
820
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.4 APRIL 2022

LETTER

NFD.P4: NDN In-Networking Cache Implementation Scheme with
P4

Saifeng HOU†a), Yuxiang HU†, Le TIAN†, and Zhiguang DANG††, Nonmembers

SUMMARY This work proposes NFD.P4, a cache implementation
scheme in Named Data Networking (NDN), to solve the problem of in-
sufficient cache space of prgrammable switch and realize the practical ap-
plication of NDN. We transplant the cache function of NDN.P4 to the NDN
Forwarding Daemon (NFD) cache server, which replace the memory space
of programmable switch.
key words: NDN, in-networking cache, NFD, programming protocol-
independent packet processors (P4)

1. Introduction

Named Data Networking is a new network architecture. Dif-
ferent from today’s IP network, NDN replaces the IP address
with the name data content, and use it for routing and ad-
dressing. This change causes the processing of Data pack-
ets in NDN to be significantly different from that of IP. In
order to meet this challenge, scholars have proposed many
software-based NDN router solutions. And even highly op-
timized designs tailored to specific hardware platforms have
limited performance, which hinders applications.

Rencently, the emergence of programmable switch
chips and languages to program them, such as P4, have
brought the possibility for the actual deployment of NDN.
As a programming language, the idea of P4 is to use
software ideas to logicalize message forwarding, the com-
piled configuration files are loaded into the forwarding
layer equipment (switches, network cards, firewalls, etc.)
through the runtime interface to guide the underlying hard-
ware to complete customized Data plane function [1]. Rui
Signorello et al. [2] proposed NDN.P4 — the first attempt
to use P4 language to implement NDN routers. They im-
plemented part of the NDN logic functions with the actual
P4 language specifications. On this basis, Miguel et al. [3]
proposed NDN.P4 16, which improved Signorello’s attempt
from two aspects, one is the scalability of FIB design, and
the other is the expansion of NDN functions, including con-
tent storage (software implementation) and multicast func-
tion. However, neither of the two documents actually de-
ployed NDN’s content caching technology.

The communication of NDN is driven by data con-
sumers, NDN supports Interest and Data packets and

Manuscript received October 30, 2021.
Manuscript revised November 30, 2021.
Manuscript publicized December 27, 2021.
†The authors are with Information Engineering University,

Zhengzhou, Henan, China.
††The author is with Zhejiang Lab, Hangzhou, Zhejiang, China.
a) E-mail: 18326991660@163.com

DOI: 10.1587/transinf.2021EDL8100

provides name-based routing and forwarding function that
allows direct communication using application data names
over both packets. NDN node includes 3 basic data struc-
tures: Content Store (CS), Pending Interest table (PIT), and
Forwarding Information Base (FIB). Data forwarding is re-
alized by matching the 3 data structures.

Caching is the key technologies of the NDN [4], an
important manifestation of NDN improving network effi-
ciency, as it can reduce the content acquistion delay and
reduce the network load. However, the P4 programmable
switch is composed of programmable ASIC, FPGA, NPU
or CPU. There is no too much memory space to cache data.
At the same time, the P4 language pays attention to the
protocol-independent characteristics in the design, and lacks
support for memory space. Using the register to realize the
cache has the best performance, but it is easy to cause com-
petition for memory with PIT, which leads to a decrease in
forwarding efficiency and cannot solve the problem of in-
sufficient memory space.

In order to solve the problem of insufficient memory
space for NDN cache when implementing NDN data plane
functions in the P4 switch, this letter utilizes NFD cache
server to implement NDN cache. NFD [5] abstracts the un-
derlying network transmission mechanism into NDN Faces,
and maintains basic data structures such as CS, PIT, and FIB
to implement Data packet forwarding logic. This letter pro-
poses NFD.P4, which aims to solve the problem of insuffi-
cient cache space in P4 switch, and achieves NDN by trans-
planting the cache function to the NFD cache server. Then
we redesign the process of Interest and Data Packets with
P4. The main contributions are summarized as follows:

• We achieve NDN’s content caching in NDN.P4 by uti-
lizing modified NFD architechture as a cache server,
which is served as memory space.
• We modify and optimize P4 language, which defines

the process of Data and Interest packets, to implement
NDN in-networking cache.
• We deploy actual network environment to verify NDN

function, especially caching.

2. Architecture and Implementation

We use P4 programmable language to apply for a register
array space on the data plane to record the local cache. The
actual cache function is provided by the NFD cache server
by setting the cache port, which is defined in P4 to forward

Copyright c© 2022 The Institute of Electronics, Information and Communication Engineers



LETTER
821

Fig. 1 The basic function platform of NFD.P4.

packets that need to cache. And P4 switch will forward these
Data Packets to the NFD server from the cache port. On the
contrary, the NFD server will response the requested data
cached in it from the cache port too. From the point view of
the data plane, P4 switch only records the cache status, and
has no actual data storage. The stored data is forwarded to
the NFD cache server to realize NDN logic function.

As shown in Fig. 1, the basic function platform of
NFD.P4 consists of P4 software switches, NDN cache
server, agent controller, 7132 switch, gigabit switch, con-
figuration and extern interfaces. It is the NDN processing
platform, to implement all the NDN function. NFD.P4 is
the processor that consists of P4 software switches, NDN
cache server, agent controller and interfaces. It focuses on
NDN cache function, to implement cache function with P4.

The agent controller is used to deliver the flow table.
The P4 software switch mainly deals with Interest packets
and Data packets. There are three types of final processing
results of the Interest packet: 1) Discarding, including the
discarding caused by the same Data packet request and FIB
table miss; 2) Forwarding to the NFD cache server, that is,
the CS table contains the Data packet item requested by the
Interest packet; 3) Forwarding to an external port, that is,
the platform does not have the Data packet cache requested
by the Interest packet, and currently no other Interest packet
has made the same request and is waiting for the Data packet
to return. The processing of Data packets is divided into two
situations. 1) If the Data packet comes from the internal port
(i.e., the Data packet comes from the NFD cache server),
the PIT table is directly queried, and the Data packet is for-
warded according to the port matched by the PIT; 2) If the
Data packet comes from an external port, then the port cor-
responding to the NFD cache server is added to the port to
be forwarded, and then the PIT table is queried, and for-
warding is performed according to the port matched by the
PIT and the port corresponding to the NFD cache server.

The updated ingress pipeline of NFD.P4 shows in
Fig. 2. The open-source project ‘NDN.P4’ did not take CS
storage function into account, so we need to add cs table to
store the contents of recieved Data packet. As Fig. 3 shows,
readCsEntry reads out wether the register has the content
prefix, and puts it into flow metadata isIncs for further

Fig. 2 The updated ingress pipeline of NFD.P4.

Fig. 3 The definition of ca table and updatecs table.

processing of packet. updatecs table will update cs table
according to the presence or absence of the current content
prefix. If the Data packet is recorded in cs table, it will per-
form addCstoMutist to update output port. If not, it will add
a CS entry to record the content prefix of the Data packet by
performing updateCsEntry.

The normal NFD’s processing logic for the arrival of a
Data packet is to check the PIT table to see whether there are
PIT entries that can be satisfied by this Data packet. If this
Data packet cannot satisfy any PIT entry, it is unsolicited
and will be discarded. Otherwise, the Data packet will be
added to the cs table, and the Data packet will be forwarded
according to the PIT entry. As it is showed in Fig. 4, for
the NFD cache server, even though there are no PIT entries
that can be satisfied by the coming Data packet, the Data
packet will also be cached, instead of being discarded. In the
NFD cache server, only the function of caching and reading
the cached Data packet is used. Therefore, when the Data
packet arrives, the processing method is to directly insert it
into the cs table, even if it is unsolicited Data packet. Af-
ter receiving the Interest packet from the switch, the normal
process will be followed without any modification.



822
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.4 APRIL 2022

Fig. 4 The processing flow of data packet in cache server.

3. Experimental Evaluation

As Fig. 5 shows, the experimental environment includes 3
hosts as NDN terminals, 2 P4 switches that support the
cache function, 2 access switches, 2 networking switches
and 3 controllers. The NDN terminal installs the Ubuntu
18.04 system, the P4 switch uses the Tofino chip, the ac-
cess switch uses the Zhaoxin switch, and the inter-domain
and intra-domain controller uses the ONOS distributed con-
troller. The bandwidth of the access network is 10Gb/s,
and that of the core network is 100Gb/s. Cache capacity
of the NFD cache servers is 65536, which is defined with
P4 switches and limited by P4 switches. Two NDN au-
tonomous domains are connected through the core Network,
NDN autonomous domain 1 serves as the request terminal,
and NDN autonomous domain 2 serves as the responding
terminal. Data packets pass through the core network, and
by monitoring the core network traffic, the advantages of in-
network caching can be reflected.

The NDN-host requests files including text, pictures,
and videos sucessfully, it verifies that the experimental net-
work can implement forwarding of various file types. Each
type of file is requested with 20 different prefix names, and
the file size increases gradually. Then, a second request for
a file with the same prefix name is sent to verify the function
of cache by comparing the response time of packet request
and the traffic load of core network.

The response time of the packet request refers to the
response time from the start of sending the Interest packet
request to the end of the Data packet response, and the same
Interest packet request is sent twice. By comparing the re-
sponse time of the first and second packet requests, that is,
the response time with or without cache, it reflects the ad-
vantages of in-network caching. Figure 6 shows the com-
parison result of the response time of the first packet request
and the response time of the second packet request when
transferring files with different sizes. It can be seen from
the figure that the response time with caching is about 60%
faster than that without caching. The improvement of re-
sponse speed by caching verifies the effectiveness of NDN
caching.

Fig. 5 The topology of experiment.

Fig. 6 The comparison of the response time of packet request.

Fig. 7 The traffic rates statistics of core network with cache.

Fig. 8 The traffic rates statistics of core network without cache.



LETTER
823

By monitoring the traffic load of the core network, it
can also reflect the advantages of in-network caching. Fig-
ure 7 is the flow of the core network that sends the Interest
packet for the first time, and Fig. 8 is the core network flow
that sends the same Interest packet for the second time. It
can be found that the core network traffic is 0 at the second
request, because the Data packet is directly obtained from
the cache of the P4 switch during the second request, with-
out going through the core network at all, which can reduce
the load on the core network.

4. Conclusion

In order to realize the actual deployment of NDN logic func-
tions in programmable networks and solve the problem of
insufficient memory space in programmable switches, this
letter proposes an NFD cache server to implement NDN’s
in-network caching function. Experimental results show
that the response time of packet requests can be reduced by
about 60% through caching, which proves the effectiveness
of caching in the NDN network, it can improve response
speed and reduce network load. In the future, a caching
strategy can be designed to optimize the performance of the
network cache and improve the efficiency of the cache.

Acknowledgments

We thank the anonymous reviewers for their insightful

feedback. This work was surpported by National Key R&D
Project of China under grant 2019YFB1802505.

References

[1] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J.
Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D.
Walker, “P4:Programming protocol-independent packet processors,”
ACM SIGCOMM Computer Communication Review, vol.44, no.3,
pp.87–95, 2014. DOI: 10.1145/2656877.2656890

[2] S. Signnorello, R. State, J. François, and O. Festor, “NDN.p4: Pro-
gramming information-centric data-planes,” IEEE NetSoft Confer-
ence and Workshops, Seoul, South Korea, pp.384–389, June 2016.
DOI: 10.1109/NETSOFT.2016.7502472

[3] R. Miguel, S. Signnorello, and F.M.V. Ramos, “Named data network-
ing with programmable switches,” IEEE 26th International Confer-
ence on Network Protocols, Cambridge, UK, pp.400–405, Sept. 2018.
DOI: 10.1109/ICNP.2018.00055

[4] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
ACM SIGCOMM Computer Communication Review, vol.44, no.3,
pp.66–73, 2014. DOI: 10.1145/2656877.2656887

[5] A. Alexander, “NFD developer’s guide,” Technical Report NDN-0021
revision 6, https://named-data.net/pulication/techreports/, March
2016.

http://dx.doi.org/10.1145/2656877.2656890
http://dx.doi.org/10.1109/NETSOFT.2016.7502472
http://dx.doi.org/10.1109/ICNP.2018.00055
http://dx.doi.org/10.1145/2656877.2656887

