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Abstract

Environmental nutrient levels impact cancer cell metabolism, resulting in context-dependent gene 

essentiality1,2. Here, using loss-of-function screening based on RNA interference, we show that 

environmental oxygen levels are a major driver of differential essentiality between in vitro model 
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systems and in vivo tumours. Above the 3–8% oxygen concentration typical of most tissues, we 

find that cancer cells depend on high levels of the iron–sulfur cluster biosynthetic enzyme NFS1. 

Mammary or subcutaneous tumours grow despite suppression of NFS1, whereas metastatic or 

primary lung tumours do not. Consistent with a role in surviving the high oxygen environment of 

incipient lung tumours, NFS1 lies in a region of genomic amplification present in lung 

adenocarcinoma and is most highly expressed in well-differentiated adenocarcinomas. NFS1 

activity is particularly important for maintaining the iron–sulfur co-factors present in multiple cell-

essential proteins upon exposure to oxygen compared to other forms of oxidative damage. 

Furthermore, insufficient iron–sulfur cluster maintenance robustly activates the iron-starvation 

response and, in combination with inhibition of glutathione biosynthesis, triggers ferroptosis, a 

nonapoptotic form of cell death. Suppression of NFS1 cooperates with inhibition of cysteine 

transport to trigger ferroptosis in vitro and slow tumour growth. Therefore, lung adenocarcinomas 

select for expression of a pathway that confers resistance to high oxygen tension and protects cells 

from undergoing ferroptosis in response to oxidative damage.

To understand differences in metabolic pathway requirements between breast cancer cells in 

a tumour (in vivo) or in tissue culture (in vitro), we performed parallel loss-of-function 

screens in a transformed breast cell line (MCF10DCIS.com) using a metabolism-restricted 

short hairpin RNA (shRNA) library (Fig. 1a), and identified those which scored as 

differentially depleted1 (Supplementary Table 1). shRNAs targeting enzymes catalysing 

oxygen-consuming reactions (Supplementary Table 2) were significantly more likely to be 

differentially depleted in vivo (Extended Data Fig. 1a, b).

Oxygen levels affect the activity of oxygen-consuming enzymes, resulting in altered 

dependence3. Because oxygen levels vary considerably between in vivo and in vitro 

environments4, we performed screens at atmospheric (21%) or tissue level oxygen (3%). 

shRNAs differentially depleted in 21% oxygen (Supplementary Table 3) were more likely to 

be differentially depleted in vitro, resulting in a significantly shifted distribution (median of 

0.66 versus 0.17, P < 1 × 10−13, Fig. 1b). Of the 1,384 shRNAs specifically depleted in 21% 

oxygen, 271 were differentially essential in vitro versus in vivo, a highly significant overlap 

of 20% (P < 1 × 10−5, Fig. 1c and Supplementary Table 4). Notably, shRNAs targeting the 

cysteine desulfurase NFS1 were among the most depleted in vitro at 21% oxygen, but 

exhibited little depletion at 3% oxygen or in vivo, indicative of a specific oxygen-dependent 

requirement (six out of eight shRNAs scoring, Fig. 1c).

NFS1 is an essential enzyme in eukaryotes that harvests sulfur from cysteine for the 

biosynthesis of iron–sulfur clusters (ISCs), protein co-factors sensitive to oxidative damage 

that are present in at least 48 human enzymes5–7 (Fig. 1d and Supplementary Discussion). 

Transduction of MCF10DCIS.com or transformed breast cell line MDA-MB-231 with 

shRNAs targeting NFS1 (shNFS1) reduced protein levels by 80–95% and blocked 

proliferation in 21% oxygen, an effect reversed at 3% oxygen or in tumour xenografts 

(Extended Data Fig. 2a, b). Indeed, sensitivity to suppression of NFS1 begins at oxygen 

concentrations above 3–5% (Fig. 1e and Extended Data Fig. 2c). To verify that NFS1 

dependence requires its catalytic activity, we generated a shRNA-resistant NFS1 cDNA 

(NFS1res), and modified a predicted catalytic residue (C381, NFS1resCD)8. Expression of 
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NFS1res, but not NFS1resCD, completely rescued the proliferative defect induced by 

shNFS1 (Fig. 1f and Extended Data Fig. 2d). ABCB7, which exports ISCs synthesized in 

mitochondria to the cytosol9, also scored as differentially essential in 21% oxygen (three out 

of five shRNAs scoring, Fig. 1c, d). Suppression of ABCB7 or other genes required for ISC 

biosynthesis (ISCU and FXN) impacted proliferation at 21% oxygen without affecting 

proliferation at 3% oxygen or tumour xenograft growth (Extended Data Fig. 2e, f), whereas 

suppression of processes requiring NFS1 for ISC biosynthesis-independent activities10 did 

not impact viability (Extended Data Fig. 2g). Therefore, the oxygen-dependent sensitivity 

observed upon NFS1 suppression is a consequence of decreasing ISC biogenesis.

Breast tumours are hypoxic compared to normal breast tissue11. However, the oxygen level 

encountered by a cancer cell seeding a lung metastasis is unknown, and could drive 

dependence on pathways required under high environmental oxygen. We found that MDA-

MB-231 cells expressing tdTomato and either shNFS1 or shGFP control robustly form 

primary mammary tumours (Fig. 1g), but shNFS1-expressing cells cannot colonize the lung 

efficiently, as revealed by analysis of macrometastases (Fig. 1h and Extended Data Fig. 3a), 

micrometastases (Fig. 1i and Extended Data Fig. 3a–c), and competition assays (Extended 

Data Fig. 3d, e). NFS1 protein levels are increased in cells grown at 21% oxygen versus 3% 

or 0.5% oxygen in vitro, and in lung metastases compared with primary tumours (Extended 

Data Fig. 3f, g). This regulation of NFS1 protein levels occurs by a post-transcriptional, 

prolyl hydroxylase-independent mechanism, consistent with a cellular response to high 

environmental oxygen that involves NFS1 (Extended Data Fig. 3g). Therefore, breast cancer 

cells depend upon NFS1 to initiate metastatic lung tumours, which may be due to high 

environmental oxygen levels.

We next assessed whether NFS1 undergoes genetic alteration in primary human lung cancer. 

Public datasets reveal increased NFS1 mRNA in lung adenocarcinoma versus normal lung, 

and in nonsmall-cell lung cancer cell lines versus other lines, in contrast to other core ISC 

biosynthetic components (Extended Data Fig. 4a, b). Interestingly, the NFS1 locus is under 

significant positive selection in non-small-cell lung cancer12. The amplification peak 

contains only two other genes and is present focally in 7.4% of tumours and cell lines, or 

either focally or non-focally at an overall frequency of 38% (Fig. 2a). Immunohistochemical 

analysis revealed that human lung adenocarcinomas exhibited the strongest NFS1 staining 

followed by squamous cell carcinoma and small-cell lung cancer, which exhibited staining 

similar to tumour-adjacent normal tissue (Fig. 2b, c). Within adenocarcinomas, NFS1 

staining was heterogeneous: well-differentiated, low-grade regions and regions of carcinoma 

in situ exhibited the highest staining, versus poorly differentiated, high-grade regions (Fig. 

2b, c). These data are consistent with increased NFS1 expression in early lung 

adenocarcinomas at a location or time when cells would have the greatest exposure to the 

high oxygen environment of the lung. Because 50% of lung adenocarcinoma samples 

analysed had NFS1 staining similar to amplified lines (NCI-H322, Extended Data Fig. 4c), 

multiple mechanisms are likely to exist to upregulate NFS1 expression.

Cell lines harbouring NFS1 amplification (NCI-H322, NCI-H647, and NCI-H2170) had 

increased levels of NFS1 protein (Fig. 2d), and expression data show significant correlation 

between NFS1 mRNA and copy number (Extended Data Fig. 4d). Transient expression of 
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Streptococcus pyogenes Cas9 and a short guide RNA targeting NFS1 in NCI-H322 cells 

produced isogenic clones with the loss of many, but not all, of the 7–8 NFS1 copies and 

NFS1 protein levels similar to non-amplified lines (NCI-H322 crNFS1) (Extended Data Fig. 

4e–g). NCI-H322 crNFS1 cells have impaired proliferation in 21% oxygen and diminished 

matrix-independent growth, phenotypes reversed by NFS1 re-expression via transduction 

with NFS1res (Fig. 2 e–g), demonstrating that NFS1 amplification drives these phenotypes 

under atmospheric oxygen.

Because NFS1-amplified human lung cancer lines did not form lung tumour xenografts, we 

used a KRAS G12D mutant and Trp53 deleted mouse lung cancer line, KrasG12D/+Trp53−/− 

(KP), to assess the requirement for NFS1 in a system with robust NFS1 expression 

(Extended Data Fig. 4h). In vitro suppression of Nfs1 in KP cells by shRNA targeting Nfs1 

(shNfs1) reduced Nfs1 protein levels and slowed proliferation in 21%, but not 3%, oxygen 

(Fig. 2h). KP cells expressing shNfs1 or shRFP were equally capable of forming 

subcutaneous tumours, whereas cells expressing shNfs1 instilled intratracheally formed lung 

tumours poorly (Fig. 2i, j and Extended Data Fig. 4h). Thus, we conclude that robust NFS1 

expression is required for the growth of primary lung tumours.

We next assessed the mechanism by which cancer cells are sensitive to NFS1 suppression. 

We confirmed the NFS1 requirement persists in VHL- and LKB1 (also known as STK11)-

null cells (Extended Data Fig. 5a). In low oxygen conditions, metabolism rewires to 

decrease reliance on oxidative phosphorylation (OXPHOS), a pathway containing many ISC 

proteins. To assess whether NFS1 dependence results from inhibiting OXPHOS, we used 

patient-derived cytoplasmic hybrid lines harbouring a deletion in cytochrome b (CYTB), a 

key complex III component13. These cells maintain mitochondrial ISC proteins, but are 

devoid of respiratory chain activity. Suppression of NFS1 reduced proliferation of CYTB-

null cells and wild-type counterparts; proliferation was restored by culture in 3% oxygen 

(Fig. 3a). Similarly, supplementation of MDA-MB-231 cells with pyruvate and uridine, 

which support viability in OXPHOS-deficient cells, did not rescue the proliferative effects of 

NFS1 suppression (Fig. 3a). Therefore, the proliferative effects of NFS1 suppression cannot 

be explained solely by the loss of ISCs from respiratory chain proteins, indicating that NFS1 

suppression has effects that extend beyond OXPHOS and the electron transport chain. 

Indeed, analysis of CRISPR–Cas9 genetic screening datasets reveals several cell-essential 

ISC proteins (Extended Data Fig. 5b).

Atmospheric oxygen is toxic to cells with defects in management of reactive oxygen species 

(ROS)14,15. However, the antiproliferative effects of NFS1 suppression are not affected by 

antioxidant treatment, and levels of the antioxidant glutathione are not decreased (Fig. 3b 

and Extended Data Fig. 5c, d). NFS1 suppression does not increase cytoplasmic ROS, in 

contrast to the suppression of the cytosolic or mitochondrial superoxide dismutases (SOD1 

or SOD2, respectively), and 3% oxygen culture only partially rescues the antiproliferative 

effects of SOD1 and SOD2 (Extended Data Fig. 5e, f), consistent with a specific effect of 

oxygen on ISCs. These data do not support the hypothesis that sensitivity to NFS1 

suppression in high oxygen is due to ROS induction.
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ISCs undergo degradation upon exposure to oxygen and other oxidants in biochemical 

assays16 (Supplementary Discussion). We assessed ISC turnover in ACO1 by monitoring 

cytoplasmic aconitase activity, and OXPHOS components by monitoring oxygen 

consumption. We also monitored the iron-starvation response, activated by loss of the ACO1 

ISC, the apo form of which functions as an iron-responsive protein (IRP1), stabilizing 

transferrin receptor 1 (TFRC) mRNA and inhibiting translation of ferritin heavy chain 

(FTH1)17. NFS1 suppression induced TFRC expression and repressed FTH1 and 

cytoplasmic aconitase activity, phenotypes rescued by NFS1res expression (Fig. 3c, d and 

Extended Data Fig. 5g), consistent with previous work on IRP1 mRNA binding18. NFS1 

suppression did not affect oxygen consumption of cells cultured in 3% oxygen, but markedly 

reduced oxygen consumption in cells grown at 21% oxygen (Fig. 3e). NFS1 suppression and 

culture in 21% oxygen had an additive effect on cytosolic aconitase activity (Fig. 3f). This 

fine-tuned modulation of ISC occupancy in IRP1 is consistent with its role as an iron or ISC 

sensor.

These results highlight the sensitivity of ISCs to oxygen, leading us to investigate sensitivity 

to ROS. Culture at 21% oxygen does not increase ROS levels (Fig. 3g), whereas aconitase 

activity is reduced (Fig. 3f) and TFRC expression is increased (Fig. 3h). By contrast, 

treatment with tert-butyl hydroperoxide (tbHP) increases ROS levels without affecting 

aconitase activity or TFRC expression in NFS1-suppressed or control cells (Fig. 3f–h). 

Therefore, oxygen and tbHP have divergent effects on ROS levels and ISC proteins. Indeed, 

levels of mitochondrial ROS are increased in 0.5% oxygen19, yet cells expressing an NFS1 

shRNA proliferate well in this condition (Fig. 1e). These results support a model in which 

oxygen present in the cell routinely encounters and oxidizes ISCs, whereas ROS encounter 

cellular antioxidant defences and are neutralized. Therefore, NFS1 suppression results in 

proliferative arrest upon exposure to atmospheric oxygen because the ISC biosynthetic 

machinery cannot meet the increased demand caused by specific damage to ISCs by oxygen, 

leading to the loss of ISCs from essential proteins (Fig. 3i).

Although treatment with tbHP does not impact ISC protein activity (Fig. 3f, h), surprisingly 

we observed that NFS1 suppression sensitizes MDA-MB-231 cells to tbHP, agents that 

induce mitochondrial ROS (paraquat) or inhibit glutathione biosynthesis (buthionine 

sulfoximine, BSO), but not to compounds (etoposide and doxorubicin) that inhibit growth by 

other mechanisms (Fig. 4a and Extended Data Fig. 6a, b). Therefore, a downstream 

consequence of NFS1 suppression is likely to be responsible for increased ROS sensitivity, 

rather than further damage to ISCs. Indeed, NFS1 suppression blocks proliferation at 21% 

oxygen, whereas addition of ROS-inducing compounds at 3% oxygen ostensibly results in 

cell death. Because NFS1 suppression robustly activates the iron-starvation response (Fig. 

3c, h), we assessed the effect of activating this pathway on ROS-induced cell death.

Iron promotes the production of superoxide radicals via the Fenton reaction, which can 

result in lipid peroxidation20. Ferroptosis, a form of cell death, has been characterized by 

iron accumulation and cytoplasmic and lipid ROS induction21. Erastin, a ferroptosis inducer, 

can inhibit cystine import, and depresses glutathione levels22. Consistent with erastin 

inducing iron accumulation via inhibition of ISC biosynthesis, erastin treatment activated the 

iron-starvation response, although the effect of NFS1 suppression was far more robust 
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(Extended Data Fig. 6c). However, NFS1 suppression alone cannot induce ferroptosis 

because NFS1 suppression does not decrease glutathione levels or increase ROS. 

Furthermore, ferrostatin (Fer-1), iron chelators, suppression of lysosomal acidification, and 

antioxidants do not rescue the proliferation defect caused by NFS1 suppression, despite 

being suppressors of ferroptosis23 (Fig. 3b, g and Extended Data Fig. 5c–e). We therefore 

hypothesized that induction of the iron-starvation response upon NFS1 suppression 

promotes ferroptosis when cells encounter ROS. Indeed, cell death induced by BSO or tbHP 

treatment of NFS1 suppressed cells is rescued by iron chelators and Fer-1, but not by 

inhibitors of apoptosis, necrosis, or autophagy (Fig. 4b and Extended Data Fig. 6b, d). 

Moreover, in cells expressing shNFS1 and treated with BSO, tbHP, or erastin, cellular and 

lipid ROS increased, phenotypes rescued by Fer-1 (Fig. 4c, d and Extended Data Fig. 6e–h).

Although some cell lines respond to erastin by undergoing ferroptosis in under 24 h, many 

exhibit relative resistance22. Erastin treatment of four lines (MDA-MB-231, A549, NCI-

H838, or NCI-H460), resulted in widespread cell death specifically in NFS1 suppressed cells 

(Fig. 4b, e and Extended Data Fig. 6i). Cystine deprivation and inhibition of a downstream 

target of erastin, GPX4, also cooperate with NFS1 suppression to induce cell death 

(Extended Data Fig. 6j, k). We then evaluated two recently described methods for inducing 

oxidative stress in vivo: treatment with cyst(e)inase, a cyst(e)ine-degrading enzyme24, or a 

combination of cystine transport inhibitor sulfasalazine (SSA) and BSO25. MDA-MB-231 

tumour xenografts expressing an NFS1 shRNA are specifically sensitive to cyst(e)inase, with 

tumours initially regressing (range, 5–65%; median, 21 ± 8% (s.e.m.)) before resuming 

growth (Fig. 4f). Tumours in this group exhibited NFS1 re-expression, consistent with NFS1 

conferring resistance to treatment (Extended Data Fig. 7a, b). Combined administration of 

SSA and BSO generally impacts tumour growth, but tumours expressing an NFS1 shRNA 

exhibit additional toxicity (Extended Data Fig. 7c). Therefore, inhibition of ISC biosynthesis 

promotes induction of ferroptosis in vitro, and sensitizes cells to oxidative stress in vivo 

(Fig. 4g). In summary, although atmospheric oxygen and cystine transport inhibitors both 

increase the iron-starvation response, suppression of NFS1 does so to a much greater extent. 

These observations lead to the hypothesis that one can trick cancer cells into taking up large 

quantities of iron and releasing intracellular iron stores via modulation of NFS1 or 

downstream effectors, such as IRPs, leaving them at increased risk of ROS-mediated cell 

death mechanisms such as ferroptosis.

Methods

Reagents

Reagents were obtained from the following sources. Antibodies: NFS1 (sc-365308) from 

Santa Cruz; CD31 (77699), RPS6 (2217), TFRC (13208), FTH1 (3998), SOD1 (2770), and 

SOD2 (13141) from Cell Signaling Technologies; Ki67 (M3062) from Spring Biosciences; 

and RFP (600-401-379) from Rockland. Cells: MCF10DCIS.com from the Karmanos 

Cancer Center; MDA-MB-231, SW900, NCI-H196, A549, NCI-H2170, NCI-H647, 786-O, 

A498 NCI-H838, NCI-H460 and SK-MES-1 from ATCC; NCI-H322 from Sigma. 

Chemicals: GFR Matrigel from Corning; RPMI-1640 from US Biological; Phusion DNA 

polymerase from New England Biolabs; BCA Protein Assay from Pierce; GSH-Glo 
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Glutathione Assay from Promega (V6911); Aconitase Assay Kit (MAK051), tert-butyl 

hydroperoxide (458139), paraquat (methyl viologen, 856177), antimycin (A8674), carbonyl 

cyanide 4-(trifluoromethoxy)phenylhydrazone (C2920), 6-hydroxy-2,5,7,8-

tetramethylchromane-2-carboxylic acid (Trolox, 238813), deferoxamine mesylate (D9533), 

ferrostatin-1 (SML0583), buthionine sulfoximine (B2515), and 1,10-phenanthroline 

(320056) from Sigma; intratracheal instillation platform (MSTAND-AH-1) from Laboratory 

Inventions; CM-H2DCFDA (C6827) from Life Technologies; BODIPY 581/591 C11 Lipid 

Peroxidation Sensor (D3861) from Life Technologies; 3-MA (189490) and MG-132 

(474790) from Millipore; Z-VAD-FMK Caspase Inhibitor (550377) from BD biosciences; 

Necrostatin (2324/11) from R & D Systems; Erastin (S7242) from Selleckchem; 

sulfasalazine (sc-204312) from Santa Cruz; Ebselen (524510), Bafilomycin A1 (133410U), 

and DMOG (440810) from Fisher Scientific; RSL3 (A15865) from AdooQ; ML162 (20455) 

from Cayman Chemical Company; Lentiviral shRNAs were obtained from the The RNAi 

Consortium (TRC) collection of the Broad Institute, or identical sequences cloned into the 

TRC vector (pLKO.1PS). The TRC website is: https://portals.broadinstitute.org/gpp/public/. 

The TRC numbers for the shRNAs used are: shRFP, TRCN0000072203; shGFP, 

TRCN0000072186; shNFS1_1, TRCN0000229753; shNFS1_2, TRCN0000229755; 

shABCB7_1, TRCN0000059355; shABCB7_2, TRCN0000059356; shSOD1, 

TRCN0000018344; shSOD2, TRCN0000005943; shISCU, TRCN0000289988; shFXN_1, 

TRCN0000006138; shFXN_2, TRCN0000006137; MOCS3_1, TRCN0000045642; 

MOCS3_2, TRCN0000045640. The shRNAs used for the mini-screen targeting NFS1 are 

shNFS1_1, shNFS1_2, TRCN0000229756, and TRCN0000180881, with control shRNAs 

shRFP, shGFP, TRCN0000072208, TRCN0000072210, TRCN0000072225, and 

TRCN0000072236. The shRNA targeting mouse Nfs1 was cloned into the TRC pLKO.1P 

vector using the following oligonucleotidess: 

CCGGAGAACACCAAGTTGTATTAAACTCGAGTTTAATA 

CAACTTGGTGTTCTTTTTTG and AATTCAAAAAAGAACACCAAGTTGT 

ATTAAACTCGAGTTTAATACAACTTGGTGTTCT.

All individual pLKO.1 shRNA plasmids and expression vectors used in this study are 

deposited at Addgene (https://www.addgene.org) for distribution.

Cell culture

Cells were tested for the presence of mycoplasma by PCR-based methods and the 

authenticity of cell lines not ordered and used within one year was verified by STR profiling 

(Duke University). Cells were cultured in RPMI supplemented with 10% IFS (Sigma) and 

penicillin and streptomycin, except MCF10DCIS.com cells, which were cultured in 50:50 

DMEM and F12 media with 5% horse serum (Invitrogen) and penicillin and streptomycin. 

O2 concentration was controlled by placing cells in a hypoxic incubator (InVivo2 400, 

Baker; or HeraCell 150i, Thermo Fisher). Cells were equilibrated to the O2 concentration 

indicated in each panel for at least 5 days unless otherwise stated. To generate clones in 

which the copy number of the NFS1 locus was reduced, we transiently expressed S. 

pyogenes Cas9 and a single guide RNA targeting the NFS1 genomic locus (target sequence 

GCGGATTTGCAGTTCCAGAA cloned into pLENTIC-RISPR) in NCI-H322 cells, and 

obtained clones derived from single cells (NCI-H322 crNFS1). Several clones exhibited a 
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decrease in NFS1 protein to a level similar to non-amplified cell lines, consistent with loss 

of many, but not all, of the 7–8 NFS1 copies as verified by Sanger sequencing (Extended 

Data Fig. 4e–g).

Analysis of metabolic enzymes by reaction performed

Reactants and products for metabolic enzyme reactions were extracted from the UniProt 

database. Those enzymes whose chemical reactions were not found in UniProt were curated 

manually from available databases and publications. The 25 most highly used metabolites 

were selected for analysis and the number of scoring shRNAs computed. Significance was 

assigned on the basis of a Fisher’s exact test comparing these data to the number of scoring 

shRNAs for all other enzymes for which a reaction had been annotated.

Pooled shRNA screening

In vivo shRNA screening was performed as described26 using a previously published shRNA 

library1 (sequences provided in Supplementary Table 1). In brief, MCF10DCIS.com cells 

were infected with shRNAs in groups of 28 functional pools and selected for 3 days with 0.5 

µg ml−1 puromycin, followed by withdrawal of puromycin for 2 days. For the in vivo screen, 

500,000 cells in 33% growth factor-reduced matrigel were injected into the fourth mouse 

mammary fat pad of NOD.CB17 Scid/J mice and tumours were harvested 4 weeks after 

implantation. At the same time, cells were cultured in vitro and harvested for the in vitro 

screen after 4 weeks. For the high versus low O2 comparison, a second in vitro screen was 

performed in the same fashion except that cells were cultured at 21% O2 or 3% O2 in a 

single pool. In vivo screens were performed in replicates of 8–12 tumours, and in vitro 

screens were in replicates of four. Pool deconvolution and calculation of log2 fold change 

scores were performed as described1. To combine data across multiple pools, the median 

shRNA log2 fold change scores of the control shRNAs for each pool was normalized to 0. 

For differential essentiality, a log2 fold change cut-off of ±2 was used. The mini-screen was 

conducted using the same protocol except MDA-MB-231 cells were used with a pool of 4 

shRNAs targeting NFS1 and 6 non-targeting controls. In addition to cells in culture and 

orthotopic tumours, lungs were also harvested for genomic DNA and processed together 

with the other samples. Average log2 fold change values are reported for each shRNA and 

normalized to the difference observed in 3% O2.

For competition assays involving two shRNAs, genomic DNA was harvested and the region 

containing the shRNAs was amplified and sequenced by Sanger sequencing. The relative 

abundance of each shRNA was calculated by measuring the proportion of shRFP or 

shNFS1_1 signal at the first six nucleotide positions that differ between the two shRNAs, 

and taking the average.

Cell proliferation and viability assays

Cells were plated at 25,000 cells per well in a six-well dish and infected with lentiviral 

shRNAs at a multiplicity of infection of 2.5 in 1 µg ml−1 polybrene by 30 min spin infection 

at 1,178g in Beckman Coulter Allegra X-12R centrifuge with an SX4750 rotor and 

Microplate Carrier attachment followed by an overnight incubation, 1 µg ml−1 puromycin 

selection for three days, and one day recovery without puromycin. Cells were then plated out 
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at 25,000 per well in triplicate and counted three days later, or protein harvested for western 

blotting or qPCR analysis. Cells were moved to the indicated O2 conditions after spin 

infection. Viability assays were carried out by plating 1,000–2,000 cells in replicates of four 

in 96-well clear bottom plates (Greiner 655098) one day before adding the indicated drug. 

Viability was assessed four days after drug treatment by Cell Titer Glo (Promega) and 

normalized to an untreated control. Soft agar assay was performed in 6-cm dishes by plating 

100,000 cells in 0.4% noble agar (Sigma) in RPMI on a bed of 0.6% noble agar in RPMI. 

Colonies were counted after 3–4 weeks of growth by imaging plates at low magnification 

using a dissecting microscope (Leica M165), colony size and number were analysed using 

CellProfiler software27.

Immunoblotting and immunohistochemistry

Immunoblotting was performed by washing cells in cold PBS followed by addition of lysis 

buffer (50 mM Tris pH 7.4, 150 mM NaCl, 1% NP-40, 0.1% sodium deoxycholate, 0.1% 

SDS, 2 mM EDTA) containing a protease inhibitor cocktail (Roche). Lysates were incubated 

on ice for 10 min and cleared by centrifugation at 21,000g for 10 min. Protein levels were 

quantified using a BCA protein assay kit (Pierce) and 15 µg protein was loaded onto Bolt 4–

12% Bis–Tris polyacrylamide gels (Thermo Fisher), electrophoresed at 100 V for 2 h, and 

transferred in transfer buffer (2.2 g l−1 CAPS, 0.45 g l−1 NaOH, 10% ethanol) to a PVDF 

membrane (Millipore IPVH00010) at 40 V for 2 h. Metastatic foci were counted from RFP 

stained sections by a blinded researcher.

For RFP and tdTomato immunohistochemistry, deparaffinization and staining were carried 

out on a Ventana XT using a DISCOVERY DAB Map Detection Kit. Slides were treated 

with Protease 3 for 12 min, antibody was applied at a 1:1,600 dilution and incubated for 60 

min, secondary antibody (Vector BA-1000) was applied at a 1:200 dilution and incubated for 

30 min. For NFS1 immunohistochemistry, deparaffinization and staining was carried out on 

a Ventana XT using a DISCOVERY ChromoMap DAB Kit. Slides were treated with CC1S 

(Tris-based buffer antigen retrieval for 36 min). Primary antibody was applied at a 1:100 

dilution and incubated for 3 h. Secondary antibody (DISCOVERY OmniMap anti-Ms HRP) 

was applied neat for 8 min. All slides were haematoxylin counterstained following the IHC 

assay. For comparisons of NFS1 level in primary tumour and lung metastases, formalin-

fixed paraffin-embedded tissue was cut fresh and compared side-by-side on the same slide. 

Cultured cells expressing high (NCI-H322) and low (MDA-MB-231) levels of NFS1 were 

used to calibrate the dynamic window of staining intensity. Cultured cells were processed in 

conditions used to mimic formalin fixation and paraffin embedding, by plasma–thrombin 

embedding and sectioning. NFS1 H-score was scored by a blinded pathologist on a standard 

0–300 point scale based on NFS1 mitochondrial staining intensity and area. Human studies 

were approved by the NYU School of Medicine Institutional Review Board.

O2 consumption assays

O2 consumption was measured using the Seahorse Extracellular Flux Analyzer (XFe24). 

Cells were seeded at 35,000 per well on the day before measurement and the assay was 

conducted in Seahorse media with 10 mM glucose and 1 mM glutamine. At the indicated 

time points FCCP (1 µM) or antimycin (1 µM) were added. For experiments conducted at 
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3% O2, cells were infected, selected in puromycin, and plated on Seahorse plates in 3% O2; 

however, the O2 consumption measurements themselves were conducted at ambient O2 

conditions.

qPCR

RNA was isolated by column purification (RNeasy Kit, Qiagen) and cDNA synthesis was 

performed by reverse transcription of 1 µg of total RNA by reverse transcriptase (Superscript 

III, 18080044, Invitrogen) in a reaction containing 1 µl RNase OUT (10777019, Invitrogen). 

qPCR was performed on cDNA using SYBR green quantification (Maxima qPCR master 

mix, K0222, Thermo Fisher). ABCB7, ISCU and FXN expression was quantified relative to 

ACTB, MOCS3, NFS1, ENO2, and SLC2A3 were quantified relative to RPL13A using the 

following primers: ABCB7 forward: GCAGTCACACGGTGGAGAACT, ABCB7 reverse: 

TTGACCAAAGTTCAGCATAGCC; ACTB forward: AAGGGACTTCC 

TGTAACAATGCA, ACTB reverse: CTGGAACGGTGAAGGTGACA; ISCU forward: 

CCAGCATGTGGTGACGTAATG, ISCU reverse: AGCTCCTTGGCG ATATCTGTG; FXN 

forward: CTTGCAGACAAGCCATACACG, FXN reverse: 

ACACCCAGTTTTTCCCAGTCC; NFS1 forward: CACTCCCGGACACA TGCTTAT, 

NFS1 reverse: TGTCTGGGTGGTGATCAAGTG; SLC2A3 forward: 

AGTCATGATCCCAGCGAGAC, SLC2A3 reverse: GCCGATTGTAGCAA CTGTGA; 

ENO2 forward: AGCTGGCCATGCAGGAGTTC, ENO2 reverse: 

GGCTTCCTTCACCAGCTCCA; MOCS3 forward: CGCTCCCTGCAAC TACTGA, 

MOCS3 reverse: CAGTCGCTTATAGTCGGTGACA; RPL13A forward: 

CATAGGAAGCTGGGAGCAAG, RPL13A reverse: GCCCTCCAATCAGTCTTCTG

Analysis of NFS1 copy number and expression

Copy number data shown in Fig. 2a were downloaded from the Broad Institute Tumorscape 

website (http://www.broadinstitute.org/tumorscape/pages/portalHome.jsf) and contain both 

cell line and primary tumour data. The minimum amplified region reported in Fig. 2a was 

identified from the website Broad TCGA website (https://www.broadinstitute.org/tcga/

home) using the ‘2015-06-01 stddata__2015_04_02 regular peel-off ’ analysis version and 

the previously analysed ‘lung adenocarcinoma’ cancer subset28. Gene expression data 

reported in Extended Data Fig. 4a were downloaded from Oncomine using published data29. 

Gene expression data reported in Extended Data Fig. 4b, d were downloaded from https://

www.broadinstitute.org/ccle, which is based on published data30.

Flow cytometry with reactive O2 species probes

Cells were plated in 6-well plates the day before incubation with indicated treatments. For 

all flow experiments involving MCF10DCIS.com cells, 150,000 cells per well were plated. 

For MDA-MB-231 cells, 200,000 cells per well were plated for experiments involving BSO, 

and 100,000 cells per well were plated for all other experiments. With the exception of 

experiments involving tbHP, cells were incubated under indicated conditions, washed twice 

with 1× PBS and stained with 10 µM of CM-H2DCFDA or 10 µM BODIPY 581/591 C11 

(diluted in PBS) for 20 min in an incubator at 37 °C and 21% O2. Following staining, cells 

were washed with PBS, trypsinized, and collected in 500 µl of PBS. For tbHP experiments, 

cells were washed twice, stained with the indicated probes, treated with tbHP in serum-
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containing media for 4 h, washed again, trypsinized, and collected. For experiments 

performed at 3% O2, cells were equilibrated for 1 week before assessing ROS level. Flow 

cytometry data were collected on an Attune NxT Flow Cytometer with an excitation 

wavelength of 488 nm using the BL1 collection channel. Analysis of data was performed 

using FlowJo v.10 software.

Aconitase assay

Aconitase activity was measured using an Aconitase Assay Kit (Sigma, MAK051). For each 

condition, 600,000 MCF10DCIS.com cells were plated in a 5-cm plate. The next day cells 

were washed with PBS and harvested by trypsinization. To determine the aconitase activity 

of harvested cells, the manufacturer’s protocol was followed without the addition of the 

activating solution.

Competition Assays

Competition assay as reported in Extended Data Figure 3d uses six control (shCON) and 

four NFS1-targeting shRNAs in small pools in MDA-MB-231 cells. Transduced cell pools 

were grown at 21% O2 or 3% O2 in vitro, or injected orthotopically into the mammary fat 

pad and allowed to form primary tumours and lung metastases. Cells, primary tumours, and 

lungs were harvested 6 weeks after initiation of in vitro cultures or tumours, and isolated 

DNA was subjected to deep sequencing. Differential abundance of each shRNA is reported 

relative to the 3% O2 condition for samples grown in the indicated O2 concentrations, 

primary tumours, or lungs derived from mice harbouring these tumours after 6 weeks. 

Competition assay as reported in Extended Data Figure 3e uses MDA-MB-231 cells 

expressing a control vector or NFS1res, and subsequently transduced with either shRFP or 

shNFS1_1. Equal numbers of cells transduced with shRFP or shNFS1_1 were mixed before 

tail vein injection, and the relative abundance of each shRNA in both groups are reported 

relative to NFS1res.

Animal experiments

Tumours were initiated in 4–8-week-old female NOD. CB17 Scid/J mice. Orthotopically in 

the mouse mammary gland, by implantation of 500,000 cells in 25 µl 33% Matrigel into the 

fourth mouse mammary fat pad; subcutaneously, by injection of 500,000 cells in 100 µl 33% 

Matrigel into the left or right flank of the mouse; via tail vein by injection of 500,000 cells in 

150 µl RPMI into the mouse tail vein; and via intratracheal instillation by instilling 200,000 

cells in 50 µl 2 mM EDTA as described31. Cancer cells were transduced with viral shRNAs, 

selected for 3 days with puromycin, and allowed to recover for one day before introduction 

into mice. For experiments comparing subcutaneous and lung tumour formation, shRNA 

transduced cells were prepared at the same time and injected on the same day. Animals were 

imaged by IVIS (Perkin Elmer) 15 min following injection subcutaneously into the neck 

scruff with XenoLight d-Luciferin (165 mg per kg body weight, Perkin Elmer). Average 

luminescence was quantified per mouse from equal sized bins covering the mouse thorax. 

For experiments in which tumour growth was measured upon drug treatment, MDA-MB-231 

cells, implanted as described above, were allowed to form palpable tumours (~4 mm 

diameter) and mice were sorted into treatment groups as described below. PEG-Cyst(e)inase 

was delivered via intraperitoneal injection at 50 mg per kg body weight every 3 days, SSA 
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was delivered by daily intraperitoneal injection at 250 mg per kg body weight, and BSO was 

delivered in the drinking water at 20 mM with 5 mg ml−1 sucralose. Tumours were measured 

by caliper and tumour volume calculated by 0.5 × length × weight2. Lungs were fixed by 

slow infusion with 10% formalin before paraffin embedding and sectioning. Whole-mount 

lung images were captured using a fluorescent dissecting microscope (Leica M165) and lung 

foci were quantified by a blinded researcher. All experiments involving mice were carried 

out with approval from the Committee for Animal Care and under supervision of the 

Department of Comparative Medicine at MIT and NYU Langone Medical Center. The 

maximal tumour volume permitted is 2 cm3 and in none of the experiments were these limits 

exceeded.

Statistical analysis

Experiments were repeated at least three times in the laboratory with the following 

exceptions, the RNAi screen and deep sequencing based competition assays (Fig. 1a–b and 

Extended Data Fig. 1 c, d), immunohistochemical staining of NFS1 in human/mouse tissue 

(Fig. 2b, c and Extended Data Fig. 4), and effects of cyst(e)inase or SSA/BSO on tumour 

growth (Fig. 4), which were performed once. t-tests were heteroscedastic to allow for 

unequal variance and distributions assumed to follow a Student’s t distribution, and these 

assumptions are not contradicted by the data. No samples or animals were excluded from 

analysis, sample size estimates were not used, and replicate measurements were taken from 

distinct samples. To study the effects of cyst(e)inase or SSA/BSO on tumour growth, 

animals were randomly assigned into a treatment group with the constraint that the starting 

tumour burden in the treatment and control groups were similar. Studies were not conducted 

blinded except as otherwise noted above (analysis of the number of metastatic foci, 

immunohistochemical analysis of NFS1 levels in human tissue).

Data availability

The data that support the findings of this study are available from the corresponding authors 

upon reasonable request.
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Extended Data

Extended Data Figure 1. Analysis of screening results by reaction reactants and products

a, Histogram of shRNA depletion scores. shRNAs (11,370) were scored based on their 

differential abundance in the in vitro and in vivo screens. shRNAs were further subdivided 

into those which targeted enzymes that consume O2 (red, 1,035 shRNAs) and to those 

targeting other genes (black, 10,335 shRNAs). Bin size = 1 log2 fold change unit with the 

upper end of the range indicated on the x axis. The shRNAs in the shaded region are scored, 

and the percentage of these shRNAs falling in the indicated categories and the median of the 

entire distribution are reported. b, Enzymes were classified based on whether they catalysed 
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reactions involving specific metabolites, and the most commonly used 25 metabolites are 

reported. The number of shRNAs differentially depleted in vivo versus in vitro with a log2 

fold change cut-off > 2 are reported (scoring shRNAs), as are the total number of shRNAs 

targeting enzymes in each category. The percentage of scoring shRNAs for each metabolite 

is reported, and those significantly exceeding the percentage scoring in ‘all enzymes’ or ‘all 

genes’ classes are indicated. O2 and water classes were further subdivided (top right) to 

indicate that shRNAs targeting O2-consuming enzymes were significantly enriched, whereas 

shRNAs targeting O2 producing reactions or reactions that utilize water but do not consume 

O2 were not significantly enriched. * P < 0.05, Fisher’s exact test. Raw data are reported in 

Supplementary Table 2.

Extended Data Figure 2. Core components of the ISC machinery exhibit differential 
requirements, dependent on O2 concentration

a, Five-day proliferation assays of the indicated cell lines upon introduction of shRFP 

(black) or shRNAs targeting NFS1 (shNFS1_1 or shNFS1_2, grey) at the indicated O2 
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concentrations. Data are from three biological replicates. Significant P values (asterisks) are 

as follows: MCF10DCIS.com bar 1 versus bar 2, 5 × 10−6; bar 1 versus bar 3, 9 × 10−7; bar 

2 versus bar 5, 5 × 10−6; bar 3 versus bar 6, 2 × 10−6; bar 5 versus bar 8, 2 × 10−6; bar 6 

versus bar 9, 3 × 10−6; MDA-MB-231 (right) bar 1 versus bar 2, 5 × 10−8; bar 1 versus bar 

3, 3 × 10−8; bar 2 versus bar 5, 1 × 10−7; bar 3 versus bar 6, 9 × 10−5. b, Weight or volume 

of orthotopic tumour xenografts derived from MCF10DCIS.com cells expressing shRFP, 

shNFS1_1, or shRNA targeting ABCB7 (shABCB7_2), 4 weeks of growth. Data are from 

four independent biological replicates. ns, not significant. c, Five-day proliferation assays of 

MCF10DCIS.com cells expressing shRFP (black) or shNFS1_1 (grey) (top). Data are from 

three independent biological triplicates. Immunoblots of NFS1 and RPS6 (bottom). Images 

are representative of three experiments. Significant P values (asterisks) are as follows: 6% 

O2, 2 × 10−2; 10% O2, 4 × 10−5; 14.5% O2, 3 × 10−4; 21% O2, 5 × 10−6. d, Five-day 

proliferation assays at atmospheric O2, MCF10DCIS.com cells stably transduced with 

vector control (VC), NFS1 cDNA (NFS1res), or catalytically inactive mutant cDNA 

(NFS1resCD) (left). Immunoblots of NFS1 and RPS6 upon introduction of shRFP (R) or 

shNFS1_1 (N1), right. Data are from three independent biological replicates. e, Five-day 

proliferation assays as in a upon introduction of shRFP or shRNAs targeting ABCB7 

(shABCB7_1, shABCB7_2) (left, centre).* , Significant P values: MCF10DCIS.com bar 1 

versus bar 2, 1 × 10−7; bar 1 versus bar 3, 5 × 10−7; bar 2 versus bar 5, 4 × 10−7; bar 3 versus 

bar 6, 2 × 10−7; MDA-MB-231 bar 1 versus bar 2, 3 × 10−6; bar 1 versus bar 3, 3 × 10−6; bar 

2 versus bar 5, 7 × 10−6; bar 3 versus bar 6, 1 × 10−6. ABCB7 mRNA levels normalized to 

ACTB mRNA and relative to shRFP, (right). Data are from three independent biological 

replicates. f, Five-day proliferation assays of MCF10DCIS.com cells upon introduction of 

shRFP (black) or shRNAs targeting FXN (shFXN_1 or shFXN_2, grey) or ISCU (shISCU, 

blue) at the indicated O2 concentrations or upon addition of the antioxidant trolox (100 µM). 

Data are from three independent biological triplicates (left). FXN or ISCU mRNA levels 

normalized to ACTB mRNA and relative to shRFP (right). g, Proliferation assay (left, data 

from three independent biological triplicates) and mRNA levels (right, data from three 

independent biological replicates) as in d upon introduction of RFP (shRFP, black), or 

shRNAs targeting MOCS3 (shMOCS3_1 or shMOCS3_2). MOCS3 is an enzyme essential 

for molybdenum co-factor biosynthesis, a process in which NFS1 has been proposed to play 

a critical role independent of ISC biosynthesis10. a–g Data are mean ± s.e.m., P values 

obtained by heteroscedastic two-sided t-test.
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Extended Data Figure 3. NFS1 is required for breast cancer cell metastasis to the lung

a, Lung sections stained by immunohistochemistry for tdTomato (left) and whole-mount 

immunofluorescence (right) from samples analysed in Fig. 1h, i. Sections stained for 

tdTomato (RFP) show low power images of entire coronal lung sections. Whole-mount 

immunofluorescence shows tdTomato positive tumours (pseudocoloured red) in the right 

lung lobe. Images are paired, the lung sections from panels on the left match the whole-

mount images on the right. Samples express shGFP or shNFS1_1 in each column, as 

indicated, collected 6 week post-injection, via tail vein, with MDA-MB-231 cells expressing 

tdTomato and the indicated shRNAs. Scale bars, 1 mm. Entire experiment repeated three 

times with similar results. b, Representative histology of tumours stained for NFS1, initiated 

in the lung either by tail vein injection in the same manner as a (left, representative of five 

independent biological replicates) or as metastases from primary mammary tumours 

(middle, representative of ten independent biological replicates), or in the mammary fat pad 

as xenografts (right, representative of ten independent biological replicates). Two images for 

each group are shown to reflect heterogeneity in NFS1 staining. Tumours were initiated 

from MDA-MB-231 cells expressing shGFP or shNFS1_1 and tissue was harvested 6–8 

weeks after injection or implantation. Primary tumours derived from cells expressing 

shNFS1_1 display a clear reduction in NFS1 levels, whereas lung metastases derived from 

these cells can display low, moderate, or strong NFS1 staining. Scale bars, 50 µm. c, 

Histology of primary tumours initiated in the mammary fat pad as in b and stained for 

NFS1, the proliferation marker Ki67, or the endothelial marker CD31. Images are 

representative of ten independent biological replicates. Differences in Ki67 staining or CD31 

density were not observed. Scale bars, 100 µm. d, Competition assay using six control 

(shCON) and four NFS1-targeting shRNAs in small pools in MDA-MB-231 cells. 
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Differential abundance of each shRNA is reported relative to the 3% O2 condition. Black bar 

is population mean. Tumour formation, data are from ten independent biological replicates; 

lung metastases, data are from five independent biological replicates; in vitro cultures, data 

are from three independent biological replicates. e, Competition assay of MDA-MB-231 

cells expressing a control vector or NFS1res, and subsequently transduced with either shRFP 

or shNFS1_1. Data are from five independent biological replicates. f, Histology of primary 

mammary tumours and paired lung metastases, stained for NFS1, images are representative 

of eight independent biological replicates. Tumours were initiated by injecting MDA-

MB-231 cells orthotopically in the mammary fat pad and harvested 8 weeks after injection. 

Scale bars, 25 µm. g, Immunoblot (top) or relative mRNA abundance (bottom) of lysates 

from MDA-MB-231 cells grown at the indicated O2 concentration and with no treatment 

(control), dimethyloxalylglycine (DMOG, 1 mM, 24 h) or the proteasome inhibitor MG-132 

(10 µM, 2 h). Significant P values (asterisks) are as follows: bar 2 versus bar 5, 1 × 10−5; bar 

3 versus bar 6, 2 × 10−4; bar 1 versus bar 4, 3 × 10−2; bar 2 versus bar 5, 7 × 10−3; bar 3 

versus bar 6, 1 × 10−3; bar 8 versus bar 11, 4 × 10−4; bar 9 versus bar 12, 2 × 10−3; bar 2 

versus bar 14 2 × 10−4; bar 3 versus bar 15, 1 × 10−3. Immunoblots are representative of 

three replicates and show the level of NFS1, which is dependent on O2 concentration in a 

manner independent of prolyl hydroxylase or proteasomal inhibition, compared to RPS6. 

Relative mRNA abundance determined by qPCR and normalized to RPL13A, demonstrates 

that NFS1 mRNA levels (black bars) are not impacted by changes in O2 level or prolyl 

hydroxylase inhibition, in contrast to known hypoxia-inducible factor target genes (SLC2A3 

and ENO2, grey bars). Data are from three biologically independent experiments. e, g, Data 

are mean ± s.e.m. d, e, g P values obtained by two-sided heteroscedastic Student’s t-tests.
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Extended Data Figure 4. NFS1 activation in lung adenocarcinoma

a, Expression (mRNA) of the indicated genes in normal lung (n = 20) versus lung 

adenocarcinoma (n = 226) from Okayama et al.29. b, Expression (mRNA) of the indicated 

genes in lung adenocarcinoma cell lines (n = 96) versus all other cell lines (n = 914) from 

the Cancer Cell Line Encyclopedia. a, b, Box plots indicate the 75th, 50th, and 25th 

percentile, whiskers are 90th and 10th percentile. c, Immunohistochemical staining for 

NFS1 (dark brown) of NCI-H322 and MDA-MB-231 cells embedded and fixed using the 

same protocol as in Fig. 2b, c. Replicated in triplicate with similar results. d, Copy number 

(log2 N/2) versus expression (log2 mRNA level) for NFS1 of cell lines from the Cancer Cell 

Line Encyclopedia (n = 1,010). The NCI-H322 data point is indicated in red. r denotes 

Pearson’s correlation coefficient. e, Immunoblots for NFS1 or RPS6 in NCI-H322 crNFS1 

clones. Clone 2 (red) was selected for further experiments. Immunoblots repeated in 

triplicate with similar results. f, Sanger sequencing trace of the crNFS1 cut site for clone 2. 

Red denotes T, green denotes A, blue denotes C, black denotes G. Wild-type and mutant 

sequence resulting from an insertion of an A at the indicated site are provided below the 

trace. g, Quantification of the Sanger sequencing trace in f indicating the percentage of wild-

type or mutant signal at each base, n = 22 base positions assessed. h, Immunohistochemical 

staining for NFS1 (dark brown) of lung sections (shRFP n = 5, shNfs1 n = 4 independent 

biological replicates, representative images shown) or subcutaneous tumours (n = 5 

independent biological replicates, representative images shown) derived from KP cells used 
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in the experiment described in Fig. 2i, j. T, tumour. N, normal. Scale bars, 50 µm. g, Data are 

mean ± s.e.m. a, b, g, P values obtained using two-sided heteroscedastic Student’s t-tests.

Extended Data Figure 5. Interplay between NFS1 modulation, reactive oxygen species, and 
hypoxic responses

a, Von Hippel Lindau (VHL) and liver kinase B1 (LKB1, also known as STK11) tumour 

suppressors mediate the cellular response to hypoxia32,33. VHL-null (786-O, left and A498, 

middle) or LKB1-null (A549, right) cell lines exhibited sensitivity to NFS1 suppression in 

21% O2 that culture in 3% O2 rescued, five-day proliferation assays upon introduction of 

shRFP (black), shNFS1_1 or shNFS1_2 (both grey) (top). Immunoblots for NFS1 or RPS6 

upon introduction of shRFP (R), shNFS1_1 (N1) or shNFS1_2 (N2) (bottom). Data are from 

three independent biological replicates. b, Published viability scores for known ISC 

containing genes in the indicated cell lines34. Negative scores (blue colour) indicate cell 

essential genes. NFS1 shown for reference. c, Five-day proliferation assays (at 3% O2) of 

MDA-MB-231 cells expressing shRFP (black) or shNFS1_1 (grey) upon treatment with the 

Fe2+ chelator 1,10-phenanthroline (Phen., 1.5 µM), the antioxidant ebselen (Ebs., 2.5 µM), 

or the lysosomal ATPase inhibitor bafilomycin (Baf., 400 pM). Because iron release from 

transferrin receptor and ferritin require lysosomal acidification, low dose bafilomycin is 

expected to reduce the labile iron pool. Data are from three independent biological 

triplicates. d, Relative reduced glutathione levels in cells expressing shNFS1_1 or with 

overnight treatment with erastin (5 µM) relative to cells expressing shRFP. Data are from 

three independent biological duplicates. e, Relative fluorescence (flow cytometry), MDA-

MB-231 cells stained with DCFDA and expressing shRFP, shNFS1_1 or shRNAs targeting 

SOD1 (shSOD1) or SOD2 (shSOD2) (left). Bar indicates cut-off used for identifying cells 

exhibiting increased DCFDA fluorescence. Trace is representative of three experiments. 
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Quantification of DCFDA-positive cells indicated (left). Data are from three (shSOD1, 

shSOD2) or four (shNFS1_1, shRFP) independent biological replicates. Immunoblots of 

SOD1, SOD2, NFS1 or RPS6 upon introduction of the indicated shRNAs (right). 

Immunoblots repeated in triplicate with similar results. f, Five-day proliferation assays of 

MDA-MB-231 cells upon introduction of shRFP (3% O2 n = 4, 21% O2 n = 5), shNFS1_1 

(3% O2 n = 4, 21% O2 n = 5), shSOD1 (n = 3) or shSOD2 (n = 3) at the indicated O2 

concentrations. n indicates independent biological triplicates. g, Immunoblots for FTH1, 

NFS1, or β -actin upon introduction of the indicated shRNAs, MDA-MB-231 cells, 3% O2. 

Immunoblots repeated in triplicate with similar results. a, c–f, Data are mean ± s.e.m., P 

values obtained using two-sided heteroscedastic Student’s t-tests.

Extended Data Figure 6. Additional model systems demonstrating that NFS1 suppression 
sensitizes cells to ferroptosis versus other forms of cell death

a, Relative viability, MDA-MB-231 cells, expressing shRFP or shNFS1_1 upon treatment 

with doxorubicin (left), etoposide (middle) or erastin (right), 3% O2. Data are from three 

independent biological triplicates. b, Viability, relative to untreated, of MDA-MB-231 cells 

stably transduced with control vector or NFS1res, expressing the indicated shRNAs, treated 

with BSO (5 µM), tbHP (10 µM), or erastin (2.5 µM). Data are from four independent 
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biological triplicates. c, Immunoblots, MDA-MB-231 cells expressing shRFP (R) or 

shNFS1_1 (N), erastin 5 µM, 24 h treatment. Immunoblots repeated in triplicate with similar 

results. d, Viability after 2 days, relative to untreated cells, of MDA-MB-231 cells 

expressing the indicated shRNAs. Cells were cultured at 3% O2 and treated with BSO (10 

µM) combined with mitochondrially targeted antioxidant mitoTEMPO (MitoT., 2 µM), 

Phen. (5 µM), Ebs. (7.5 µM) or Baf. (800 pM) (top) or BSO (5 µM) combined with Fer-1 

(Ferop., 1 µM), apoptosis inhibitor Z-VAD-FMK (Apop., 184 µM), necrosis inhibitor 

necrostatin (Nec., 9.7 µM), or autophagy inhibitor 3-methyladenine (Autoph., 6.25 mM) 

(bottom). Significant P values (asterisks): (top) bar 1 versus bar 2, 4 × 10−6; bar 2 versus bar 

4, 3 × 10−6; bar 2 versus bar 6, 6 × 10−5; bar 2 versus bar 8, 9 × 10−4; bar 2 versus bar 10, 7 

× 10−6; (bottom) bar 2 versus bar 4, 4 × 10−3. Data are from three independent biological 

triplicates. e, f, Relative fluorescence (flow cytometry), MDA-MB-231 cells stained with 

DCFDA (e, left) or BODIPY (f, left) expressing shRFP or shNFS1_1 and treated with tbHP 

(50 µM), Fer-1 (1 µM) or both for four hours. Bar indicates cut-off used for identifying 

DCFDA or BODIPY positive cells, reported in red text. Traces are representative of 

triplicate experiments. Quantification of mean fluorescence, relative to untreated, (e, right 

and f, right). Data are from three independent biological replicates. g, h, As in e, f but 

treatment with erastin (5 µM), Fer-1 (1 µM) or both for 20 h. Traces are representative, data 

are from experiments performed in quadruplicate (g) or triplicate (h). i, Relative viability at 

3% O2 of cell lines expressing indicated shRNAs and treated with BSO (20 µM), erastin (5 

µM, MDA-MB-231 or A549; 10 µM NCI-H838 or NCI-H460), and/or Fer-1 (1 µM). 

NCI-838 and NCI-H460, data are from three independent biological replicates; MDA-

MB-231, data are from three independent biological triplicates; A549, n = 5, 5, 4, 4, 5, 5, 4, 

4, 3, 3, 4 and 4 for each bar from left to right, independent biological triplicates. 

Representative images, MDA-MB-231 cells (right). j, Relative viability of MDA-MB-231 

cells expressing the indicated shRNAs relative to 50 µM added cystine (typical human 

plasma levels). Cells were cultured at 3% O2 in complete medium before switching to 

medium containing the indicated level of cystine added to base medium (RPMI lacking 

cystine with 10% serum, non-dialysed). x axis is log2 scale, data are from three independent 

biological replicates. Significant P values (asterisks) are as follows: (left to right) 3 × 10−2, 9 

× 10−5, 2 × 10−2. k, Relative viability of MDA-MB-231 cells expressing the indicated 

shRNAs upon treatment with GPX4 inhibitors RSL3 (top, 20 h) or ML162 (bottom, 48 h), 

3% O2. Data are from three independent biological triplicates. Significant P values 

(asterisks) are as follows: (left to right, top) 4 × 10−2, 8 × 10−3, 2 × 10−3, 3 × 10−2, (left to 

right, bottom) 1 × 10−2, 6 × 10−4, 3 × 10−3. a, b, d–k, Data are mean ± s.e.m. a, b, d, i–k, P 

values obtained using two-sided heteroscedastic Student’s t-tests.
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Extended Data Figure 7. Effects of NFS1 suppression on tumours in animals given treatments 
altering cystine metabolism

a, Representative histology of six independent tumours in each group from samples reported 

in Fig. 4f and stained for NFS1 (brown). Control, left two columns; cyst(e) inase, right two 

columns. Three representative tumours (in columns) are shown to reflect heterogeneity in 

staining. Tumours expressing shGFP and shNFS1_1 harvested from the same animal and 

stained on the same slide. Tumours derived from cells expressing shNFS1_1 display a 

reduction in NFS1 levels in the control treatment group, whereas tumours derived from cells 

expressing shNFS1_1 in mice treated with cyst(e)inase display NFS1 staining similar to 

shGFP tumours, consistent with cyst(e)inase treatment selecting for NFS1-expressing cells. 

Scale bars, 100 µm. b, Representative histology of a single MDA-MB-231-derived tumour 

pair (shGFP versus shNFS1_1) from an animal treated with cyst(e)inase as in a. The 

shNFS1_1-expressing tumour from this pair exhibited the strongest regression upon 

cyst(e)inase treatment and the least overall tumour growth. Staining for NFS1 (left column) 

or Ki67 (right column) revealed a clearly delineated region of elevated NFS1 and Ki67 

staining (middle), similar to the control tumour expressing shGFP (top), when compared to a 

separate region of low NFS1 and Ki67 staining (bottom). Scale bars, 100 µm. c, Growth of 

six independent biological replicate xenograft tumours in each group, derived from MDA-

MB-231 cells expressing shGFP or shNFS1_1. Upon formation of palpable tumours (day 0), 

mice were treated by daily injection of SSA (250 mg kg−1) and BSO via drinking water (20 

mM). Change in tumour volume relative to day 0 reported. Data from untreated tumours 

identical to Fig. 4f. Significant P values (asterisks) are as follows: shGFP control treatment 

versus the shGFP SSA/BSO treatment, 5 × 10−3 (day 4), 5 × 10−3 (day 7), 3 × 10−2 (day 9), 

5 × 10−2 (day 11), 2 × 10−2 (day 14); shGFP SSA/BSO treatment versus shNFS1 SSA/BSO 

treatment, 5 × 10−2 (day 4), 7 × 10−2 (day 7), 2 × 10−2 (day 9), 6 × 10−2 (day 11). Data are 

mean ± s.e.m., P values obtained using two-sided heteroscedastic Student’s t-tests.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The requirement for NFS1 is strongly dependent on environmental oxygen 
concentration

a, Schematic of the overall experimental methodology. b, Depletion score histogram. 

shRNAs are divided into low O2 depleted (red), or high O2 depleted (black). Bin-range 

upper bounds are indicated. For shRNAs differentially depleted in 3% O2, 7.7% scored 

higher in vivo than in vitro, and 10.5% scored higher in vitro than in vivo, the median score 

was 0.17. For shRNAs differentially depleted in 21% O2, 3.8% scored higher in vivo than in 

vitro, and 19.6% scored higher in vitro than in vivo, the median score was 0.66. c, Venn 

diagram of shRNAs with improved viability scores in low O2 (red) or animals (grey). d, 
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Schematic of the ISC biosynthesis process. e, Five-day proliferation assay of MDA-MB-231 

cells stably transduced with shRNAs targeting NFS1 (shNFS1_1) or RFP (shRFP) as a 

control. Data are mean ± s.e.m. from three independent biological triplicates. f, Five-day 

proliferation assay at atmospheric O2 of MDA-MB-231 stably transduced with either shRFP 

(R) or shNFS1_1 (N1) and either a vector control (VC), resistant NFS1 cDNA (NFS1res) or 

catalytically inactive mutant cDNA (NFS1resCD) (top). Data are mean ± s.e.m. from three 

independent biological replicates. Immunoblots for NFS1 (ribosomal protein S6 (RPS6) 

included for comparison), images are representative of three replicates (bottom). g, Tumour 

xenograft weight at 4 weeks, cells transduced as in e but with shRNAs targeting GFP 

(shGFP) as the control. Data are mean ± s.e.m., n = 25. h, Representative whole mount 

immunofluorescence of lung lobes (left) and metastasis quantification (right), 6 weeks after 

tail vein injection with cells transduced as in g. Scale bars, 1 mm. i, Sections from h, 

tdTomato stain (brown) (left) and quantification of micrometastases per section (right). Scale 

bars, 100 µm. Quantification data in h and i are from five independent biological replicates, 

entire experiment repeated three times with similar results. e–f, P values obtained by 

heteroscedastic two-sided t-test. NS, not significant.
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Figure 2. NFS1 is under positive selection in lung adenocarcinoma and required for lung tumour 
formation

a, Non-small-cell lung cancer tumours (n = 628) and cell line (n = 105) copy number, 

chromosome 20 region, ordered by NFS1 copy number. Minimally amplified region, black 

dotted line. b, H-scores, NFS1 immunohistochemistry (IHC) in different human tumour 

types (15 small-cell, 19 squamous cell, and 21 adenocarcinoma) (left), and in variably 

differentiated adenocarcinomas (8 poor-, 9 moderate- and 4 well-differentiated) (right). c, 

Representative IHC from b, single stain. d, e, Immunoblots of NFS1 in various cancer cell 

lines (d) or in NCI-H322 and NCI-H322 crNFS1 with or without NFS1 cDNA (e). In d, 

NFS1 amplification estimates (NFS1 amp) are indicated below the blots. Images are 

representative of three experiments. f, g, Five-day proliferation assay (f) and soft agar colony 

formation (> 150 µm2) after 3–4 weeks (g) of NCI-H322 and NCI-H322 crNFS1 with or 

without NFS1 cDNA. Data in f are from three independent biological triplicates, data in g 

are from four. h, Five-day proliferation assays of KP mouse lung tumour cells expressing 

shRFP or shRNAs targeting Nfs1 (shNfs1) (top), data are from three independent biological 

replicates. Immunoblots of Nfs1, representative of three experiments (bottom). i, KP 

subcutaneous tumour volume, data are from 5, 10, 9 and 8 independent tumours on each 
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successive day. j, Average radiance over time in mouse lungs after intratracheal instillation 

of KP cells from h (left). shRFP, n = 5; shNfs1, n = 4 independent animals. IVIS imaging of 

representative mice (group median) from indicated days (right). b, f–j, Data are mean ± 

s.e.m., P values obtained by heteroscedastic two-sided t-test.
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Figure 3. Suppression of NFS1 limits iron–sulfur cluster availability specifically in elevated O2 
conditions

a, Five-day proliferation assays of CYTB and wild-type (WT) cells expressing shRFP or 

shNFS1_1 at 3% O2 (n = 5) or 21% O2 (n = 6) (left) and five-day proliferation assay of 

MDA-MB-231 expressing the same shRNAs with or without pyruvate and uridine treatment 

(Py/Ur, 1 mM pyruvate, 50 µg ml−1 uridine, n = 3) (right). b, Five-day proliferation assay, 

MDA-MB-231 cells, 3 or 21% O2 and with trolox (100 µM, n = 6), Fer-1 (1 µM, n = 4) or 

N-acetylcysteine (NAC, 750 µM, n = 3). c, Immunoblots of NFS1 and TFRC in 

MCF10DCIS.com cells stably transduced with either shRFP or shNFS1_1 and vector 

control (VC), NFS1res or NFS1resCD. d, Aconitase activity of MCF10DCIS.com cells, 

transduced as in c except without NFS1resCD, data are from three independent biological 

replicates. e, O2 consumption rate at 3% O2 (left) or 21% O2 (middle), baseline readings and 

after FCCP (1 µM) or antimycin (1 µM) treatment, MDA-MB-231 cells. Relative O2 

consumption rate of shRFP and shNFS1_1 transduced MDA-MB-231 and 

MCF10DCIS.com (DCIS.com) cells under high and low O2 conditions (right). For all plots 

in e data are from three independent biological triplicates. f, Aconitase activity of shRFP- 

and shNFS1_1-transduced MCF10DCIS.com at 3 and 21% O2 (left) and at 3% O2 with 

tbHP treatment (4 h, 50 µM) (right). Data are from three independent biological replicates. 

g, Relative DCFDA fluorescence measured by flow cytometry, cells and treatments from f. 

Data are representative of three repeated experiments. h, Immunoblots of TFRC, NFS1, cells 

and treatments from f. i, Schematic representation of the proposed model. Under high O2 

(left), ISCs are maintained in cell-essential proteins (blue circles) despite high turnover from 

O2 damage. Upon NFS1 suppression, ISC biosynthesis flux cannot overcome ISC turnover 

(middle), unless environmental O2 levels are low (right). a, b, d–f, Data are means ± s.e.m., 

P values obtained by heteroscedastic two-sided t-test.
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Figure 4. Suppression of NFS1 predisposes cancer cells to ferroptosis

a, Relative viability (2 days, 3% O2) of MDA-MB-231 cells, expressing shRFP or 

shNFS1_1, treated with varying concentrations of BSO, tbHP or paraquat. Data are from 

three biologically independent replicates. b, Relative viability (2 days, 3% O2) of cells from 

a treated with BSO (5 µM), tbHP (10 µM) or erastin (2.5 µM) and deferoxamine (DFO, 100 

µM), Fer-1 (1 µM) or no treatment control (ctl). Data are from three biologically 

independent triplicates. c, d, Relative DCFDA (c) or BODIPY (d) fluorescence measured by 

flow cytometry of MDA-MB-231 cells from a, after 48 h treatment with either BSO (20 

µM), Fer-1 (1 µM) or both. Red text indicates the percentage ± s.e.m. cells in the bracketed 
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region. Data are from three biological replicates. e, Representative images from triplicate 

experiments, overnight erastin (5 µM), Fer-1 (1 µM). f, MDA-MB-231 tumour growth. Once 

palpable (day 0), animals were treated every 3 days (50 mg kg−1 PEG-cyst(e)inase). Change 

in volume reported, caliper measurement. Data are from six independent replicate tumours. 

g, Schematic of the proposed model. NFS1 suppression results in loss of IRP ISCs, 

upregulation of iron-starvation response (increased transferrin receptor (TFRC), decreased 

ferritin), and increased free intracellular iron. High iron promotes ferroptosis by increasing 

lipid peroxidation. a, b, f, Data are mean ± s.e.m., P values obtained by heteroscedastic two-

sided t-test. Tfn, transferrin; xCT, cystine-glutamate antiporter.
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