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NG-Tax 2.0 is a semantic framework for FAIR high-throughput analysis and classification

of marker gene amplicon sequences including bacterial and archaeal 16S ribosomal RNA

(rRNA), eukaryotic 18S rRNA and ribosomal intergenic transcribed spacer sequences. It

can directly use single or merged reads, paired-end reads and unmerged paired-end

reads from long range fragments as input to generate de novo amplicon sequence

variants (ASV). Using the RDF data model, ASV’s can be automatically stored in a graph

database as objects that link ASV sequences with the full data-wise and element-wise

provenance, thereby achieving the level of interoperability required to utilize such data to

its full potential. The graph database can be directly queried, allowing for comparative

analyses of over thousands of samples and is connected with an interactive Rshiny

toolbox for analysis and visualization of (meta) data. Additionally, NG-Tax 2.0 exports an

extended BIOM 1.0 (JSON) file as starting point for further analyses by other means. The

extended BIOM file contains new attribute types to include information about the

command arguments used, the sequences of the ASVs formed, classification

confidence scores and is backwards compatible. The performance of NG-Tax 2.0 was

compared with DADA2, using the plugin in the QIIME 2 analysis pipeline. Fourteen 16S

rRNA gene amplicon mock community samples were obtained from the literature and

evaluated. Precision of NG-Tax 2.0 was significantly higher with an average of 0.95 vs

0.58 for QIIME2-DADA2 while recall was comparable with an average of 0.85 and 0.77,

respectively. NG-Tax 2.0 is written in Java. The code, the ontology, a Galaxy platform

implementation, the analysis toolbox, tutorials and example SPARQL queries are freely

available at http://wurssb.gitlab.io/ngtax under the MIT License.
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INTRODUCTION

High-throughput sequencing technologies have empowered our

ability to study complex environmental and host-associated
microbial communities. Of these technologies, amplicon

sequencing targeting marker genes is currently the most cost-

effective tool to assess the microbial composition of large

numbers of samples (Tringe and Rubin, 2005; Yarza et al.,

2014; Stulberg et al., 2016). By using smart multiplexing

techniques hundreds of samples can be sequenced at once
while sequencing costs per sample are further reduced leading

to immense amounts of microbial community composition data

available for large scale comparisons.

High-throughput amplicon sequencing is, however,

inevitably noisy. Due to PCR artefacts and low-quality base

calls, a fraction of the amplicon reads will contain one or more

sequence errors (error-reads), which in turn could lead to false
taxonomic inferences. One strategy to reduce the number of false

taxonomic inferences due to these error-reads, is to cluster

amplicon reads by sequence identity in operational taxonomic

units (a process called OTU-picking) at some user defined

identity thresholds. To build these OTUs, centroid or seed

sequence-based greedy clustering approaches are frequently
used (Stackebrandt and Goebel, 1994; Konstantinidis and

Tiedje, 2005; Godzik and Li, 2006; Edgar, 2010). Centroid

based OTU-picking approaches however, have a number of

disadvantages as they require a predefined identity threshold,

while the representative centroid sequence is influenced by

selection of the seed, sequence input order and the amount of

amplicon sequences and PCR error present in the sample, all of
which make OTU-picking by clustering sample dependent and

therefore, in principle, not suitable for comparisons between

different sets of samples (Callahan et al., 2016). Recent studies

have shown that a de novo clustering approach using exact

matches would yield better results (Ramiro-Garcia et al., 2016;

Callahan et al., 2017). These exact match sequence clusters have
been termed Amplicon Sequence Variants (ASVs), sub-OTUs or

zero-radius OTUs (Tikhonov et al., 2015; Callahan et al., 2016;

Edgar, 2018). The rationale is that an ASV is not a representative

sequence from a cluster of similar sequences, but is directly

derived from a biological entity. An ASV can be separated from

error-reads on the basis of the expectation that due to the
biological origin, a real sequence variant is located at a fixed

position in the amplicon sequence and therefore more likely to

be repeatedly observed in those samples where the particular

biological variant is present. Error-reads are assumed to be

present at a relatively low abundance, and because sequence

errors are also positionally dispersed (Schirmer et al., 2016) they

are unable to form meaningful exact match ASV clusters. In NG-
Tax, an exact match OTU-picking algorithm is used to find ASV

forward and reverse sequence read pairs. Likely erroneous ASVs

are rejected if their read count does not exceed an experimentally

defined dynamic threshold that takes the evenness of the

distribution into account (Ramiro-Garcia et al., 2016). In the

past the accuracy of NG-Tax has been benchmarked against
QIIME (Caporaso et al., 2010), using synthetic mock

communities and has been shown to outperform it (Ramiro-

Garcia et al., 2016).

Unlike centroid based OTUs which work with representative

sequences, ASV sequences are believed to directly descend from

an existing biological entity, and the presence of this entity can

therefore be validly compared across many samples (Callahan
et al., 2017). Such large-scale analyses would require tracking of

multiple ASVs over multiple samples and thus a high degree of

interoperability. Proper data handling can be achieved through

the application of the FAIR data principles which are intended to

make the information Findable, Accessible, Interoperable and

Reusable (Wilkinson et al., 2016). We adopted these principles in
NG-Tax 2.0 through implementation of a semantic framework

using a Linked Data format (RDF) for data serialization and

handling, combined with a strictly applied ontology. In NG-Tax

2.0 ASV amplicon sequences are automatically converted into a

semantic data model, ASV objects, that link ASV sequences with

the full data-wise and element-wise provenance thereby
achieving the level of interoperability required to utilize such

data to its full potential.

NG-Tax 2.0 is a complete redesign and rewrite of the NG-Tax

amplicon analysis pipeline. In NG-Tax 2.0 many of the

limitations of NG-Tax have been addressed and as a result

NG-Tax 2.0 has evolved into a highly automated framework

for high-throughput classification and comparative analysis of
marker gene amplicon sequences.

Using ten mock communities publicly available from the

Mockrobiota database (Bokulich et al., 2016) and data from

four staggered mocks described by (Tourlousse et al., 2017) the

precision and recall of NG-Tax 2.0 was evaluated against

DADA2 (Callahan et al., 2016) using the plugin in the QIIME
2 pipeline. The known relative abundance of each ASV in these

mock communities enabled a precise evaluation of the tools

on how they perform in predicting the number of species,

their relative abundance and their taxonomic classification.

The integrative power of using a semantic framework is

demonstrated by performing a meta-analysis across the mock

samples and multiple reference databases.

MATERIALS AND METHODS

NG-Tax 2.0
NG-Tax 2.0 is written in Java with Gradle as build system. A

Galaxy web implementation (Afgan et al., 2016) is also available.

A k-bounded Levenshstein distance function (Hawkins et al.,

2018) was implemented in Java to measure the edit distances

between amplicon sequences in OTU-picking and between ASV

sequences and reference database sequences for taxonomic
annotation of ASV objects. The distance function was slightly

modified to account for phantom out of word frame insertion

and deletions.

NG-Tax 2.0 Semantic Framework
An NG-Tax 2.0 specific expansion of the GBOL ontology (van
Dam et al., 2019) was developed in Protégé (Musen and Team,
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2015). Empusa (van Dam et al., 2019) was used to convert the

ontology to a Java API. As a result, picked ASVs, taxonomic

inferences and linked metadata can be automatically stored in a

graph database and can be directly retrieved and compared

through a list of (routine) SPARQL queries. A list of routine

SPARQL queries is provided (Data Sheet 1), the output of which
directly interacts with the NG-Tax 2.0 data analysis and

visualization toolbox that is based on Rshiny (Chang et al.,

2017). RDF (turtle) files were imported into a local GraphDB

(http://graphdb.ontotext.com/) repository and queried using the

SPARQL query language.

Mock Communities
Mock communities were retrieved from the Mockrobiota project

(Bokulich et al., 2016). Ten demultiplexed 16S-rRNA gene mock

communities were obtained (Table 1).

Bioinformatic Analysis
General
The mock communities were analysed using: NG-Tax 2.0 and
QIIME2 using the DADA2 plugin (Hall and Beiko, 2018, p. 2).

Apart from the variation in amplicon read length, all settings

remained as the default. The SILVA reference database was used

for the taxonomic classification (Yilmaz et al., 2014). For

comparison purposes, three incremental stable versions of the

database were downloaded from https://www.arb-silva.de/
download/archive/being: 123, 128 and 132 (latest) .

Additionally, a custom 16S rRNA gene database was created de

novo using sequences from (Hug et al., 2016; Data Sheet 2) as

input. For comparison the description line of the sequences was

converted to contain the taxonomic lineage in the SILVA format.

The chimera detection process has been described by Ramiro-

Garcia et al., 2016. Briefly, chimeras are detected using the

following condition: if the forward and reverse read of the

ASV are identical to two different ASVs in the same sample

and the abundance of the matched ASVs are at least twice of the

abundance, then the ASV is marked as chimeric.

Lookup Table
For taxonomic annotation of ASV objects, NG-Tax 2.0 creates a

lookup table from reference sequences. There are two options.

When a multiple alignment file, such as the 50,000 columns

long SILVA alignment is provided, NG-Tax 2.0 assumes that the

sequence of the primer region is conserved in the alignment.

Using a regular expression which takes care of IUPAC wildcard
characters, NG-Tax 2.0 finds in each aligned sequence, primer

start and stop positions, starting with the first aligned sequence

and keeps on doing this until a consensus start and stop column

position is obtained (defined as: the start and the stop position of

the primer are found to occur in the same columns/positions a

1,000 times). It then assumes that the region of interest is in the

columns between the primer columns, extracts this region,
removes alignment gaps, trims the sequences to the chosen

forward and reverse read length and subsequently transforms

the sequences into a four-column lookup table. An example is

shown in Table 2.

For special cases such when strain specific markers have been

developed, or for studying a new species or a designed
community in a closed system, NG-Tax 2.0 can also build a

custom lookup table from unaligned reference sequences. For

this NG-Tax 2.0 uses a regular expression representing the

(degenerate) primers used in amplification to find the region of

interest, taking into account a single mismatch with the

exception of the most 3-prime nucleotide of the primer which

must either have a perfect match or a G/T mismatch for
amplification to occur. The sequence region in between the

primers is subsequently used to build the lookup table as

described above. To illustrate this approach a custom 16S

rRNA gene database was created de novo using sequences from

(Hug et al., 2016, Data Sheet 2) as input.

NG-Tax 2.0 Configuration
To use the NG-Tax 2.0 command line interface, users need to

provide the paired-end amplicon reads in comma separated

format (-fS), the mapping file (-mapFile), a reference database

such as the SILVA database (-refdb) for creation of the look-up

TABLE 1 | Mock communities used for NG-Tax 2.0 benchmarking.

Mockrobiota

#

Composition Read

length

Reference

Mock13 21 bacterial strains, evenly

distributed

250/250 Kozich et al.,

2013

Mock14 21 bacterial strains, evenly

distributed

250/250

Mock15 21 bacterial strains, evenly

distributed

250/250

Mock16 49 bacterial strains, 10

archaea, evenly distributed

250/250 Schirmer et al.,

2015

Mock18 15 bacterial strains, evenly

distributed

250/250 Tourlousse et al.,

2017

Mock19 15 bacterial strains, 12

synthetic spike-in standards,

evenly distributed

250/250

Mock20 20 bacterial strains, evenly

distributed

301/301 Gohl et al., 2016

Mock21 20 bacterial strains, staggered 301/301

Mock22 20 bacterial strains, evenly

distributed

301/301

Mock23 20 bacterial strains, staggered 301/301

SRX1868061-

SRX1868064

15 bacterial strains, 12

synthetic spike-in standards,

staggered

250/250 Tourlousse et al.,

2017

*All mocks utilized the V4 region.

TABLE 2 | Example of the look-up table.

AGGAT… CGACA… Bacteria;Bacteroidetes;Flavobacteriia;

Flavobacteriales;Flavobacteriaceae;

Chryseobacterium

148

AGGAT… CGACA… Bacteria;Proteobacteria;Alphaproteobacteria;

Rickettsiales;Anaplasmataceae;Wolbachia

276

GGGAT… CGACA… Bacteria;Cyanobacteria;Chloroplast;

Corchorus_capsularis;_;_

3

GGGAT… CGACA… Bacteria;Cyanobacteria;Chloroplast;

Isatis_tinctoria;_;_

4

GGGAT… CGACA… Bacteria;Cyanobacteria;Chloroplast;

Aethionema_carneum;_;_

1
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table, the selected forward and the reverse primer used for

selection of the amplified region in the reference file (-for_p

and -rev_p), the name for the output RDF file (-t), and the name

for the output BIOM file (-b), and they need to specify whether

the primers were already removed from the sequences or not

(-primerRemoved). Various amplicon read lengths were used in
the analysis: 70, 100, 140, 200 and 240 nt. Other settings were

kept as the default as the following: -minPerT 0.1, -identLvl 100,

-errorCorr 1 and -classifyRatio 0.8. as described in (Ramiro-

Garcia et al., 2016). A full list of options can be found at http://

wurssb.gitlab.io/ngtax/commandLine.html. Parameters are

stored in the output file in “args” section of the extended
BIOM and RDF file.

QIIME2-DADA2 Configuration
For QIIME2, the latest SILVA database for QIIME2 (version

132) was downloaded from the official QIIME2 website at

https://docs.qiime2.org/2018.11/. SILVA database version 128

was downloadable through the forum page (https://forum.

qiime2.org/t/silva-128-classifiers-available-for-download/3558).
Silva database version 123 needed to be created manually

through q2-feature-classifier tutorial https://docs.qiime2.org/

2018.6/tutorials/feature-classifier/).

To analyse the data with this pipeline, we imported reads into

QIIME2 as an artefact using the Casava 1.8 paired-end

demultiplexed Fastq format. DADA2 (Callahan et al., 2016)
was selected as the method for quality control using the

following parameters: –p-trim-left-f 19 and –p-trim-left-r 20 as

the length of the primer combined with various read lengths, 140,

150, 180, 200, 220 and 240, for both –p-trunc-len-f and –p-

trunc-len-r. The trimming option (–p-trim-left-f and –p-trim-

left-r) was used only for mock 16, 18, 19, 22 and 23. This results

in a feature table, representative sequences and a statistical
outcome captured during this denoising step. Next, classify-

sklearn was used to classify the taxonomic lineage of the

representative sequences based on the given database. Then,

the classified sequences were collapsed with the feature table

in order to produce an OTU table at a certain taxonomic

lineage resolution based on the user input, such as 6 for
genus level. Finally, the OTU table is exported into a

Hierarchical Data Format (HDF5) file format which can be

converted in to a tab separated values (tsv) or a JavaScript

object notation (json) file format using the BIOM package

(http://biom-format.org/documentation/biom_conversion.

html#general-usage-examples).

Statistics
Binary Classifier
Comparison between the expected and the predicted results

using the confusion matrix.

recall =
TP

TP + FN

precision =
TP

TP + FP

F − score = 2�
precision� recall

precision + recall

where TP is the number of true positives, FN is the number of

false negatives and FP is the number of false positives. A TP was

defined as an exact match at genus level.

Modified Rv Coefficient
Comparison between two weighted adjacency matrices, which

in this case is the microbial composition and their relative

abundance. The results can be interpreted as Pearson’s

correlations.

RV2 X,Yð Þ =
Vec gXX0

� �0
Vec gYY 0

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vec gXX0

� �0
Vec gXX0

� �
� Vec gYY 0

� �0
Vec gYY 0

� �r

Given matrix gXX0 = ½XX0
− diag(XX0)�, where diag(XX′) is a

matrix containing only the diagonal elements of XX′ on its

diagonal, and zero’s elsewhere. The same definition also

applied to YY′.

RESULTS

NG-Tax 2.0 is fully written in Java and can be executed from the

command line, while a Galaxy toolbox implementation (Afgan

et al., 2016) is also available. Using multiplexed amplicon

sequences as input, NG-Tax 2.0 executes four major tasks:

demultiplexing and amplicon read cleaning, generation of ASV

objects (a process generally referred to as OTU-picking),

denoising and taxonomic assignment. Processed samples,
derived ASV sequences, taxonomic inferences and data

provenance are automatically linked and serialized in an RDF-

triple store format and can be exported as an extended Biom 1.0

file for compatibility reasons (Figure 1).

Development of the Semantic Framework
NG-Tax 2.0 uses the RDF data model to capture and store
analysis results and associated data provenance as ASV objects.

To ensure consistency and to have a high degree of

interoperability and reusability a strictly defined ontology was

created, focusing on its function as file format and as database

schema. The modular design ensures that the ontology can be

extended and currently consists of eight main classes (Table 3).

To increase human readability, ontology class names
represent the underlying concept as closely as possible. Classes

start with uppercase whereas properties start with lowercase.

Library is the root of the ontology. Each Library contains

samples according to the input mapping file and it also refers

back to the metadata and the command arguments. Each

sample contains ASV objects composed of the forward and
reverse sequence of the particular ASV, the number of

amplicon reads in the sample that have this particular forward

and reverse sequence and their taxonomic annotation. The
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ASVAssignment class is a class where all the possible taxonomic

hits of the ASV objects are stored (Figure 2). The NG-Tax 2.0

ontology is integrated in the Genome Biology Ontology

Language available at http://gbol.life (van Dam et al., 2019).

ASV-Picking, Artefact Filtering and
Correction for the Impact of Error-Reads
on the Relative Abundance Estimates
NG-Tax 2.0 can handle both single and paired-end reads. In NG-

Tax 2.0 paired-end reads are filtered for matching primers and

barcodes but not merged and reads are subsequently processed in
parallel. As the forward and reverse read may significantly differ in

quality and reverse reads may require additional trimming, in NG-

Tax 2.0 the forward and reverse reads are not necessarily of the

same length and therefore two parameters are used (-for_read_len

and -rev_read_len) to define read lengths used for ASV formation.

If the -rev_read_len parameter is not set, single reads or merged
forward and reverse reads can be used in the analysis.

NG-Tax 2.0 error-handling is built on the assumption that

erroneous reads are more likely to be less abundant than true

biological variation. In addition, it is assumed that erroneous

sequences (reads with random sequencing errors and (amplified)

reads systematic sequence errors) have a high degree of sequence

similarity with true reads amplified from the same template

sequence in the sample. To deal with such erroneous sequences

NG-Tax 2.0 does not start from individual reads or read-pairs

but first builds a collection of initial ASV objects from the pool of
available reads. In NG-Tax 2.0 by default three (default, user

defined) or more identical forward and reverse sequences will

form an ASV object and the thus clustered forward and reverse

sequences of this object are subsequently used as a reference

sequences in the two-step error handling.

NG-Tax 2.0 first assumes that the remaining (singleton) read-
pairs are unable to join an already existing ASV object because of

a random sequencing error. NG-Tax 2.0 uses a k-bounded

Levenshtein function and a cumulative edit distance of one

nucleotide (mismatch or indel) to find a match between ASV

objects and singleton read pairs. If a singleton ASV read pair

shows a single mismatch (mutation or indel) with an ASV

reference in either the forward or the reverse read, it is
assumed this is due to a random sequence error and the

singleton is joined with the particular object thereby increasing

the read count of the object but not changing the original

sequences linked to the object. Singletons showing more than

one mismatch are considered as sample specific noise

and discarded.
Secondly, due to PCR and sequence-specific errors (Shin and

Park, 2016), specific amplicons may also accumulate above-

average sequencing errors resulting in the formation of an

erroneous ASV object. Here the assumption is that an

erroneous ASV object will show a high degree of sequence

similarity with an also existing true ASV object. To find

erroneous ASV objects, NG-Tax 2.0 ranks ASV-objects by read
counts and uses the k-bounded Levenshtein function to merge

ASV objects with read-count below a set threshold, with ASV

TABLE 3 | Description of the NG-Tax 2.0 ontology main classes.

Main ontology class Description

Library* Description of samples in a library

Sample Description of PCRPrimers, BarcodeSet and ASVSet

Sequence ASVSequence: ASV forward and reverse sequences

SequenceSet* ASVSet, RejectedAsChimera, RejectedASV

BarcodeSet, PCRPrimerSet

Taxon Taxon name and rank annotation of an ASVSet

ASVAssignment Taxon information and related provenance

Provenance Interlinks ProvenanceClassification, containing tool

specific information with the input Library

ProvenanceClassification* Contains confidence score of taxonomic assignment

and user input command argument in the analysis

*NG-Tax 2.0 specific extensions of the gbol ontology.

FIGURE 1 | NG-Tax 2.0 workflow. The workflow consists of four main steps: (A) barcode and primer filtering, (B) de novo OTU-picking of ASV sequences, artefact

filtering, correction for the impact of error reads on ASV relative abundance estimates and taxonomic inference; (C) ASV object serialization and storage. ASV

sequences, taxonomic inferences and data provenance including library and sample names and used settings are exported and stored as ASV objects in an RDF

triple store graph database and optionally exported in the Biom 1.0 file format. (D) Downstream analysis tool box. ASV data and meta-data can be directly queried

and analysed through the SPARQL endpoint. The Rshiny toolbox directly provides standard statistics and visualizations using predefined SPARQL queries.
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objects with read counts better than the set threshold starting

with the ASV object with the highest read count. If a selected

ASV object below the threshold has a single mismatch (mutation

or indel) with a high read-count ASV object the two ASV objects

are merged. The sequences of the high read-count object are kept

because they are believed to be true and the read-counts of both

objects are summed. For this merging process a user defined
relative abundance threshold is used and by default this is set to

0.1% of the total number of read-pairs associated with ASVs. If

NG-Tax 2.0 cannot merge an ASV object with a read count

below the set threshold, it will be labelled as ‘provisionally

rejected” but the ASV object remains in the output file for

further analysis as it could be a true variation, and therefore
the first 100 (default, user defined) most abundant provisionally

rejected ASVs also obtain a taxonomic assignment. However,

most of these flagged ASVs are likely to be sample specific noise

(Faith et al., 2013). To show that provisionally rejected ASVs are

likely noise we followed their fate in a closed biological system.

Samples were obtained from a dietary intervention in an in vitro
system that simulates the dynamics conditions in the human

colon (Data Sheet 3). To show reproducibility, several replicates

were taken. Because we do not delete but only label as such,

sample specific provisionally rejected ASVs we can track their

presence over multiple replicates and samples using SPARQL

queries. The sequences of almost all provisionally rejected ASVs

were only present in a single sample. The percentage of flagged as
rejected ASVs that were present in at least two individual

samples, ranged from 2.7 to 5.4%, which indeed suggests that

the vast majority of the flagged ASVs is likely sample

specific noise.

Taxonomic Assignment of ASV Objects
NG-Tax 2.0 uses reference fasta or alignment files obtained from

repositories such as the ARB-SILVA database (Quast et al., 2012)

for taxonomic assignments. To reduce the computational load,
reference sequences are trimmed such that they include only the

region matching the reads. The length of the regions of interest

are defined by the length of the reads in the ASV object while the

location of the amplicon primer sequences in the reference

sequences are used to mark the 5'- and 3'-end of the region of

interest. Subsequently, the thus reduced reference file is

converted into a look-up table by clustering and counting
entries that are identical in sequence and in taxonomic

annotation. This look-up table is automatically re-used when

different sets of samples with the same parameters are processed.

Using the k-bounded Levenshtein function with an upper-bound

of 50, the edit distance between each ASV read pair and entries in

the reference file is measured. For each edit distance with a
maximum sequence mismatch between the reference sequence

and the amplicon sequence of 15%, a list of sequence entries,

including frequency of occurrence in the reference database file

and taxonomic annotation is generated and stored as an integral

part of the particular ASV object. This list is also included in the

exported extended Biom file. Following a set of rules outlined

below, the classifier subsequently proposes from this list of
candidates the most likely taxonomic assignment by taking

into account the number of mismatches. Depending on the

level of sequence identity with the reference set, by default the

lowest possible taxonomic ranks proposed by NG-Tax 2.0 will be

used, out of species, genus, family and order. Species will only be

assigned when a perfect match is obtained with a single species.

FIGURE 2 | Graphical view of the NG-Tax 2.0 data management model. Nodes are defined in the GBOL ontology. Sample and ASVset are main hubs and

represent sample input and NG-Tax 2.0 processed data. Each ASVset represents a specific ASV object, consisting of a collection of (inter)linked descriptions of

entities representing data, knowledge and associated meta data of the specific ASV. Each ASVset is directly linked to the Sample node which is used as a hub for

the experimental dependencies. Each Sample is part of a Library containing information of an individual sequence and analysis run. The visualization was done in

GraphDB (http://graphdb.ontotext.com/) using the visual graph interface.
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Between 100-95% sequence identity the lowest proposed

taxonomic assignment is genus, between 95-92% the level is

family and below 92%, the level is order. These values are stored

as attributes of the CommandArgs class. Note that while these

rules provide a tentative taxonomic assignment based on best

practices, for each ASV the full list of reference database
sequences remains available and can be retrieved and

compared by querying the graph database at any time through

a SPARQL endpoint.

Analysis of NG-Tax 2.0 Precision
and Recall Using Mock Communities
We measured NG-Tax 2.0 precision and recall using ten

staggered and evenly distributed MiSeq 16S rRNA gene mock

communities (Table 1) obtained from the Mockrobiota public

repository. Then communities were analysed in parallel with the

DADA2 implementation in the QIIME2 pipeline (from here on
referred to as DADA2). NG-tax 2.0 and DADA2 taxonomic

predictions were compared using different read lengths and three

consecutive stable versions of the ARB-SILVA reference

database. The reference composition of the selected mock

communities is based on SILVA version 123 using a similarity

threshold of 97% and 99% respectively. Figure 3 displays a

typical example showing a compositional analysis of mock21

using either NG-Tax 2.0 or DADA2. For each tool, the optimal
read length was used.

The metrics used to compare and evaluate the performances

of both pipelines were recall, precision and F-score. F-score is a

single metric that combines both recall and precision and is used

here to select an optimal read length for the analysis. When

considering F-scores from both pipelines for different mock
communities at different read lengths, NG-Tax 2.0 had a

higher range of 0.65 to 0.97, compared to DADA2’s 0.42 to

0.76, across all mock communities (Figure 4). Moreover, NG-

Tax 2.0 revealed an optimal read length at 140 nucleotides with

F-scores ranging from 0.73 to 0.97 across all the communities. In

contrast, DADA2’s optimal read length varied between mock
communities, which suggests that the performance of this tool in

FIGURE 3 | Microbial composition of Mockrobiota mock community 21. Mock21 is a staggered mixture of 20 bacterial strains. Left mock21 NG-Tax 2.0 and

DADA2 predictions using the ARB-Silva reference database 123 for taxonomic annotation. In this comparison, for each tool the optimal read length was used: 140nt

for NG-Tax 2.0 and 220nt for DADA2. (A) NG-Tax 2.0. (B) DADA2. (C) Reference composition. Identical results were obtained with the reference database with 97%

and 99% similarity thresholds. In bold, mock21 reference taxons correctly identified with NG-Tax 2.0 and DADA2. *Mock21 reference taxons not detected by either

tool, **Mock21 reference taxons detected by NG-Tax 2.0 but not DADA2. Underlined, mock 21 reference taxons detected by DADA2 but not NG-Tax 2.0. ***No

prediction at genus level, however correctly assigned the taxonomic lineage. Right Venn diagram summarizing the taxonomic annotation results.
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this respect may depend on the sample composition. We

therefore selected a fixed read length per tool for further

analysis: 140nt for NG-Tax 2.0 and 220nt for DADA2 as they

provide the highest mean of the F-score calculated from all the

communities at that length, which results in 0.89 and
0.64 respectively.

The two factors that contribute to the F-score are recall and

precision. Both can be used to assess the quality of the pipeline

and are equally important. In general, the level of recall of

DADA2 and NG-Tax 2.0 were comparable with an average of

0.77 and 0.85, respectively. However, the precision of NG-Tax
2.0 was noticeably higher than that of DADA2 with an average of

0.95 vs 0.58 (Figure 5). The results show that both tools are

equally good at inferring the expected microbial composition

from the sample. However, DADA2 tended to predict taxonomic

assignment of a higher rank, which led to a lower precision and

F-score. Similar results using two staggered mocks from
Tourlousse et al., 2017 with two replicates each can be found

in Data Sheet 3.

Modified Rv Coefficient
An alternative metric used to determine the efficiency of both

pipelines is the modified RV coefficient. Unlike the previous

statistical measures, the modified RV coefficient takes into

account the relative abundance of the identified bacteria, which
is crucial for understanding a pipeline’s performance. Figure 5

shows that the modified RV coefficient from NG-Tax 2.0 on both

the number of taxonomic lineages and their corresponding

relative abundances are closer to the actual composition than

DADA2. The average for NG-Tax 2.0 is 0.74 whereas the average

coefficient for DADA2 is 0.28.

Tracking of Asvs Across Multiple Samples
ASVs have a single nucleotide resolution and are assumed to be
directly derived from an existing biological entity. As in NG-Tax,

ASV objects contain the forward and reverse sequence of the

specific ASV (Figure 2), we can design SPARQL queries to

explore the presence of specific ASVs across multiple mock

samples. As most of the selected mocks are not biologically

related, the majority of the ASVs will only be present in a single

sample. Mock13-15, however, are composed of genomic DNA
from the same 21 bacterial isolates and thus we expected a high

number of ASVs shared between these three samples. The

composition of mock13-15 includes three Streptococcus species

being Streptococcus agalactiae ATCC BAA-611, Streptococcus

mutans ATCC 700610, and Streptococcus pneumoniae ATCC

BAA-334, each of which has multiple, but not necessarily
identical copies of the 16S rRNA gene. For instance, the

Streptococcus agalactiae genome contains seven copies of the

16S rRNA gene. Nine distinctive mock13 ASV objects are

taxonomically annotated as Streptococcus and amplicon

sequences linked to five of those objects showed 100%

sequence identity with separate Streptococcus agalactiae 16S

rRNA genes. A SPARQL query showed that four of these
ASVs are present in all three mocks while one is not present in

mock14. Overall, of the 60 taxonomically annotated ASVs in

mock13, 56 variant sequences are present in all three mocks.

Similarly, when we include in the query the unrelated mock16

composed of genomic DNA from 57 bacterial isolates, the

expected taxon overlap is four; Bacteroides, Porphyromonas,
Deinococcus and Enterococcus. The SPARQL query showed

that five distinct ASVs are present in all four mocks. Two

ASV’s were annotated as Bacteroides, the other three as

FIGURE 4 | F-scores of NG-Tax 2.0 (A) and DADA2 (B) at different read length. Silva 123 was used as reference database. The x-axis indicates the trimmed read

length of the forward and reverse read. Note that mock16, mock 18 and mock 19 were not included in the comparison of the 240nt read length as after removal of

primer sequences these reads were too short.
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Porphyromonas, Deinococcus and Enterococcus. Figure 6

summarizes the result of a SPARQL query for the presence of

specific ASVs amplicon sequence variants across all mocks.

Impact of Incremental Databases
The taxonomic annotation of a 16S rRNA gene amplicon

depends on many variables, including the version of the

reference database used. Because new phylogenetic groups are

constantly being discovered (Hug et al., 2016), obtaining a

correct bacterial phylogeny will remain a moving target for
some time. Hence, keeping track of how the amplicon data was

analysed, the data provenance, is critical. The observation that

even a single reference database, clustered at two different

similarity thresholds can lead to different results led us to

investigate the impact of incremental versions of the SILVA

database. For this, we used SPARQL queries to analyse the

taxonomic annotation of the ten selected mock communities

using three incremental stable versions of the SILVA database,

namely releases 123, 128 and 132. NG-Tax 2.0 has the ability to

create a custom taxonomic reference file de novo using a set of
unaligned reference sequences as input. This allows for instance

to add a new species to an existing taxonomic reference file. To

demonstrate this feature we built a custom reference file using

16S rRNA gene sequences obtained from Hug et al., 2016. The

SILVA result showed that in the latest version of the SILVA

database some taxa have been reclassified. For instance, in
mock18 the phylum and class of Treponema_2 have been

reclassified from Spirochaetae and Spirochaetes to Spirochaetes

and Spirochaetia. The class and order of Nitrosomonas were also

reclassified from Betaproteobacteria and Nitrosomonadales to

Gammaproteobacteria and Betaproteobacteriales . Not

unexpected the biggest “change” was when we compared

taxonomic reference files from different origins. Results are
summarized in Table S1.

FIGURE 5 | Recall, precision and modified RV coefficient of NG-Tax 2.0 and DADA2. NG-Tax 2.0 is labelled in red and DADA2 is labelled in blue. Upper panel left,

recall; right, precision. Lower panel modified RV coefficient. Silva 123 is used as reference database clustered at 97 (filled circles) and 99% (open circles). Note that in

many cases results overlap in which case only the results obtained with the 97% threshold is shown.
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DISCUSSION

NG-Tax 2.0 is an open software framework that uses semantic
technologies for data and knowledge management. It is

particularly designed for FAIR and high-throughput taxonomic

classification and downstream analysis of marker gene amplicon

sequences. By using the RDF data model, NG-Tax 2.0 is able to

engage a traceable de novo OTU picking and de-noising

algorithm, generating ASV objects that link ASV sequence data
with the full data-wise and element-wise provenance. The linked

data structure ensures a high degree of interoperability. Serialized

ASV objects can be automatically stored in a standard graph

database structure and directly queried for comparative analyses

of data and meta-data across thousands of samples.

For targeted amplicon sequencing, denoising, i.e. the separation

of biological variation from amplicon sequencing errors, is essential
to increase the reliability of downstream analyses. Clustering

sequences into OTUs has been routinely applied in the past to

reduce the impact of sequence errors and to speed up the analysis

process by picking a representative sequence (Nguyen et al., 2016).

However, many recent studies now use a 100% similarity threshold

or ASVs. ASVs are standardly generated with NG-Tax 2.0 and with
DADA2, one of the most commonly used pipelines today. As both

NG-Tax 2.0 and DADA2 have a single nucleotide resolution, the

number of ASVs and taxonomic annotation from NG-Tax 2.0 and

DADA2 should be the same, however, the specific criteria used to

remove erroneous-sequences creates the differences.

To test the performance of NG-Tax 2.0 we used ten 16S rRNA
gene mock communities, staggered and even, and compared the

results with those obtained with DADA2. We showed that while

the recall of the expected microbial composition for both pipelines

was comparable, there are substantial differences in the precision

and the prediction of relative abundances. We proposed the use of

a modified RV coefficient for evaluating the performance of a given

pipeline (Smilde et al., 2009). It measures the common information
of two matrixes which represent the relative abundance

distributions of the microbial composition. This increases the

efficiency in differentiating between two communities as

compared to the binary classifier. The advantage in using this

method is the ease of interpretation. The results are presented as a

single value, which is convenient for visualization, and it can be

interpreted in the same way as a correlation coefficient with the
value between -1 and 1, which is already familiar to biologists.

Discussions about how to analyse microbial community data is

an on-going process, and the golden standard for microbiome

analysis has not yet been settled (Knight et al., 2018; Pollock et al.,

2018). DADA2 generates a parametric error model based on the

dataset and uses it to remove or collapse the sequences. On the
other hand, NG-Tax 2.0 employs an empirically determined

relative abundance cut-off taking into account the evenness of

the read distribution over the ASVs to flag ASVs with an

associated low read count that are considered as artefacts. It

then attempts to merge those artefacts with ASVs with high

read counts, which are more likely to be true ASVs, using a

single mismatch as criterium. While both methods seem to be
effective in recalling the expected composition, precision of NG-

Tax 2.0 was much higher than that of DADA2 mainly because the

parametric model predicted more ASVs, an effect that will increase

along with the diversity of the community (Nearing et al., 2018).

NG-Tax 2.0’s novelty is in using the RDF data model to

transform amplicon data into ASV objects that link ASV
sequences data with the dataset-wise and element-wise

FIGURE 6 | Occurrence of accepted ASV forward and reverse sequences with a read length of 70 across multiple mock samples.
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provenance. This not only greatly enhances the reproducibility of

the analysis but also increases the degree of interoperability of the

data required for comparative analyses. For instance, in finding

rare species in a particular community, DADA2 may have the

advantage while at the same time risking that those organisms

are artefacts. In NG-Tax 2.0, rejected ASVs with relatively low
read abundances are flagged as artefacts but due to a high degree

of interoperability NG-Tax 2.0 enables a reanalysis of the data by

comparing them between multiple samples and by using

alternative parameter settings.

To conclude, NG-Tax 2.0 provides a simple to use, semantic

framework for high-throughput microbiota analysis. Due to use
of the RDF data model it allows to generate fully traceable ASV

objects that link ASV sequence data with the full data-wise and

element-wise provenance. This data model allows users to

systematically adjust the parameters for the reanalysis or infer

the biology behind these sequences using comparative analyses.

We compared the analysis results from the publicly available
mock communities against those obtained by DADA2. The

outcome shows that both pipelines are able to recall the microbial

composition from the reference. However, NG-Tax 2.0 shows a

higher precision score and the predicted relative abundances are

closer to the expected composition than those provided by DADA2.
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