhese loci were originally isolated as ESTs expressed in
clones that possesse8H3GLP2 whereas clones 953C18, multiple tissues (Unigene: www.ncbi.nlm.nih.gov/UniGene/
951F11, 999E22 and 95306 carried o@#3GLP1 In addi-  index.html ), it is unclear whether each paralogous locus in
tion, these BACs harbored the expected unique loci based qF1REP-P, -M and -D is expressed and whether they represent
our deletion analysis. BAC 943L10 was positive 2t7S1863 pseudogenes, functional loci or residual gene fragments.
and CYTOR4 whereas BACs spanning the medial REP
contained<IAA01600r D17S1880 NF1REP-mediated recombination

Mouse orthologs for all of the genes located in interval B )
(Fig. 1), SLC6A4 CPD, CDK5R1and the chemokine cluster, We propose that a high degree of homology between NF1REP-

have been mapped to the same region of mouse chromosoménd -M facilitates homologous recombination during meiosis
11 that carries th&\F1 ortholog. It appears that synteny has ©F mitosis resulting in the deletion of intervening sequences.

been conserved between human and mouse for the region frdnPnsistent with this hypothesis, pseudogedidSGLPland-2
CRYBAT1to at least the chemokine cluster. are 97.8% identical, where&H3GLP3shares only 90% iden-

tity with either of these (27). Further analysis of the identity
between NF1REP-P and -M will require completing the
sequence of the NFIREP-M domain; partial sequence analysis
shows >98% identity (M. Dorschner, unpublished data).
The physical features of the 13 unrelatd&1 microdeletion Recombination between the direct repeats NFIREP-P and -M
patients and the four members of family UWA166 are summaeould give rise toNF1 microdeletions by either unequal
rized in Table 2. There were no obvious differences detectetecombination between sister chromatids or intrachromosomal
between the features present in those individuals with theecombination via a fold-back loop and excision. Distin-
commonNF1 deletion and the three with deletions of different guishing between these mechanisms will require further anal-
lengths. No single feature was present or absent consistenyges to determine whether NFIREP-mediated recombination
within either group. The location of the putative gene thatis associated with a meiotic crossover event. The apparent
potentiates neurofibromagenesis was narrowed to an intervpleference forde novo NF1microdeletion of the maternally
of 1 Mb betweenFB12A2and SH3GLP1 as defined by the derived chromosomes may provide a clue. Other REP-
deletion of patient UWA113-1 (Fig. 2). This critical region is mediated rearrangements show a sex-dependent mechanism
known to harbor four genes, two pseudogenes, and seven ES&ih maternally derived deletions resulting from excision of an
(Fig. 2, Table 3). intrachromatidal loop (32). Although in other cases, micro-
A preference forde novomicrodeletion of the maternally deletions mediated by flanking REP domains appear to arise
derived chromosome was observed. Among the eight caséy both mechanisms (33-35). If unequal meiotic recombina-
with documentedde novomicrodeletions, six were derived tion between sister chromatids underli¢S1 microdeletion, it
from the maternal homolog (UWA patients 113-1, 119-1, 147would predict the formation of a reciprocal duplication deriva-
3, 167-1, 183-1, 184-1) and two from the paternal homolodive. Whether a 1.5 MINF1 duplication product would be
(UWA106-3, UWA123-3) (13,19, data not shown). Threestable is unknown; it may quickly undergo recombination and

NF1 deletion genotype/phenotype and parental origin of
deletion
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Gene/EST Description GenBank accession no. Unigene cluster
SLC6A4 Serotonin transporter L05568 553
stSG16004 R96721 155925
BLMH Bleomycin hydrolase X92106 78943
sts-T98371 T98371 15036
CPD Carboxypeptidase D U65090 5057
SHGC-33050 G29398

GOS28 Golgi SNAP receptor complex member 1 AF073926 8868
SH3GLP2P SH3-domain GRB2-like 1 pseudogene X99660

WI-9461-P G07297 183294
stSG31654-P AA910341 191479
stSG40093-P AlI378068 124418
WI-12393-P Moderately similar to KIAA0563 protein G20446 14232
CYTOR4 Cytokine related receptor protein 4 G30528 119410
sts-N67026 Weakly similar to AD7C-NTP N67026 206654
SHGC-33441 T70563

stSG12855 H56424 221463
N22706 N22706 43234
SHGC-35907 D19648 94891
SHGC-34232 Weakly similar to IP4/PIP3 binding protein G28215 28802
SHGC-35088 H79008

FB12A2 T02847

NF1 Neurofibromin M89914 93207
OoOMG Oligodendrocyte myelin glycoprotein M63623 194772
EVI2A Ecotropic viral integration site M55267 41846
EVI2B Ecotropic viral integration site M60830 5509
AK3-pl Adenylate kinase pseudogene X60674

N25049 Expressed only in olfactory epithelium N25049 183219
sts-M79255 M79255

1B518 Weakly similar to KIAA0665 protein T03582 3454
stSG-41099 H29300 7985
WI-6742 R44280 8179
SHGC-34334 D19683 30670
KIAA0160 D63881 170329
SH3GLPI1M SH3-domain GRB2-like 1 pseudogene X99658

WI-9461-M G07297 183294
stSG31654-M AA910341 191479
stSG40093-M AlI378068 124418
WI-12393-M Moderately similar to KIAA0563 protein G20446 14232
SHGC-17169 G19390 192761
KIAAQ727 Similar to unconventional myosins AB018270 39871
CDK5R1 CDKS5 regulatory subunit 1/p35 X80343 2869
WI-16331 G20991 120762
stSG42502 H86705 40488
stSG28748 AA860832

stSG48313 AA279265 97128
stSG13199 H75373

stSG39802 AA084612 125286
stSG60067 Al017068 131740
ZNF207-like Zinc finger transcription factor AF046001 62112
SGC33551 Homo sapienslone 23685 mRNA sequence  AF052093 9800
p44.5/ PMSD11 Macropain 26S proteosome subunit AB003102 90744
R22783 R22783

SHGC-2662 Weak similarity to ubiquitin-like protein 8 D11824 109701
sts-H81937 Moderate similarity to serine/threonine kinase H81937 37528
SHGC-32151  Weak similarity to RAS gene family AA199845 14202
ACCN1 Sodium channel (hBNaCl), degenerin U57352 6517
TADA1 Maid-like gene N37022 3447
stSG50857 AA400117 125747

Genes and ESTs in bold are within the 1.5 Mb commonly deleted NF1 region.
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Table 4. Contiguous gene rearrangements involving low copy repeats

Disorder Location  Rearrangement REP size (kb)  Transcripts in REP Reference
Type Size (kb)

NF1 17911.2 Deletion 1500 15-100 SH3GLP WI-9461 stSG316545tSG40093V1-12393 This paper

VCFS/DGS 22g11 Deletion 2000/1500 200 GGT, GGT-rel BCRL, V7-rel, POM121-like 45,48

CES Duplication

Williams’ syndrome 7911.23 Deletion 2000 >30 GTF2|,1B1445 47

HNPP 17p11.2 Deletion 1500 24 COX10 43

CMT1A Duplication

Smith—Magenis 17p11.2 Deletion 5000 200 TRE KER SRRCLP 44

PWS/AS 15g911-13 Deletion 4000 50-200 SGC32610SHGC15126SHGC17218A006B10MN?7, 46,49

AO08B26HERC?2
NPHP1 (nephronopthisis 2q12-13  Deletion 250 100 D2S1735D2S2087 53
type 1)

‘revert’ to a deletion (36). Non-mosaic trisomy 17 has not beerREPs (44). The identification of eight REPs at 22911 suggests
reported in a live born, and partial 17p or 179 trisomy is rarghat recombination between specific REP pairs may account
and even mosaic cases are uncommon (37), suggesting ttiat different rearrangements underlying multiple congenital

many such rearrangements are lethal. anomaly disorders that map to this chromosomal region, such
as velocardiofacial syndrome/DiGeorge syndrome (VCFS/

Patterns of REP domains and chromosomal DGS) and cat eye syndrome (CES) (45). REP domains may be

rearrangements very complex repeats that include multiple subrepeats, which

can be in tandem or interspersed, inverted or direct in orienta-
. . . . - Fion (46-48). REPs may even be dispersed among chromo-
tively small, deletions, duplications and inversions of thesomes; FISH experiments suggest that copies of the Prader-
. OG5l syndrome/Angelman syndrome (PWS/AS) REP may be
tion between tandem genes, or other nearby rep.e““"gt 15424 and 16pll (49). The apparent preference for REP
sequences. Such rearrangements have been well described Bhains to occur near the centromere of chromosomes (Table
the steroid sulfatase;-globin, Factor VIll, LDL receptor and 4y oqy is consistent with reports of a strong bias for these
other genes (reviewed in _refs 36,38). Recer_1t|y, however, .th%gions to acquire paralogous segments. This phenomenon is
breakpoints of large contiguous gene deletions and lepIICEf"eferred to as pericentromeric plasticity and presumably

E:Sns from %]_5 be";]ileﬁgit;] \:]vt?tre n;apﬁeld \5\(/) flanklnrg reﬁgg'accounts for the varietlF1-related fragments that are scat-
€ sequences of hignh identity. such low copy repelitivé,g o among the centromeric regions of seven different auto-
elements have been designated as REPs, duplicons or par

gous regions (39.40). There is compelling evidence th Bmes (50; reviewed in ref. 39). Homologous recombination

h | bination betw REPs is th lecul vents and the resulting chromosomal rearrangements are also
omologous recombination between s IS the molecu fHependent on the orientation of the repetitive sequences

basis for a number of disorders (Table 4) (reviewed in ref?nvolved. For example, recombination between direct

26,38). The precedence was established for the neuropathieﬁ/lTlA REP ! . e .
X ' - s results in deletion and duplication via unequal
Charcot-Marie~Tooth type 1A (CMT1A) and hereditary Frossing-over between chromatids (reviewed in ref. 51),

neuropa_lthy_wnh liability to pressure paIS|e_s (HNPP): Unequawhereas recombination between indirect duplicons can result
recombination between flanking REPs during meiosis | resultﬁ1 either deletions or inversions (52—54)

in duplication (CMT1A) or deletion (HNPP) of a 1.5 Mb
segment of chromosome 17p11.2 (41,42). The two 24 Kk
CMT1A-REPs have 98.7% identity with an internal 557 bp
recombination hotspot where 21 of 23 breakpoints occurre
(43). Several aspects dfF1 microdeletions are unique among REP-
Although the characterization of REPs flanking large contigimediated contiguous gene rearrangements in the human
uous gene rearrangements is in its infancy, variability in RERjenome. For other disorders, REP-mediated rearrangements
length, number, complexity and orientation is apparent. RERommonly account for a large fraction of analyzed cases. For
length varies considerably (Table 4) and may correlate directlgxample, >98% of CMT1A cases are caused by a duplication
with the size of the intervening deletion/duplication. Thisthat results in partial trisomy of the 17p11.2 region that
suggests that recombination between distant REPs may requireludes thePMP22locus, whereas <2% are due to missense
longer tracts of identity for efficient pairing (26). Although a mutations in th&MP22gene itself (55). In AS, large maternal
single CMT1A-REP lies on each side of the CMT1A/HNPPdeletions account for 70% of cases, uniparental disomy and
rearrangement, the number of REPs and the apparent prefémprinting mutations for an additional 5%, and inactivating
ence for recombination between specific REPs can varynutations inUBE3Afor another 5% (56). In marked contrast,
considerably. Three Smith-Magenis syndrome (SMS)-REPenly 2-13% of NF1 cases result frotldF1 microdeletions
are found in the 17p11.2 region, yet nearly all SMS deletion16,18,57,58), whereas >70% result from intragenic mutations
are due to crossover events between the proximal and distdlat predict premature truncation of neurofibromin (8). Under-

tl)Jnique pathological aspects of NFIREP-mediated
5ecombination
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Table 5.New BAC-end derived loci

Locus Forward primer (5>3) Reverse primer (553" Size (bp) GenBank accession no.
F2-CEN GCTGGAAGCCACATTTGTCTG GCACACAAATTCTCTTGGGA 77 AC006050

F2-TEL TCCCCTTGCAGCATTGCTAT CAGACACTTCTCCCCTCTACCCT 150 ACO006050

K11-CEN ACACTGCTGCTCTTCACCATTG CCACCCATGAGCAAGTTCG 150 AC005562

K11-TEL AGGTGTGAGCCACTGTGCACT GGCTCCCCTAGGAAGCTCC 200 AC005562

120-CEN CGAACTCCTGACCTCGTGATC ACCTGGTGTCTAGAGCTGATG 788 AC004222

F11-TEL TGAGACTGATTGTAGCAGAAGTC ACCTGTGGCTGTTGAACACTTG 325 AF170177

K8-CEN GCTCCATGTTCCATGCTATGAG TCTTCTCCACTCATTCCTTTGTC 363 AF170179

G21-TEL TTAGTTAGAGCCCACCCCTCC CCATAGGTGTGCTGGCCAC 155 ACO003687

Al16-INT GGCCTCCAACTTGGTAGTCTG GTCTGCAAATGAGCTGACAAGCT 320 AC004523

standing why microdeletion is not the prevalent mutational This is the first report of a REP-mediated rearrangement
mechanism may reveal important parameters that affect thesulting in the loss of a tumor suppressor gene. Therefore, in
efficiency of REP-mediated rearrangements. Perhaps the siagldition to the germline rearrangements reported here,
and sequence identity of NFIREP-P and -M are comparativel{F1REP-mediated somatic recombination could be an impor-
less than those of other genomic disorders, thereby reducirtgnt mechanism for the LOH &tF1in tumors of NF1 patients
the probability ofNF1-REPpairing. Or, polymorphism in the (5,7,66,67). This hypothesis is consistent with our recent anal-
number and orientation of, or identity between, NF1REPs maysis of LOH atNF1 in primary leukemic cells of children
result in a haplotype that is recombination-prone. A precederdffected with NF1 that developed malignant myeloid disorders
for an inversion polymorphism mediated by flanking repetitive(K. Stephens, M. Weaver, K. Leppig, K. Maruyama, E.D.
repeats has been established (54). Davis, R. Espinosa Ill, M.H. Freedman, P. Emanuel, L. Side,
Our data suggest thatF1 microdeletion may also predis- M.M. LeBeau and K. Shannon, unpublished data). LOH in 2 of
pose patients to the development of malignant tumors. Thig0 tumors arose by an interstitial deletion of a 1-2 Mb segment
hypothesis is supported by our observation that 2 of the 1gomparable with the germline deletions described here. Addi-
(11%) unrelated microdeletion patients had a neurofibrosational informative polymorphisms are needed to determine
coma (Table 2, UWA124-3 and UWA155-1). This clearly is whether the deletion breakpoints are at NFIREP-P and -M.
greater than the expected occurrence of 1.4-3.5% in NF®ther examples of clustered neoplasia-related rearrangements
patients (21,59), more so given the young age of theould also result from a REP-mediated recombination mecha-
microdeletion patients. In addition, first degree affectednism. For example, the interstitial 20q deletion in poly-
relatives of two microdeletion patients died of malignanciesythemia vera and myeloid malignancies (54) and the i(17q)-
(Table 2, UWA155-1 and UWA169-1). Further studies areassociated hematologic malignancies (68).
needed to confirm this hypothesis and to determine whether The precocious neurofiboromagenesis and severe tumor
this effect is mediated by the same putative gene that causesrden of patients wittNF1 microdeletions is consistent with
early onset of benign neurofibromas. Two lines of evidenceur hypothesis that deletion of a gene or regulatory sequence,
suggest that the increased burden of cutaneous neurofibromiasconjunction with neurofibromin haploinsufficiency, potenti-
in deletion patients would be an unlikely cause of an apparerites development of neurofibromas. All of the deletion patients
increased frequency of malignancy. First, cutaneous neurghowed either childhood onset and/or large numbers of cuta-
fioromas do not undergo malignant transformation; in caseseous neurofibromas (Fig. 2, Table 2), with the exception of
where neurofibrosarcomas are associated with a neurofiborom#WA166-3 who is only 4 years old. Patient UWA113-1 has
it is either a plexiform neurofibroma or a neurofibromathe smallest deletion efl Mb, thereby establishing a critical
involving a large nerve or nerve plexus (60). Second, thénterval betweerrB12A2andSH3GLP1as the location of the
malignancies of the affected first degree relatives of ouputative tumor-promoting gene (Fig. 2). These data excluded
patients were central nervous system and fibrosarcoma, ntie strong candidate gene kinase suppressor oKi3E) (69).
neurofibrosarcoma (Table 2). Currently, the critical region is known to harbor four genes,
NF1REP-P and -M-mediated deletion in early embryogenNF1, OMG, EVI2A and EVI2B, two pseudogenes and seven
esis may be an underlying mechanism of somatic mosaicism &STs (Fig. 2, Table 3). The products of these genes are not
NF1 It has been proposed that somatic mosaicism may bg&trong candidates for potentiating neurofibromagen&sG,
common among NF1 patients and could explain, for exampleEVI2A and EVI2B are genes of unknown function located
cases of a mildly affected parent with a severely affected chiléntirely within intron 27b of theNF1 gene, but they are tran-
(61,62). Patients with somatic mosaicism forMR1 deletion  scribed from the opposite directio@MG encodes a glycopro-
have been described (16,57,63-65). Because breakpoints wéein, OMgp, which is expressed only in the central nervous
not mapped in these cases, it is not known whether these delgystem in neurons and oligodendrocytes, and is displayed in
tions involved the entirdNF1 gene and/or contiguous genes.central nervous system myelin (70,71). Although growth
The frequency of somatic mosaicism for BR1 deletion was suppression of NIH3T3 fibroblasts overexpressing OMgp
estimated at 1.5% (16,57). However, this may be underestsuggests that it plays a role in cell proliferation (72), its lack of
mated significantly due to the low detection rate of theexpression in the peripheral nervous system makes it a poor
methods employed. candidateEVI2Aand-B genes are more widely expressed and
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predict a putative transmembrane protein of unknown functio®GATAGTGACAG-3 and B-GATAGTTTGAGCTCAG-

(73); it is not known whether they are expressed in Schwan@GAATGTG-3.

cells, which appear to be the progenitor cells of neurofiboromas New markers were developed from the ends of BAC clone
(11). EVI2Aand-B are human orthologs of mouse loci whereinserts. DNA was extracted from 300 ml of overnight culture
retroviral integration causes myeloid leukemia. Further invesfrom selected BAC clones using the Qiagen MIDI prep
tigation, however, revealed that it was inactivatioN®f1, not  plasmid kit. BAC end termini were sequenced using 0.8-1.0
the EVI2 genes, that caused the leukemia (74). The identificagg of purified BAC DNA, T7 or SP6 primers, and BigDye
tion of patients deleted fdDMG, EVI2A EVI2Bor a segment terminator chemistry (Applied Biosystems, Foster City, CA).
of NF1 along with flanking sequences would be a direct test ofNucleotide sequences were analyzed with Sequencher 3.0
a role for these genes in the early onset of neurofioromagGene Codes, Ann Arbor, MI) and primers were designed
Assuming exclusion oflF1 and the embedded genes, the crit-(Table 5).

ical region is reduced to ~700 kb in length. The seven ESTs
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