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Abstract

Network awareness is highly critical for network and se-

curity administrators. It enables informed planning and

management of network resources, as well as detection

and a comprehensive understanding of malicious activ-

ity. It requires a set of tools to efficiently collect, process,

and represent network data. While many such tools al-

ready exist, there is no flexible and practical solution for

visualizing network activity at various granularities, and

quickly gaining insights about the status of network as-

sets. To address this issue, we developed Nfsight, a Net-

Flow processing and visualization application designed

to offer a comprehensive network awareness solution.

Nfsight constructs bidirectional flows out of the unidi-

rectional NetFlow flows and leverages these bidirectional

flows to provide client/server identification and intrusion

detection capabilities. We present in this paper the in-

ternal architecture of Nfsight, the evaluation of the ser-

vice, and intrusion detection algorithms. We illustrate

the contributions of Nfsight through several case studies

conducted by security administrators on a large univer-

sity network.

1 Introduction

Network awareness, i.e., knowledge about how hosts use

the network and how network events are related to each

other, is of critical importance for anyone in charge of

administering a network and keeping it secure [11]. The

goal of network awareness is to provide relevant infor-

mation for decision-making regarding network planning,

maintenance, and security. NetFlow is among the most-

used information sources for gaining awareness in large

networks because it offers a good trade-off between the

level of detail provided and scalability. As a result, a

majority of networks are already instrumented through

their routers to collect and export NetFlow, and a variety

of tools are available to process such data [18, 36, 27].

However, there is still no practical solution to visualiz-

ing network activity at various granularities and quickly

gaining insight about the status of network assets. Nu-

merous attempts have been made [37, 31, 5] and are de-

tailed in Section 4, but none has gained a broad audience.

We developed a tool called Nfsight to address these

challenges. The objective of Nfsight is to offer a compre-

hensive network awareness solution through three core

functions: 1) passive identification of client and server

assets, 2) a web interface to query and visualize network

activity, and 3) a heuristic-based intrusion detection and

alerting system. Nfsight is designed to be simple, ef-

ficient, and highly practical. It consists of three major

components: a Service Detector, an Intrusion Detector,

and a front-end Visualizer. The Service Detector com-

ponent analyzes unidirectional NetFlow flows to identify

client and server end points using a set of heuristics and

a Bayesian inference algorithm. The Intrusion Detector

component detects suspicious activity through a set of

graphlet-based signatures [13], and the front-end Visual-

izer allows administrators to query, filter, and visualize

network activity. We trained and evaluated the Service

Detector using two different datasets of 30 minutes of

packet dumps collected at the border of a large univer-

sity network. The Intrusion Detector was evaluated by

security experts over a period of four months. Based on

several months of testing in a production environment



of 40,000 computers, we believe Nfsight can greatly as-

sist administrators in learning about network activity and

managing their assets.

The rest of the paper is organized as follows. In Sec-

tion 2, we provide an overview of Nfsight and we present

the implementation and evaluation of the different com-

ponents: the Service Detector (Section 2.2), the Intrusion

Detector (Section 2.3), and the front-end Visualizer (Sec-

tion 2.4). We discuss a number of use cases in Section 3

and we compare our approach to related work in Section

4. Finally, Section 5 offers some concluding remarks.

2 Architecture and Implementation

This section provides an overview of the architecture

of Nfsight and describes in detail the implementations

of the Service Detector, the Intrusion Detector and the

front-end Visualizer.

2.1 Nfsight Architecture Overview

The architecture of Nfsight is presented in Figure 1.

Nfsight uses non-sampled unidirectional NetFlow pro-

vided by a collector such as Nfdump/Nfsen [19]. A

network flow is defined as a unidirectional sequence of

packets that share source and destination IP addresses,

source and destination port numbers, and protocol (e.g.,

TCP or UDP). A NetFlow flow carries a wide variety

of network-related information about a network flow in-

cluding the timestamp of the first packet received, dura-

tion, total number of packets and bytes, input and output

interfaces, IP address of the next hop, source and desti-

nation IP masks, and cumulative TCP flags in the case of

TCP flows.

The Service Detector component takes NetFlow flows

and converts them into bidirectional flows in the IPFIX

format (bidirectional flow format specified by the IPFIX

working group [4]). During this process, it identifies

client and server end points using a set of heuristics and

a Bayesian inference algorithm. The bidirectional flows,

denoted by IPFIX in Figure 1, are stored in flat files,

while the server end points, denoted by Assets in Figure

1, are stored in a MySQL database. The Intrusion Detec-

tor component detects suspicious activity through a set

of graphlet-based signatures [13] applied on the bidirec-

tional flows. The high-level network activity and event

alerts generated by the Intrusion Detector are stored in

a MySQL database. An aggregation script runs periodi-

cally to maintain a round-robin structure in the database

and to provide three aggregation levels: every five min-

utes, hourly, and daily. We detail the data storage and

representation solution of Nfsight in Section 2.4. The

front-end Visualizer allows administrators to query, fil-

ter, and visualize network activity. They can access the

application simply by using a web browser and they can

collaborate through a shared knowledge base of events

reported either automatically by the Service Detector and

Intrusion Detector or manually by operators.

2.2 Passive Service Detection

2.2.1 Definitions

In the rest of the paper we use the following definitions.

A server is a network application that provides a service

by receiving request messages from clients and generat-

ing response messages. A server is hosted on a computer

identified by its IP address and accepts requests sent to a

specific port. In this paper, we focus on servers using the

UDP and TCP protocols. We are interested in both tran-

sient and permanent servers. Specifically, we consider

P2P transactions a part of the client/server model, even

if the server in this case may be handling client requests

for only a few minutes and for only specific clients. We

define an end point as a tuple {IP address, IP protocol,

Port number}. An end point may represent either a client

or a server.

We define a network session as a valid communication

between one client end point and one server end point.

All UDP flows are considered to be valid, but TCP flows

are valid only if both the request and the reply flows carry

at least two packets and the TCP acknowledgement flag.

For example, if a server refuses a TCP connection hand-

shake by sending a reset flag to the source end point, the

communication is not considered valid. Finally, we use

the term network transaction to describe any set of flows

between two end points during a time window smaller

than the maximum age limit of a flow (usually 15 min-

utes). There are two types of network transactions: uni-

directional and bidirectional. We assume that bidirec-

tional transactions are always between a client and a

server and that bidirectional transactions are always ini-

tiated by a client.

2.2.2 Approach

The task of accurately detecting servers based solely

on NetFlow flows is challenging because NetFlow does

not keep track of the logic of network sessions between

clients and servers. Specifically, we have to address the

following challenges:

1. NetFlow may break up a logical flow into multiple

separate flows;

2. NetFlow is made of unidirectional flows and there-

fore we need to identify the matching unidirectional

flows to make up bidirectional flows and identify

valid network sessions;
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Figure 1: Nfsight architecture

3. Identifying the server end point in a network session

is difficult because the TCP flags in the request and

reply flows are typically identical for valid bidirec-

tional flows. Furthermore, the flow timestamps have

proven to be sometimes unreliable and more often,

the request and reply flows have identical times-

tamps due to the granularity of the timestamps.

We solve the first and second challenges by match-

ing and merging the NetFlow flows as follows. First, for

each collection period (usually 5 minutes), we merge all

network flows that have the same source and destination

end points to eliminate any artificial breaking of unidi-

rectional flows. Then, to address the issue of combining

unidirectional flows into network sessions, we generate

bidirectional flows by merging all flows collected during

a given time window that have opposite source and desti-

nation end points. The network sessions are then selected

based on the number of packets and flags and accord-

ing to the definition of valid communication above. The

last step is to address the third challenge, i.e., to identify

client and server end points for every network session.

We describe below the approach we developed to per-

form this task.

2.2.3 Server Identification Heuristics

To correctly identify client and server end points for ev-

ery valid bidirectional flow, we developed a set of heuris-

tics that determine if an end point is a server (or not).

These heuristics were developed to cover a variety of in-

tuitions gathered from network experts. A heuristic may

be based on the attributes of an individual (bidirectional)

flow or it may consider a set of flows.

The heuristics implemented are:

H.0 Flow timing. Let t1 and t2 be the timestamps of

the unidirectional flows constituting a bidirectional

flow. The source of the flow with the larger (more

recent) timestamp is likely the server. The differ-

ence between t1 and t2 provides an indication on

the probability that this heuristic will identify the

correct end point as a server. If the timestamps are

identical, they cannot be used to decide which end

point is the server.

H.1 Port number. Let p1 and p2 be the port numbers

associated with a bidirectional flow. The end point

with the smaller port number is likely the server. If

the port numbers are identical, they cannot be used

to decide which end point is the server.

H.2 Port number with threshold at 1024. If an end point

has a port number lower than 1024, then it is likely

a server. The value of 1024 corresponds to the limit

under which ports are considered privileged and

designated for well-known services. If both ports

are above or below 1024, this heuristic cannot be

used to decide which end point is the server.

H.3 Port number advertised in /etc/services. If the port

number of an end point is listed in the standard

UNIX file /etc/services that compiles assigned port

numbers and registered port numbers [12], then it is

likely a server. If both or neither port numbers are in

/etc/services, this heuristic cannot be used to decide

which end point is the server.

H.4 Number of distinct ports related to a given end

point. If two or more different port numbers (in dif-

ferent flows) are associated with an end point, the

end point is likely a server. The number of differ-

ent port numbers related to an end point provides an

indication on the probability that this heuristic will

correctly identify the server. This heuristic comes

from the fact that ports on the client-side are often

randomly selected. Therefore, ports on the client-

side of a connection are less likely to be used in

other connections compared to ports on the server-

side. If both end points are related to the same num-

ber of ports, then this heuristic cannot be used to

decide which end point is the server.

H.5 Number of distinct IP addresses related to a given

end point. This heuristic is identical to the previous

one but counts IP addresses instead of ports.

H.6 Number of distinct tuples related to a given end

point. This heuristic is identical to the previous

one but counts end points instead of single IP ad-

dresses. This heuristic is based on the observation

that each server typically has two or more clients

that use the service. Furthermore, even if only one



real user accesses the service (e.g., identified by the

IP address of the user’s machine), the communica-

tion will likely require multiple connections and the

client side of the access often uses different port

numbers. Thus, multiple end points will be de-

tected.

2.2.4 Evaluation of Individual Heuristics

We evaluated the accuracy of each heuristic by using

bidirectional flows generated by Argus [26] as the ground

truth. Argus is a flow processing application that gener-

ates bidirectional flows from packet data. We considered

Argus to be more accurate than Nfsight, and able to pro-

duce a baseline dataset for our evaluation, since it uses

detailed packet data as input instead of the high level flow

data used by Nfsight. We collected a dataset of 30 min-

utes of network traffic from the border of a large univer-

sity network and analyzed the data using Argus to iden-

tify bidirectional flows and their server end points. We

then processed the data using Nfsight to generate bidirec-

tional flows (6.2 million records) and applied the heuris-

tics to determine the server end points. We define the

accuracy of a heuristic as the probability that it correctly

identifies the server end point of a bidirectional flow. The

accuracy is estimated by dividing the number of bidi-

rectional flows correctly oriented based on ground truth

from Argus by the total number of bidirectional flows

correctly and incorrectly oriented.

For heuristics H.1, H.2 and H.3 the accuracy proba-

bility is a single value. Specifically, based on our in-

put data, we calculated the accuracies of these heuris-

tics to be 0.78, 0.75, and 0.74, respectively. Heuristics

H.0, H.4, H.5, and H.6 depend on parameter values, ei-

ther on time difference or number of distinct ports, IP

addresses, or tuples. Therefore, we can evaluate their

accuracy with regard to the parameter value as demon-

strated in Figures 2 to 5 (up to 10 seconds for H.0, and

up to 100 ports, IPs, and tuples for H.4, H.5 and H.6).

These plots show that the accuracy increases with the

time difference between requests and replies (Figure 2),

the number of related ports (Figure 3), IP addresses (Fig-

ure 4) and {IP, protocol, port} tuples (Figure 5) between

source and destination end points. Note that the simi-

larities between Figures 3 and 5 can be explained by the

fact that the client ports are randomly selected among

64,511 values. Therefore, the number of client ports and

the number of clients are different only in the case where

two clients communicating with the same server select

the same source port randomly.
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Figure 2: Bidirectional flow orientation accuracy in-

creases with the timestamp difference between request

and reply flows (H.0)
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Figure 3: Bidirectional flow orientation accuracy in-

creases with the difference between the number of source

and destination related ports (H.4)

 90

 92

 94

 96

 98

 100

1-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99

A
cc

ur
ac

y 
(%

)

Difference in number of related IP addresses

Figure 4: Bidirectional flow orientation accuracy in-

creases with the difference between the number of source

and destination related IP addresses (H.5)
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Figure 5: Bidirectional flow orientation accuracy in-

creases with the difference between the number of source

and destination related tuples (H.6)

2.2.5 Combining heuristics

While individual heuristics can be used to identify server

end point, they cannot make a decision for all the flow

processed. For example, some flows have similar request

and reply timestamps, or similar source and destination

port numbers. To address this issue and to get a better

estimate, we combine the evidence provided by the dif-

ferent heuristics using basic Bayesian inference. We con-

sider each end point that is present in at least one bidirec-

tional flow. For each end point X , we have two possible

hypotheses:

• Hs: end point X is a server.

• Hc: end point X is a client.

The different heuristics are used to identify evidence E
in the bidirectional flows. For example, the fact that

there is a difference in unidirectional flow timestamps

provides evidence based on heuristic H.0. Bayesian in-

ference combines any prior knowledge (the prior prob-

ability of hypothesis Hi being true denoted by P (Hi))
with information gained from new evidence E to pro-

duce a new estimate of the probability that the hypothesis

is true using the formula:

P (Hi|E) =
P (E|Hi) ∗ P (Hi)∑
P (E|Hj) ∗ P (Hj)

where P (E|Hi) denotes the probability that evidence E
is present in a flow or set of flows given that hypothesis

Hi is true, that is, that a heuristic we use to generate the

evidence is accurate. While these conditional probabil-

ities could be assigned using expert knowledge, we use

the heuristic accuracies measured previously. We sum-

marize these empirical results in Table 1.

Table 1: Individual heuristic accuracies used as condi-

tional probabilities for Bayesian inference

Heuristic Output Accuracy

]0; 1.0[ 0.25

H.0 [1.0; 5.0[ 0.7

[5.0; ∞[ 0.99

H.1 True 0.78

H.2 True 0.75

H.3 True 0.74

1 0.97

H.4 [2; 29] 0.9825

[30; 74] 0.9875

[75; ∞[ 0.99

H.5 1 0.95

[2; ∞[ 0.98

1 0.97

H.6 [2; 29] 0.9825

[30; 74] 0.9875

[75; ∞[ 0.99

Note that while the naive Bayesian formulation used

assumes independence of evidence, and some of the

heuristics are obviously correlated, we find the approach

still useful for combining the heuristics. We are evalu-

ating other combining techniques, such as Bayesian net-

works, that allow explicit representation of dependencies

between heuristics.

2.2.6 Evaluation of Bayesian Inference

We evaluated the accuracy of Nfsight to address two

related issues: 1) generating correctly oriented bidirec-

tional flows, and 2) accurately identifying server end

points. For the first issue, we applied the approach previ-

ously described to individually evaluate heuristics by us-

ing Argus to provide ground truth. For the second issue,

we compared server end points discovered by Nfsight

against Pads [23]. Pads is a packet-based passive ser-

vice discovery tool. Similarly to Argus, we considered

Pads to be more accurate than Nfsight and able to pro-

duce a baseline dataset for our evaluation, since it works

from detailed packet data instead of high level flow data.

In our evaluation, we are interested in measuring how

much accuracy we lose by working only with flows.

We collected a second dataset of 30 min of network

traffic from the border of the same large university net-

work. Note that the dataset used for determining the ac-

curacy of individual heuristics (summarized in Table 1)

and the dataset used for this evaluation were collected

five months apart.

Concerning the issue of generating correctly ori-

ented bidirectional flow, we analyzed 3,617,077 bidirec-



Table 2: Bidirectional flow orientation accuracy grouped

by confidence level from Bayesian inference

Heuristic Able to decide Accuracy

H.0 11.49% 94.54%

H.1 63,98% 85.54%

H.2 48.14% 98.15%

H.3 47.73% 98.17%

H.4 63.28% 93.72%

H.5 55.51% 88.76%

H.6 63.38% 92.58%

tional flows generated by both Nfsight and Argus. On

this dataset, Argus could decide on the orientation for

2,356,616 flows (65.15%) while Nfsight could make a

decision for 3,616,942 flows (99.996%). When Argus

could decide, we evaluated that Nfsight agreed on the

orientation for 2,183,440 flows. This represents an accu-

racy of 92.65%.

To understand further the contribution of the Bayesian

inference to combine heuristics, we expand the compar-

ison against Argus for each individual heuristic in Table

2. These results reveal that individual heuristics provide

high accuracies but they are able to decide for only a

fraction of the flows. For instance, H.0 agrees with Ar-

gus for 94.54% of the flows, but could decide for only

11.49% of the flows. The accuracies of H.1 to H.6 range

from 85.54% to 98.17%, while the decision capabilities

of H.1 to H.6 lie between 47.73% and 64.98%. These

results show the importance of the Bayesian inference to

combine heuristics, because it allows the overall decision

capability to reach almost 100% while keeping the over-

all accuracy above 92%.

The final step of the evaluation was to address the

second issue of accurately identifying server end points.

We compared server end points identified by Nfsight and

Pads. Out of 57,985 TCP servers detected by Pads from

the packet data, Nfsight was able to identify 45,932,

which represents an accuracy of 79.21%. We investi-

gated the services detected by Pads and not by Nfsight,

and we found that the majority of them were source end

points of unidirectional flows. This pattern indicates that

our evaluation dataset did not contain both directions of

network sessions for some flows. The lack of request or

reply flows can come from asymmetric routing or sam-

pling. We discuss in Section 3.4 the need to develop

additional heuristics that would allow Nfsight to handle

such cases.

2.3 Intrusion Detection

Once bidirectional flows have been generated by the

Service Detector, the Intrusion Detector identifies mali-

cious activity using a set of detection rules based on the

graphlet detection approach [13]. In this approach, the

patterns of host behavior are captured based on the flows,

and then these patterns are compared with intrusion de-

tection signatures. Patterns are generated for each host

and contain statistical information such as host popular-

ity, number of ports used, number of failed connections,

and total number of packets and bytes exchanged. Note

that working with bidirectional flows simplifies the defi-

nition of the detection rules and the pattern lookup since

the source and destination end points of each network

transaction are already known. We describe in detail the

data structure and the different detection rules we evalu-

ated in the remainder of this section.

2.3.1 Data Structures

The intrusion detection algorithm processes each bidi-

rectional flow generated over the last batch of NetFlow

flows collected (5 minutes in our setup) and creates or

updates two dictionary structures: one for the source and

the other for the destination IP addresses of the flow un-

der review. The structure for source IP addresses cap-

tures the fan-out relationships, while the other captures

the fan-in relationships. These dictionaries are organized

in a three-level hierarchy, where the IP address and the

protocol are used as keys for the first and second lev-

els, respectively. The different fields at the third level are

therefore all related to a specific {IP, protocol}. These

fields are:

• Peer: the set of distinct related IP addresses;

• Port: the set of distinct related destination or source

ports;

• TCP flag: the set of distinct flag combinations used;

• Packet: the total number of packets sent or received;

• Byte: the total number of bytes sent or received;

• Flows: the total number of bidirectional flows sent

or received;

• Failed connections: the total number of unidirec-

tional flows sent or received;

• Last source end point: the source port, IP address

and TCP flag of the last flow captured;

• Last destination end point: the destination port, IP

address and TCP flag of the last flow captured.

The last two fields are not used by the detection rules

but were requested by our team of administrators as

an additional time-saving information when classifying

alerts sent by email. For example, consider a case where



a host is detected as initiating a large number of failed

connections over the last 5 minutes. If the last source

port appears to be random and the last destination port

is TCP/445, then the host will be immediately classified

as compromised by a malware that spreads over the Net-

bios service. On the other hand, if the last source port is

TCP/80 and the last destination port appears to be ran-

dom, then the host will likely be classified as a victim of

a denial-of-service attack.

2.3.2 Detection Rules

The next step performed by the intrusion detection al-

gorithm is to process each bidirectional flow again and

to try to match flow information and source and destina-

tion host patterns against a set of signatures. We cre-

ated a set of 13 rules organized in 3 categories: mal-

formed flows, one-to-many, and many-to-one relation-

ships. These rules and categories are described in Ta-

ble 3. They were based on expert knowledge and on a

study of attack traces to cover noisy malicious activity

such as scanning and denial-of-service activities gener-

ated by compromised hosts. We note that Nfsight pro-

vides the data structures and rule matching algorithm to

enable administrators to create and evaluate more fine-

grained rules.

As shown in Table 3, rules in the one-to-many and

many-to-one categories use thresholds. We defined these

thresholds empirically from a study of attack traces and

the feedback we received during the testing of the differ-

ent detection rules. These thresholds are likely specific

to a given network and a given time window of analysis.

Thus, they are subject for future tuning. The threshold

values used in our experiments were max dst ip = 200,

max dst port = 250, max src ip = 500, and max src port

= 500. Rules in the malformed flow category use

three data structures to catch incorrectly formed pack-

ets. These are: invalid code to detect incorrect ICMP

type and code combinations; invalid ip to detect forged

or misconfigured IP addresses sent to private or unallo-

cated subnets; and invalid flag to detect incorrect TCP

flag combinations.

2.3.3 Evaluation

Flow-based intrusion detection implementations often

suffer from two problems: 1) the difficulty to validate

and tune anomaly detection rules and 2) the difficulty to

access and understand the root cause of the malicious ac-

tivity detected. The first problem is illustrated in the con-

text of application detection in [14], where the authors

observe that the tuning of the 28 configurable thresh-

old parameters of the original graphlet approach [13] is

too cumbersome. To simplify rule tuning and validation,

192.168.1.2 [One-to-many IP] IP contacting more than 200 distinct
targets in less than 5min

* Heuristic: 201

* First detected on: 2010-08-10 14:05:00

* Last detected on: 2010-08-10 16:55:00

* Number of occurrences: 52,908

* Total flows: 52,908

* Unanswered flow requests: 52,908 (100\%)

* Packets: 89,918

* Bytes: 4,316,160

* Average number of related host every 5min: 4,580

* Average number of related port every 5min: 2

* Last source port: 3317 (2,339 distinct port(s) used every 5min)

* Last related tuple: 192.168.26.198 TCP/445

* Last flag value (if TCP): 2

To visualize related Nfsight data:
https://nfsight/index.php?net=192.168.1.2&time=201008101655

---------------------------------
Please rate this alert by clicking on one of the following links:

[+] True Positive:
https://nfsight/email_validation.php?q=156505&r=1&auth=r25kfGVk

[-] False Positive:
https://nfsight/email_validation.php?q=156505&r=-1&auth=r25kfGVk

[?] Inconclusive:
https://nfsight/email_validation.php?q=156505&r=0&auth=r25kfGVk
---------------------------------

Figure 6: Example of an alert email with validation links

we developed an evaluation process using email alerts.

The objective is to leverage administrator expertise while

minimizing the time and effort required to validate detec-

tion rules. Specifically, each alert emailed to security ad-

ministrators contains three embedded links that allow the

alert receiver to rate the alert as true positive, false pos-

itive, or unknown. A fourth link allows administrators

to open the front-end Visualizer and display the network

activity related to the alert under review. An example of

an alert email with validation links is given in Figure 6.

The second problem is due to the fact that flows are

based on aggregated header information and lack details

on the payloads required to precisely identify attack ex-

ploits. It is not possible to fully address this problem

if we restrict ourselves to Netflow, but we note that the

different visualization solutions offered by Nfsight and

described in Section 2.4 help to understand and assess

the illegitimate nature of suspicious network activity.

We configured the email validation script to send no

more than five alert emails in two batches per day to

four experts: two security administrators and two grad-

uate students working in network security. Alerts were

ranked according to the number of flows and the num-

ber of detection occurrences. Then the top five internal

IP addresses for which no alerts email had been previ-

ously sent were selected. Table 4 presents the validation

results collected over a period of four months for the five

detection rules that triggered alerts. In this table, TP de-

notes the number of alerts labeled as “true positives”, FP

denotes the number of alerts labeled as “false positives”,

and Unknown represents alerts for which experts could

not decide if the activity was malicious. The results in-



Table 3: Intrusion detection rules
Id Name Category Filter

101 Identical source and destination Malformed flow src ip = dst ip

102 Invalid ICMP flow size Malformed flow proto = ICMP and total byte ≤ 64000

104 Invalid ICMP code Malformed flow proto = ICMP and icmp code ∈ invalid code

105 Invalid IP address Malformed flow (src ip or dst ip) ∈ invalid ip

106 Invalid TCP flag Malformed flow proto = TCP and flag ∈ invalid flag

201 One-to-many IP One-to-many failed connection ≥ 1 and unique dst ip ≥
max dst ip and unique flag ≤ 1

301 One-to-many Port One-to-many failed connection ≥ 1 and unique dst port ≥
max dst port and unique flag ≤ 1

401 Many-to-one IP on TCP flows Many-to-one proto = TCP and flag /∈ {19, 27, 30, 31} and
unique src ip ≥ max src ip and unique flag ≤ 1

402 Many-to-one IP on ICMP flows Many-to-one proto = ICMP and unique src ip ≥ max src ip

403 Many-to-one IP on UDP flows Many-to-one proto = UDP and unique src ip ≥ max src ip

501 Many-to-one Port on TCP flows Many-to-one proto = TCP and flag /∈ {19, 27, 30, 31}
and unique src port ≥ max src port and
unique dst port = 1 and unique flag = 1

502 Many-to-one Port on ICMP flows Many-to-one proto = ICMP and unique src port ≥ max src port

and unique dst port = 1

503 Many-to-one Port on UDP flows Many-to-one proto = UDP and unique src port ≥ max src port

and unique dst port = 1

dicate that rules 105 and 201 are relatively accurate. We

note that these two rules allowed our team of adminis-

trators to detect 18 internal compromised hosts. How-

ever, rules 106, 301, and 501 have a high rate of false

positives. The poor performance of rule 106 can be ex-

plained by the facts that invalid TCP flag combinations

may be due to misconfigured hosts or legitimate TCP

connections may be broken over different flows. The

false positives for rules 301 and 501 are mainly due to

heavily used servers for which the thresholds max src ip

and max src port were too low. The feedback offered

by this validation process and the labeled alerts help ad-

justing the parameters and thresholds of the detection

rules. We are working towards implementing an auto-

mated process to adjust these values and revise the de-

tection rules.

2.4 Data Visualization

The front-end Visualizer allows administrators to query,

filter, and visualize network activity. This section

presents the web interface of Nfsight and the underlying

data storage solution.

2.4.1 Hybrid Data Storage

Alerts and client/server end points identified by the Ser-

vice Detector and Intrusion Detector modules are stored

in a MySQL database at three aggregation levels: five

minutes, hourly, and daily. An aggregation script that

expires data at different granularities runs periodically to

maintain a round-robin structure in the database. This

structure allows the storage of a large volume of data (88

million records organized in 107 tables in our implemen-

tation) while offering a fixed database size (11GB in our

implementation) and a fast access to network end points

at different time granularity levels. We configured the

5-minute granularity data to expire after two weeks.

2.4.2 Web Front-end

The front-end is developed in PHP and consists of a

search engine, a dashboard, and a network activity vi-

sualization table. The dashboard presents the latest gen-

erated alerts and the top 20 servers, services, scanned

services, and internal scanners. The search form and

the network activity visualization table are represented

in Figure 7. We note that IP addresses in Figure 7 and

in Section 3 have been pixelated on purpose. The search

form enables administrators to filter activity per subnet,

IP, time period, and type of activity (i.e., internal or ex-

ternal client and/or server).

The visualization table is organized by host IP, port

number, and type of activity (either client for source port

or server for destination port). For each end point, the

tool provides both statistical information and a visualiza-

tion of the activity over the given time period. The sta-

tistical information includes the confidence value given



Table 4: Validation results for each detection rule triggered

Id Total Validated TP FP Unknown Accuracy: TP/(FP+TP)

105 23 11 4 8 73.3%

106 27 3 19 5 13.6%

201 68 40 21 7 65.6%

301 94 30 41 23 42.3%

501 78 21 38 19 35.6%

Figure 7: Nfsight front-end Visualizer

by the Bayesian inference algorithm and the number of

flows, packets, and bytes. The network activity is repre-

sented as a time series using a heat map that visually re-

veals the number and type of flows detected over the time

period. A color code enables network operators to sep-

arate client activity (blue) from server activity (green),

and also to identify the fraction of invalid, i.e., non-

answered (red), flows sent/received by an end point. The

intensity of the color is used to represent the number of

flows. Some servers may receive both unidirectional and

bidirectional flows, represented by a block divided into

green and red parts that represent the proportion of uni-

directional and bidirectional flows received by the server.

These unidirectional flows may be due to invalid packets

that the server rejected, an overwhelming number of re-

quests, or unidirectional flows that the Service Detector

component failed to pair correctly. Additional examples

of the visualization capabilities of Nfsight are provided

in Section 3.

3 Use Cases

We present in this section different use cases to demon-

strate how Nfsight can help security administrators and

network operators in their daily tasks.

3.1 Network Awareness

3.1.1 Server Identification

Nfsight can be used to rapidly identify the population

of internal servers. The passive service detection algo-

rithm identifies servers actively used in the organization

network. Through the front-end, operators can query

monthly, weekly, or daily network activity by port num-

ber. For example, one can query all internal IP addresses

hosting a VNC server (port TCP/5900), and display the

daily average number of peers each of the IP addresses

has been connected to over the past few weeks. The dash-

board also provides the top 20 hosted services ranked by

the number of internal servers.

3.1.2 Network Monitoring

In addition to filtering activity by port, one can query ac-

tivity by subnet to check for anomalies in a specific part

of the network. An example of anomaly is the loss of

network connectivity for a set of hosts. We illustrate this

case in Figure 8, which represents the effect of a power

outage from the perspective of both the servers which

lost power (activity in green) and the clients which could

no longer reach the servers (activity in red). The visu-

alization provided by Nfsight makes it easy to determine

the duration of the event (it started at 12:10 PM and activ-

ity was fully restored at 12:40 PM) and the list of internal

hosts affected.

3.1.3 Policy Checking

In most organizations, critical subnets are subject to a

tight security policy to prevent exposure of sensitive

hosts. Nfsight can be used to check that these policies

are properly implemented and are not compromised. The

front-end Visualizer organizes assets per IP address and

service, providing the operators an instant view to detect

rogue hosts or rogue services. A watchlist allows one to

register hosts with a service profile and be alerted when

an unknown service is detected. For example, the pro-



Figure 8: Effect of a power outage on connectivity

file for an email server could consist of three services:

TCP/25 (mail), TCP/143 (IMAP), and TCP/993 (IMAP

over SSL). Any additional open port detected on this host

would raise an alert automatically. This functionality can

also be achieved by active scanning tools such as PBNJ

[24], but the passive approach provided by Nfsight is less

intrusive and offers a continous view of the service activ-

ity.

3.2 Malicious Activity

3.2.1 Scanning Activity and Vulnerable Servers

The filtering features of the front-end Visualizer allows

one to query external clients generating unidirectional

flows. These clients are often scanners targeting the orga-

nization IP addresses randomly or sequentially, and try-

ing to find open services to compromise. As shown in

Figure 9, the dashboard of Nfsight also provides the top

20 probed services ranked by number of scanners. Op-

erators can click on a service to display the details of

the scanning activity and more importantly, the list of

internal hosts that scanners were able to find. This in-

formation is critical when a new vulnerability linked to

a specific service is discovered, because security admin-

istrators can use Nfsight to learn, first, if attackers are

actively trying to exploit it, and, second, what are the in-

ternal hosts that potentially need to be patched or closed.

Figure 10 illustrates this feature by showing the activ-

ity for port TCP/10000 over a period of 19 days. This

port is known to host the Webmin application, which has

been vulnerable to remote exploits [34]. We can see

two parts in Figure 10: the top part in red shows ex-

ternal hosts scanning the organization network to find

vulnerable applications on port TCP/10000. The bot-

tom part in green represents internal hosts listening on

port TCP/10000. The coloring is automatic based on the

number of unanswered unidirectional flows (red) versus

valid bidirectional flows (green). Moreover, the average

number of peers displayed for each end point in the met-

ric section clearly discriminates scanning activity (be-

tween 16 and 27,200 peers scanned per day) and server

activity (1 client on average per day).

3.2.2 Compromised Hosts

In addition to external scanners, Nfsight can detect and

display internal hosts generating an abnormal volume of

unidirectional flows. These hosts are often compromised

by a malware that tries to spread. The Intrusion Detector

notifies the operators by means of automatically gener-

ated alarms when such a host is observed in the network.

As described in Section 2.3.3, each alert contains a link

that shows the service activity detected by Nfsight and



Figure 10: Scanners targeting port 10000 and internal servers hosting a service on this port

Figure 9: Top 20 scanned services

the details of flows related to the event. Consequently,

operators can check if these alerts are due to malicious

behavior or normal server behavior.

Figure 11 illustrates the activity of an internal host

which was compromised and started at midnight to send

a massive number of probes to random destination IP ad-

dresses on port TCP/445. Nfsight provides information

about the scanning rate, on average 23,300 IP every 5

minutes, and the uniform distribution of targets from the

parallel plot provided by Picviz [33]. Security adminis-

trators who tested Nfsight indicated that they cannot con-

figure their IPS devices to detect and block this type of

massive scanning activity, because the IPS devices would

be at risk of becoming overloaded. Therefore, Nfsight

complements other security solutions by leveraging Net-

Flow for scalable security monitoring.

3.2.3 Distributed Attacks

The visualization feature of Nfsight enables security ad-

ministrators to identify coordinated attacks and to under-

stand their scope. An example of a distributed scan orig-

inating from a set of internal SSH servers is provided

in Figure 12. A total of 19 servers were compromised

because the password for one shared account was deter-

mined through brute-force attack. Attackers installed a

remote control software on each host and then launched

a distributed scan at 8 PM to find additional SSH servers

to compromise. The timeseries representation and the

distinction between client/server activity allows admin-

istrators to immediately see the coordinated nature of the

attack.



Figure 11: Compromised internal host scanning a large range of destination IP on port TCP/445 (Netbios service)

Figure 12: Set of 19 compromised SSH servers remotely controlled (server activity in green) and launching a synchro-

nized distributed scan towards port TCP/22 (client activity in blue and red)



Figure 13: User comment window for information shar-

ing about a specific host

3.3 Forensic and Collaboration

The different case studies described previously show that

Nfsight can be efficiently used to perform forensic tasks.

The overview representation and detail-on-demand capa-

bility offer a fast and easy solution to understand what

happened in the network. This functionality is aug-

mented by several collaboration features. First, operators

can click on any IP address or service to leave a comment

and rate its criticality (low, medium or high). The com-

ment window is illustrated in Figure 13. Second, email

alerts contain links that the operators can use to rate the

alert as true positive, false positive, or unknown. The

web page displayed after clicking on these links allows

operators to write a comment and rate the criticality of

the alert. These comments are displayed on the dash-

board of Nfsight and colored by criticality. Operators can

reply to comments left by others and share their finding

or expertise.

3.4 Limitations and Future Work

Nfsight provides a practical network situational aware-

ness solution based on NetFlow flows. The main con-

tributions are 1) passive service discovery, 2) intrusion

detection and 3) automated alert and visualization. We

showed with different use cases how Nfsight can help

network administrators and security operators in their

monitoring tasks. However, Nfsight has still important

limitations that we plan to address in our future work.

First, Nfsight works with non-sampled flows. We note

that results from other evaluations of passive detection

techniques indicate that sampling has a limited impact

on the overall accuracy. For example, [1] reports that

capturing only 16% of the data results only in an 11%

drop in discovered servers. However, we believe that

random flow sampling will likely break our algorithm for

identifying bidirectional flows. We plan on assessing the

effect of sampling on the detection accuracy of the dif-

ferent heuristics. Furthermore, asymmetric routing can

challenge our approach. Specifically, we assumed in

this study that NetFlow collectors covered the pathways

for both requests and replies. In some organization net-

works, replies and requests can sometimes take different

routes for which there is no NetFlow collector deployed

and therefore, we would not be able to pair the unidirec-

tional flows into bidirectional flows.

We also note that Nfsight works at the network layer

and therefore heavily relies on port numbers. As a con-

sequence, it can be difficult or impossible for a network

operator to identify the application behind a service de-

tected by Nfsight. This issue arises from the fact that

some applications use random ports or hide behind well-

known ports. For example Skype is famous for using

port 80 or port 443, normally reserved to web traffic, in

order to evade firewall protection. Related work [6] on

flow-based traffic classification proved that it is possible

to accurately identify applications using only NetFlow.

We plan on developing additional heuristics for Nfsight

to be able to classify traffic regardless of the port num-

bers used. These heuristics can work on 1) relationships

between flow characteristics, such as the ratio between

number of packets and number of bytes or the time dis-

tribution of flows, and 2) relationships between hosts.

We believe that discovering communication patterns be-

tween hosts would be critical to identify not only appli-

cations but also large communication structures such as

those used by P2P networks or botnets.

Finally, the current intrusion detection rules are rudi-

mentary and the fact that most of them are threshold-

based means that they are prone to generate a significant

volume of false positives. We implemented a feedback

mechanism to leverage human expertise and facilitate the

task of tuning the detection rules, but this process still in-

volves important manual development. We plan to auto-

mate this task and integrate a machine-learning approach

to create and tune rules based on samples of true and false

positives.

4 Related Work

NetFlow is highly popular among network operators and

researchers because it offers a comprehensive view of

network activity while being scalable and easy to deploy

in large networks. As a result, an important number of

tools and publications have been produced over the past

decade, as shown by [28] and [17]. We present in this

section an overview of these resources organized accord-

ing to our areas of interests: Netflow processing and vi-



sualization, and service detection.

4.1 NetFlow Processing and Visualization

Applications

Working with NetFlow is a multi-step process. First,

flow records are generated by a compatible network de-

vice, typically a router, or by a software probe such as

[29, 21, 36]. These flows are then sent over the network

in UDP packets to collectors according to the NetFlow

protocol. The role of a collector is to store flow records

in flat files or in a database. The collector is often linked

to a set of processing tools to allow a network operator

to read and filter flow records. Processing tools include

CAIDA Cflowd [2], OSU flow-tools [27], SiLK [8] and

more recently Nfdump [18].

In addition to command line tools, several graphical

user interfaces exist to visualize and query network ac-

tivity. NTOP [22] and Nfsen [10] are two popular solu-

tions that provide a web interface to network operators.

We note that we developed Nfsight as a plugin of Nfsen

because of its simplicity, extensibility and processing ca-

pability.

An important body of research has been conducted on

the topic of NetFlow visualization. The NCSA research

center at the University of Illinois produced NvisionIP

[16] and VisFlowConnect [38]. NvisionIP provides a

two-dimensional map to visualize the network character-

istics of up to 65,536 hosts in a single view. It has been

extended to include a graphical filtering rule system [15]

to allow operators to easily spot abnormal activity. Vis-

FlowConnect offers a parallel-plot view with drill-down

features. Compared to Nfsight, the main limitation of

these two tools is that they work offline, while our solu-

tion processes NetFlow flows in near real time.

Researchers at the University of Wisconsin developed

FlowScan [25] and NetPY [3]. NetPY is an interac-

tive visualization application written in Python on top

of flow-tools. It provides an automated sampling algo-

rithm and enables operators to understand how network

traffic is used through heatmaps, timeseries and hierachi-

cal heavy hitters plots. FlowScan works at a higher level

by providing traffic volume graphs of network applica-

tions. The architecture of FlowScan, which consists of

Perl scripts and uses RRDTool, is very similar to the ar-

chitecture of Nfsen. Also, Nfsight shares with FlowS-

can the idea of using heuristics to classify flow records.

However, FlowScan lacks alerting capabilities and does

not determine client/server relationships.

Other research projects on the topic of flow visualiza-

tion include FloVis [31], VIAssist [5] and NFlowVis [7].

FloVis offers a set of modules such as Overflow [9] and

NetByte Viewer [30] to display the same network activ-

ity through different perspectives in order to gain a better

understanding of host behavior. VIAssist and NFlowVis

adopt the same objective with drill-down features and

multiple visualization techniques. NFlowVis integrates

state-of-the art plots by making use of treemap and a hi-

erachical edge bundle view. Similarly to Nfsight, VI-

Assist offers collaboration features to allow operators to

share items of interest and to communicate findings. We

note that none of these three visualization frameworks

are publicly available.

4.2 Service Detection and Bidirectional

Flows

Solutions for service discovery can be divided into ac-

tive and passive techniques. Active techniques send net-

work probes to a set of targets to check the presence of

any listening service, while passive techniques extract in-

formation about services from network sniffing devices.

A well-known open source active scanner is Nmap [20].

The drawbacks of active techniques are: 1) they provide

only a snapshot in time of the network, 2) they cannot de-

tect services protected by firewalls, 3) they are intrusive

and not scalable, and 4) aggressive scanning may also

cause system and network disruptions or outages [35, 1].

Passive solutions offer a continuous view of the network,

their results are not impacted by firewalls, and they are

highly scalable. The main limitation of the passive ap-

proaches is that they detect only active services, i.e., any

unused services with no incoming traffic cannot be dis-

covered. However, by providing a low overhead contin-

uous passive discovery approach, services that do com-

municate will be detected. A well-known open source

passive service detector working on packet data is Pads

[23].

A passive and accurate detection of network services

working on network flows would be trivial with bidirec-

tional flows where request flows initiated by clients and

reply flows initiated by servers can be easily identified.

However, most organization networks are currently in-

strumented with traditional unidirectional flow solutions

such as NetFlow, and they lack the capability to gener-

ate and collect bidirectional flows. This motivated us to

design a solution based only on unidirectional flow. We

note that the IPFIX IETF working group has recently in-

troduced a new standard format to export network flows

based on NetFlow version 9 [4], which includes the ca-

pability to export bidirectional flows generated directly at

the measurement interface [32]. We see our approach as

a robust intermediate solution between the current large

scale deployment of NetFlow, which is unidirectional,

and the future implementation by router vendors and de-

ployment by organization networks of IPFIX, which can

be bidirectional.

Rwmatch from SiLK [8] shares the same motivation of



generating correctly oriented bidirectional network flows

from unidirectional flows. Rwmatch uses two heuristics

to decide on the orientation of bidirectional flows: times-

tamp of request and reply flows, and server port num-

ber being below 1024. However, we have observed that

both of these heuristics can be fallible by themselves.

Therefore, we use five additional heuristics and combine

heuristic outputs through Bayesian inference in order to

improve the accuracy of server detection over time. We

note that another tool similar to rwmatch called flow-

connect, developed as part of the OSU Flow-tools frame-

work, has been suggested in [27] but has actually never

been implemented.

Finally, two alternative approaches YAF from CERT

[36] and Argus [26] generate bidirectional flows not

from unidirectional flows but from packet data. Both

tools work by processing packet data from PCAP dump

files or directly from a network interface, and then export

bidirectional flows following the IPFIX format.

5 Conclusion

Timely information on what is occurring in their net-

works is crucial for network and security administrators.

Nfsight provides an easy to use graphical tool for admin-

istrators to gain knowledge on the set of services running

in their networks, as well as on any anomalous activi-

ties. Nfsight is non-intrusive since it relies on passively

collected NetFlow data, provides a near real-time report

on network activities, allows data to be viewed at dif-

ferent time granularities, and supports collaboration be-

tween system administrators. Nfsight uses a combination

of heuristics and Bayesian inference to identify services

and graphlet-based technique to detect intrusions. In this

paper, we described the architecture and heuristics used

by Nfsight, evaluated its accuracy in service discovery,

and presented a number of real use-cases. Our future

work includes development and evaluation of additional

server discovery heuristics. We also plan to revise the in-

trusion detection rules and to complete the implementa-

tion of the feedback mechanism to adjust detection thesh-

olds automatically.
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