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Abstract

Background: Advances in Illumina DNA sequencing technology have produced longer paired-end reads that

increasingly have sequence overlaps. These reads can be merged into a single read that spans the full length of the

original DNA fragment, allowing for error correction and accurate determination of read coverage. Extant merging

programs utilize simplistic or unverified models for the selection of bases and quality scores for the overlapping

region of merged reads.

Results: We first examined the baseline quality score - error rate relationship using sequence reads derived from

PhiX. In contrast to numerous published reports, we found that the quality scores produced by Illumina were not

substantially inflated above the theoretical values, once the reference genome was corrected for unreported

sequence variants. The PhiX reads were then used to create empirical models of sequencing errors in overlapping

regions of paired-end reads, and these models were incorporated into a novel merging program, NGmerge. We

demonstrate that NGmerge corrects errors and ambiguous bases better than other merging programs, and that it

assigns quality scores for merged bases that accurately reflect the error rates. Our results also show that, contrary to

published analyses, the sequencing errors of paired-end reads are not independent.

Conclusions: We provide a free and open-source program, NGmerge, that performs better than existing read

merging programs. NGmerge is available on GitHub (https://github.com/harvardinformatics/NGmerge) under the

MIT License; it is written in C and supported on Linux.

Keywords: High-throughput sequencing, Illumina paired-end sequencing, Read merging, sequencing errors; quality

scores; PhiX

Background
Among the high-throughput DNA sequencing tech-

nologies, the Solexa/Illumina platform [1] produces the

greatest quantity of sequence data in a single run [2].

One unique attribute of this technology is its ability to

generate sequence reads from both ends of a given

DNA molecule. This provides many opportunities for

biological interpretation; for example, one can infer the

full extent of a DNA molecule without sequencing its

entirety, by aligning the paired-end reads to a reference

sequence.

The output from an Illumina sequencing run is a set

of FASTQ files, which contain read sequences and corre-

sponding quality scores [3]. As first developed for Sanger

sequencing, a quality score is determined from the prob-

ability that a given sequenced base is wrong, via the

following equation [4]:

Qbase ¼ -10� log10ðPðbase wrongÞÞ ð1Þ

Thus, a base with a quality score of 40 should have a 1

in 10,000 chance of being wrong. In sequence variant

detection, many programs will consider only bases that

achieve a minimum quality score, in order to reduce

false positives [5], and in clinical variant detection, such

as cancer diagnostics, published guidelines frequently

incorporate such standards [6, 7]. However, numerous
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studies have shown that the raw quality scores produced

by Illumina machines are inflated; that is, sequenced

bases with a given quality score have higher error rates

than expected from Eq. (1), especially at the high end of

the scale [8–11].

Advances in Illumina sequencing technology have

given rise to reads of increasing length, such that the

paired-end reads for a particular library may have sub-

stantial sequence overlaps. Since these overlapping re-

gions do not represent independent sequence data, it is

possible to merge the reads into a single read spanning

the full length of the original DNA fragment. This mer-

ging process allows for error correction and accurate

determination of read coverage, and it has become in-

creasingly appreciated in applications ranging from

targeted variant resequencing [12] to metabarcoding

(e.g., 16S/18S rRNA studies) [13].

An early merging program was fastq-join [14], which was

the default option in the microbial ecology analysis package

QIIME [15]. The latest version of that package, QIIME 2,

uses the open-source VSEARCH [16]. A third merging pro-

gram is PEAR [17], which has the significant advantage over

the other two programs (and other programs such as

FLASH [18] and CASPER [19]) of considering “dovetailed”

alignments, in which one read’s 3′ end extends past its

pair’s 5′ end (see Fig. 1b). The sequencing of DNA frag-

ments that are shorter than the read lengths will result in

reads that contain portions of sequencing adapters on their

3′ ends; such read pairs will not be merged by programs

that fail to consider dovetailed alignments [17].

Another important difference among read merging

programs is the method for assigning quality scores to

the merged bases. Fastq-join and FLASH use a simplistic

scheme in which, if the bases of the two reads match,

the higher quality score is used for the merged base.

Where the bases disagree, the base with the higher qual-

ity score is selected, and the difference in quality scores

becomes the merged base’s score. PEAR was designed

with the reasoning that, if the bases of the original R1

and R2 reads agree, then the quality score of the merged

base should reflect the probability that both original

bases were wrong:

Qmerged base ¼ ‐10� log10 P R1 base wrong AND R2 base wrongð Þð Þ

ð2Þ

Qmerged base ¼ -10 � log10ðPðR1 base wrongÞ � PðR2 base wrongÞÞ

ð3Þ

Qmerged base ¼ ‐10� log10 P R1 base wrongð Þð Þ

þ ‐10� log10 P R2 base wrongð Þð Þ

ð4Þ

Qmerged base ¼ QR1 þQR2 ð5Þ

Thus, PEAR sums quality scores for matching bases.

VSEARCH utilizes a more sophisticated model developed

by Edgar and Flyvbjerg [20], but the resulting scheme for

matching bases is nearly identical to that of PEAR (see

Additional file 1: Figure S1). For example, a merged base

created from matching bases with quality scores of 40

would be assigned a quality score of 40 by fastq-join, 80

by PEAR, and 85 by VSEARCH (ignoring the artificial

caps on quality scores placed by the programs).

None of these quality score profiles has been tested

empirically, despite possible shortcomings. For example, the

profiles of PEAR and VSEARCH are based on Eq. (1), which,

as noted above, has been demonstrated to be inaccurate

with Illumina sequencing. Furthermore, both PEAR

and VSEARCH were designed under the assumption

Fig. 1 Analysis modes of NGmerge. The diagrams show the paired-end reads (R1, R2) derived from sequencing DNA fragments (white boxes)

with sequencing adapters (gray boxes) on either end. a In the default mode (“stitch”), NGmerge combines paired-end reads that overlap into a

single read that spans the full length of the original DNA fragment. b The alternative “adapter-removal” mode returns the original reads as pairs,

removing the 3′ overhangs of those reads whose optimal alignment has this characteristic
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that sequencing errors in the two reads are independ-

ent; that is, in the analysis above, Eq. (3) follows from

Eq. (2) only if the two events (“R1 base wrong” and “R2

base wrong”) are independent. This assumption has, to

our knowledge, never been verified.

In this manuscript, we first evaluate the baseline quality

score - error rate relationship produced by Illumina ma-

chines using reads derived from the enterobacteria phage

ΦX174 (“PhiX”). This virus’ genome was the first DNA

genome to be sequenced [21], and a library composed of

fragments of PhiX DNA is routinely added to Illumina

sequencing runs as a control. In addition to the wide ac-

cessibility of PhiX reads, the sizes of the fragments in this

library are such that most PhiX-derived read pairs pro-

duced by longer Illumina runs will have sufficient overlaps

that can be used to create quality score profiles for merged

bases (Additional file 1: Figure S2). We have done this and

incorporated these profiles into a novel merging program,

NGmerge (Fig. 1). We demonstrate that NGmerge cor-

rects errors and ambiguous bases (Ns) better than other

merging programs, and produces merged reads whose

quality scores accurately reflect the bases’ error rates.

Results

Baseline error rates

We began with nine Illumina sequencing runs that

yielded 2 × 250 bp paired-end reads, produced at Harvard

University. After identifying reads that originated from

PhiX, we calculated error rates for each quality score.

Consistent with previous studies [8–11], the error rates

were higher than expected based on Eq. (1) above; bases

with quality score 40 had error rates an order of magni-

tude above the predicted 1 × 10− 4.

However, a closer look at the alignments revealed vari-

ants from the canonical PhiX reference genome. In all

of the sequencing runs, the same five sequence variants

were identified at a minimum 95% allele frequency, with

most at greater than 99% (Table 1). No other variants

were identified.

We modified the reference genome to incorporate the

five observed variants. Once this was done, the error

spectrum more closely matched the expected relation-

ship (Fig. 2). For example, bases with a quality score of

40 had error rates whose average corresponded to a true

value of 38.6. The major deviation was at the low end of

the scale, where bases with quality scores of two had

considerably lower error rates than expected (Fig. 2).

Creating quality score profiles

Again using the Harvard datasets, we computed error

rates in regions where the paired reads overlapped each

other, for each possible combination of the two reads’

quality scores. We then converted these rates back into

quality scores, using the baseline error rate already cal-

culated (Fig. 2). In cases where the bases of the two

reads agreed (Fig. 3a), which amounted to 96.7% of all

overlapping bases, no combinations yielded scores below

25, even where both reads had low-quality bases. How-

ever, two high-quality matching bases did not produce

substantially increased quality scores, with no combined

scores rising above 40. This contrasts with the scoring

schemes of VSEARCH and PEAR, which assign scores of

up to 85 and 80, respectively (Additional file 1: Figure S1).

On the other hand, where the two reads’ bases dis-

agreed (Fig. 3b), the combined quality scores were low-

est when the two original quality scores were similar to

each other, and rose above 30 only when the two quality

scores were at opposite ends of the scale. This is similar

to the schemes of fastq-join and VSEARCH, whereas

PEAR does not reduce quality scores for mismatches

(Additional file 1: Figure S1).

Table 1 Variants in the PhiX genome

Position (1-based) NCBI base iGenomes base Observed base

587 G A A

833 G A A

2731 A G G

2793 C T C

2811 C T T

3133 C C T

Four of the five observed variants are in the version of the PhiX genome

provided by Illumina on its iGenomes website (https://support.illumina.com/

sequencing/sequencing_software/igenome.html; retrieved Nov. 2017), and it

lists an additional variant at position 2793 that was not observed in any

sequencing run. Nevertheless, the iGenomes version is considered current by

Illumina (personal communication, Nov. 2017)

Fig. 2 Error rate - quality score relationship. The quality scores of the

original paired-end reads in the Harvard datasets followed a nearly

linear relationship with the log of the error rates, consistent

with expectations
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These two quality score models were incorporated into

our merging program, NGmerge, to be utilized in the

creation of merged reads.

Comparing merging programs

To compare the performance of NGmerge against other

merging programs, we opted not to use the same Harvard

datasets, since they had trained NGmerge’s models. In-

stead, we queried the Sequence Read Archive (SRA) for

datasets that had sufficient read lengths and PhiX content

to be usable for calculating error rates. We found 33 such

datasets, containing a total of 1386 sequencing runs (see

Methods and Additional file 2: Table S1 for details).

First, we determined that each of the SRA datasets had

the same five PhiX genomic sequence variants previously

identified (Table 1). In addition, the baseline error rates of

the datasets’ reads followed a similar trend to those of the

training datasets. We then processed the datasets through

each of the merging programs (since neither fastq-join

nor VSEARCH consider dovetailed alignments, the data-

sets were preprocessed by NGmerge in adapter-removal

mode (Fig. 1b) prior to analysis with those programs).

All of the programs reduced the total error rates in the

overlapping regions of the reads of the SRA datasets

(Fig. 4a, Additional file 1: Table S2), with NGmerge pro-

ducing the lowest rate, slightly better than fastq-join.

Fig. 3 Quality score profiles of NGmerge. a A plot of the quality scores corresponding to the error rates calculated for each combination of the

two reads’ quality scores, for cases where the bases matched. b Same as A, but for cases where the bases of the paired reads did not match

Fig. 4 Errors and Ns corrected by the merging programs. a Error rates in the paired reads’ overlap regions, before and after the application of the

merging programs. Note that the “Before” error rates vary because different merging programs analyze slightly different sets of reads (see

Additional file 2: Table S1). b Total number of Ns corrected by each of the merging programs

Gaspar BMC Bioinformatics          (2018) 19:536 Page 4 of 9



The error rate after PEAR was more than twice those of

the others, due to PEAR’s more aggressive merging algo-

rithm causing a higher starting value. Increasing the

fraction mismatch parameter of NGmerge (-p 0.2) led to

merging results similar to those of PEAR, though with a

lower final error rate (Fig. 4a, Additional file 1: Table S2).

However, we found that the program CASPER produced

an even lower error rate than NGmerge on a subset of the

datasets, due to CASPER’s reliance on k-mer based con-

texts to resolve mismatches.

In addition to errors, sequence reads sometimes con-

tain ambiguous bases (Ns), which can also complicate

downstream analyses. Though ambiguous bases com-

prised just ~ 0.03% of overlapping bases in the SRA data-

sets, NGmerge’s unique approach (counting them as

neither matches nor mismatches during alignment) led to

the correction of the most, twice the counts of fastq-join

and VSEARCH, and 25% more than PEAR (Fig. 4b).

We further examined the quality scores produced by

each merging program. In cases where the overlapping

reads’ bases matched (Fig. 5a), the error profile produced

by NGmerge closely tracked that of the original reads.

With the other three mergers, bases assigned quality

scores below 28 had lower error rates than expected.

However, both VSEARCH and PEAR greatly overstated

the quality scores at higher values. For example, at a qual-

ity score of 80, VSEARCH and PEAR produced bases

whose actual error rates were 1.8 × 10− 4 and 1.3 × 10− 4,

respectively, more than four orders of magnitude above

the theoretical value of 1 × 10− 8.

Where the original reads’ bases did not match (Fig. 5b),

NGmerge slightly underestimated the quality scores

throughout most of the score range. Fastq-join and

VSEARCH followed similar paths, going above the

baseline profile only at the ends of the quality score

range. The merged bases produced by PEAR had far

higher error rates than expected throughout the

quality score range.

Discussion

Of the merging programs analyzed, NGmerge has the

best performance. It considers dovetailed alignments

and thus does not require a separate adapter-removal

step prior to merging reads; this more than compensates

for its slightly worse run-time compared to VSEARCH

(Additional file 1: Note S1). Furthermore, NGmerge pro-

duces lower error rates and corrects more Ns than the

other programs. We note that NGmerge’s method for re-

solving mismatched bases may be improved by imple-

menting a context-based scheme like that of CASPER.

However, such an approach may have difficulty distin-

guishing sequencing errors from true biological variants

in real samples; this is an area for further research.

In addition, NGmerge creates merged reads whose qual-

ity scores accurately reflect the bases’ error rates, unlike

the other merging programs. It is noteworthy that the

quality scores that deviate the most from the expected

error rates are produced by VSEARCH and PEAR in mer-

ging matching bases (Fig. 5a). As explained above, these

programs’ quality score calculations are based on the as-

sumption of the independence of sequencing errors in

paired reads [17, 20]. Our results demonstrate that this

assumption is false. Therefore, the models produced by

Edgar and Flyvbjerg [20] are invalid.

One reason for the lack of independence of errors in

paired-end sequencing stems from the beginning of a

sequencing run, during first-strand synthesis (Fig. 6).

Since the original DNA fragment is denatured after it is

copied, any errors made during this step will be propa-

gated throughout the cluster that is formed during bridge

Fig. 5 Error rate - quality score profiles produced by the merging programs. a Comparison of the profiles when the overlapping bases of the

reads matched. The black line represents the baseline error rate - quality score profile of the original reads. b Comparison of the profiles when

the overlapping bases did not match
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amplification. Thus, both paired reads will contain

the errors, but the erroneous bases will not have re-

duced quality scores.

Because of our reliance on reads derived from PhiX,

NGmerge’s quality score profiles were tested only on

datasets generated by MiSeq and HiSeq instruments.

Thus, they may not work as well with other Illumina

platforms, such as the NextSeq. NGmerge provides the

option to forgo its default quality score profiles and in-

stead to utilize calculations similar to those of fastq-join

(and FLASH), which, though simplistic, are conservative

over most of the score ranges. A third option is for the

user to supply custom matrices of quality score profiles

to NGmerge.

Although a number of studies have concluded that

Illumina’s quality scores are substantially inflated, our re-

sults contradict this notion. Inaccuracies in reference se-

quences are a persistent problem that adversely affect

error rate calculations [22], and in fact that proved to be

the case here. Once the PhiX reference genome was

corrected to account for the five sequence variants, the

calculated error rates closely followed the expected

relationship shown in Eq. (1). It is important to note that,

in general, errors occurring during the library preparation

process (e.g. PCR amplification) can be misconstrued as

sequencing errors, leading to specious conclusions [23].

This is another reason why unamplified PhiX remains an

enduring control in Illumina sequencing applications.

Conclusions

We have examined errors produced by Illumina sequen-

cing technology via reads derived from PhiX. We have

found that variants from the canonical PhiX reference

genome account for most of the discrepancy between

the actual and theoretical relationships between quality

scores and error rates. Furthermore, in the course of

developing empirical models for error rates of paired-end

sequence reads, we have demonstrated the fallacy of the

assumption that has been repeatedly made, both implicitly

and explicitly, that errors in such reads are independent.

Finally, we have described a free and open-source pro-

gram, NGmerge, that merges paired-end sequence reads,

thus correcting errors and ambiguous bases, and assigning

quality scores that are consistent with the measured error

rates. The program can also be run in an alternative mode

simply to remove contaminating sequencing adapters.

Complete descriptions of the usage and options of

NGmerge are found on the homepage of the software

(https://github.com/harvardinformatics/NGmerge) and in

the accompanying UserGuide. The program is written in C

and is parallelized with OpenMP 4.0.

Methods
NGmerge design

NGmerge operates on paired-end reads in two distinct

modes, “stitch” and “adapter-removal” (Fig. 1). In either

mode, NGmerge tests all possible gapless alignments of a

pair of reads in attempting to find an optimal alignment.

By default, NGmerge requires that a valid alignment have

a minimum overlap of 20 bp and a maximum of 10% mis-

matches in the overlap region (-m 20 -p 0.1). If multiple

valid alignments are found, the one with the lowest frac-

tion mismatch is selected as the optimum. In all of these

calculations, ambiguous bases (Ns) are considered neither

matches nor mismatches. When the ‘-d’ option is set, or

in adapter-removal mode, NGmerge will also attempt to

align the reads in a dovetailed configuration (such as that

shown in Fig. 1b), with 3′ overhangs corresponding to

contaminating sequencing adapters that will be removed.

In stitch mode, NGmerge forms a single merged read

that spans between the 5′ ends of the two original reads.

The bases and quality scores of any non-overlapping re-

gions are copied into the new read. For the overlapping re-

gion, if the bases of the R1 and R2 reads match, that base is

used for the merged read, with the quality score determined

from the “match” matrix (see “Harvard datasets” below).

Fig. 6 First-strand synthesis on the flow cell. A single-stranded DNA

fragment to be sequenced anneals to an oligonucleotide that is

covalently attached to the flow cell surface. The primer is extended

to copy the DNA fragment, which is then removed by

denaturation [1]
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Where the bases disagree, the base with the higher quality

score is selected, and the “mismatch” matrix yields the

merged quality score.

Merging programs

NGmerge (v0.2) was run with default alignment parame-

ters, requiring a minimum overlap of 20 bp and a max-

imum of 10% mismatches. With the SRA datasets, it was

also run allowing 20% mismatches (-p 0.2). The ‘-d’ op-

tion was set to allow for dovetailed alignments and the

automatic removal of sequencing adapters.

Fastq-join (v1.01.759) [14] was run with alignment pa-

rameters analogous to those of the defaults of NGmerge

(-m 20 -p 10). Because fastq-join does not allow for

dovetailed alignments, adapters were removed from the

reads with NGmerge prior to analysis with fastq-join.

VSEARCH (v2.6.2) [16], like fastq-join, does not consider

dovetailed alignments, so it was also given reads from

which adapters were removed with NGmerge. The mini-

mum overlap length was increased to 20 bp (--fastq_minov-

len 20). The maximum number of mismatches was greatly

increased (--fastq_maxdiffs 30); even so, VSEARCH still an-

alyzed the fewest reads (Additional file 2: Table S1). The

cap on output quality scores was increased from the default

value of 41 (--fastq_qmaxout 85).

PEAR (v0.9.10) [17] was run with a 20 bp minimum

overlap (-v 20) and a maximum p-value threshold of

0.0001 (there is no fraction mismatch parameter). The

cap on output quality scores was increased from the

default value of 40 (-c 80).

With NGmerge, the arguments ‘-j <file> -b’ were spe-

cified so that the program would produce a file listing

overlap mismatches and Ns, for later error counting.

With the other merging programs, a custom Python

script (findDiffs.py) reconstructed the alignments and

determined the overlap mismatches.

Further details of these programs’ approaches toward

read merging, along with an illustrative example, are

provided in Additional file 1: Note S2.

Calculation of error rates

The 5386-bp genome of the enterobacteria phage

ΦX174, sensu lato, was retrieved from NCBI (accession

NC_001422.1). The reads of each of the datasets were

aligned to this genome using Bowtie2 [24], as described

below. Pileup files were created from the alignment files

using SAMtools (v1.5) mpileup (-B -Q 0 -d 1e9) [25], and

variants were called with VarScan (v2.4.1) pileup2snp

(--min-var-freq 0.15) [5].

The downloaded PhiX genome was modified to incorp-

orate the five variants observed in the datasets (Table 1).

Furthermore, because the PhiX genome is circular, a frag-

ment corresponding to the first 1 kb (including the variants

at positions 587 and 833) was appended to the end of the

genome. This produced a final reference genome of 6386

bp that was used in all further analyses.

Reads were aligned to the modified PhiX reference gen-

ome using Bowtie2 (v2.3.2). The parameters of the pro-

gram were modified to increase the strictness of accepted

alignments, specifically by increasing the minimum score

threshold (--score-min L,0,-0.2) and increasing gap penal-

ties (--rdg 5,15 --rfg 5,15). The size of allowed fragments

was increased to 1 kb (-X 1000), and the effort parameters

were adjusted (--very-sensitive).

For the analyses of unmerged paired-end reads, contamin-

ating sequencing adapters were removed by NGmerge (‘-a’

mode) prior to alignment. Only properly-paired alignments

(‘samtools view -f 0x2’) were used to calculate error rates.

Error rates were calculated by quality score for the align-

ments in the SAM alignment files by a custom Python

script (countErrors.py). When analyzing SAM files of

merged reads, the script was provided the original read

length(s) and a list of merging mismatches and Ns, in order

to further categorize the errors based on the nucleotides in

the R1 and R2 original reads, into matches, mis-

matches, and Ns (Additional file 1: Figure S3). The list

of mismatches and Ns was produced by NGmerge or

findDiffs.py, as described above.

In order to create the error profiles of NGmerge, we

used the script countErrors3D.py, which tallied errors

based on both original reads’ quality scores.

The three custom Python scripts are freely avail-

able on GitHub (https://github.com/jsh58/NGmerge/

tree/master/scripts/).

Harvard datasets

Nine sequencing datasets produced by the Bauer Core

Facility of Harvard University, Faculty of Arts and Sciences

Division of Science, between January 2016 and May 2017

were analyzed. Each sequencing run was produced on the

Illumina HiSeq 2500 platform, yielding 2 × 250 bp paired-

end reads. The reads placed into the “undetermined” bins

were examined, a total of 553.0 million read pairs.

The paired-end reads were aligned to the modified

PhiX genome after adapter-trimming with NGmerge, as

described above. A LOESS regression function relating

the quality scores to the logarithm (base 10) of the error

rates was calculated in R (v3.4.1). This formed the base-

line error profile for subsequent analyses.

To create the quality score profiles of NGmerge, the

same reads were processed with NGmerge in stitch mode,

allowing dovetailed alignments (-d). The merged reads

were aligned to PhiX, and error rates were calculated for

each combination of the quality scores of the R1 and R2

reads with countErrors3D.py. The “match” table, consist-

ing of error rates for the locations where the bases of the

two reads agreed, was edited to exclude values derived

from fewer than 1000 counts, and values of zero were
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given a pseudo-error count of 0.5 (yielding a rate of 0.5/

base count). These same edits were made to the “mis-

match” table (error rates where the bases of the two reads

disagreed), except that the minimum count threshold was

lowered to 100 because of the reduced number of counts.

Then, for each table, a two-dimensional LOESS regression

function (relating both quality scores to the log (base 10)

of the error rates) and predicted error rates were calcu-

lated in R. These error rates were then transformed back

into quality scores using the baseline error profile calcu-

lated for the original paired-end reads. The resulting

“match” and “mismatch” matrices were incorporated into

NGmerge as the default quality score profiles.

SRA datasets

The Sequence Read Archive (SRA) of NCBI (https://

www.ncbi.nlm.nih.gov/sra) was queried for datasets contain-

ing paired-end reads that were minimum 2× 250 bp in

length. The sequencing runs of over 160 SRA studies

were examined, though some were eliminated immedi-

ately for various reasons (mislabeled as paired-end; actual

read lengths shorter than stated; reads already trimmed).

The remaining datasets’ reads were adapter-trimmed with

NGmerge and aligned to the PhiX genome. Those with

at least 10,000 read pairs aligning to PhiX in a

properly-paired configuration were further analyzed.

The details of these 33 datasets, which contained 1386

sequencing runs and a total of 2.25 billion read pairs,

are provided in Additional file 2: Table S1.

The reads of the 33 SRA datasets were analyzed in a

similar fashion to the Harvard datasets. The baseline error

rates were calculated from the original reads, and error

rates were also determined after processing the reads with

each of the merging programs. For each set of error rates,

LOESS regression functions were computed, relating the

quality scores to the log (base 10) of the error rates.

Additional files

Additional file 1: Figure S1. Quality score profiles of the merging

programs. Figure S2. PhiX library fragment lengths and paired-end read

overlaps. Figure S3. Error rate calculation. Table S2. Error rates before
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