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Abstract

In the adult mammalian CNS, chondroitin sulfate proteoglycans (CSPGs) and myelin–associated

inhibitors (MAIs) stabilize neuronal structure and restrict compensatory sprouting following

injury. The Nogo receptor family members NgR1 and NgR2 bind to MAIs and have been

implicated in neuronal inhibition. Here we show that NgR1 and NgR3 bind with high–affinity to

the glycosaminoglycan moiety of proteoglycans and participate in CSPG inhibition in cultured
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neurons. Nogo receptor triple mutants (NgR123−/−), but not single mutants, show enhanced axonal

regeneration following retro–orbital optic nerve crush injury. The combined loss of NgR1 and

NgR3 (NgR13−/−), but not NgR1 and NgR2 (NgR12−/−), is sufficient to mimic the NgR123−/−

regeneration phenotype. Regeneration in NgR13−/− mice is further enhanced by simultaneous

ablation of RPTPσ, a known CSPG receptor. Collectively, these results identify NgR1 and NgR3

as novel CSPG receptors, demonstrate functional redundancy among CSPG receptors, and provide

unexpected evidence for shared mechanisms of MAI and CSPG inhibition.

In the adult mammalian central nervous system (CNS), structural neuronal plasticity is

restricted by a number of extrinsic (environmental) and cell–intrinsic growth inhibitory

mechanisms 1,2. While such mechanisms are believed to be important for stabilization of

intricate networks of neuronal connectivity in CNS health, they also limit adaptive neuronal

growth and sprouting following brain or spinal cord injury (SCI). Spontaneous repair

following severe CNS injury is incomplete and commonly associated with permanent

neurological deficits. Thus, a detailed understanding of the mechanisms that block neuronal

growth and repair is of great interest, both biologically and clinically.

A large number of CNS inhibitory cues has been identified 2–4. In experimental animal

models of SCI, acute blockage of myelin-associated inhibitors (MAIs) 5,6 or enzymatic

degradation of chondroitin sulfate proteoglycans (CSPGs) with chondroitinase ABC

(Ch’aseABC) 7–9 promotes neuronal sprouting and correlates with improved behavioral

outcomes.

The best characterized MAIs are the reticulon family member Nogo, myelin associated

glycoprotein (MAG), and oligodendrocyte myelin glycoprotein (OMgp) 2. Three isoforms of

Nogo have been identified, all of which contain a 66 amino acid loop (Nogo66) that signals

neuronal inhibition. Mechanistic studies identified the Nogo66 receptor–1 (NgR1) and

paired immunoglobulin (Ig)–like receptor B (PirB) as functional receptors for MAIs 10,11.

NgR1 is comprised of 8.5 leucine–rich repeats (LRRs), flanked by N–terminal (NT–) and

C–terminal (CT–) LRR capping domains. The NT–LRR–CT cluster of NgR1 is fused to a ~

100 amino acid residue stalk region and connected to the plasma membrane by a

glycosylphosphatidylinositol (GPI) anchor 11. NgR1 and its close relative NgR2 show

overlapping, yet distinct binding preferences toward MAIs. Nogo66 and OMgp bind

selectively to NgR1 2, while MAG associates with NgR1 and NgR2 12. The related molecule

NgR3 is poorly characterized, and thus far no functional NgR3 ligand(s) have been

identified. In vitro, loss of NgR1 renders neurons more resistant to Nogo66–, MAG–, and

OMgp–induced growth cone collapse but not to longitudinal neurite outgrowth inhibition on

substrate bound inhibitors 13–15. MAIs activate RhoA, RockII, and conventional isoforms of

protein kinase C (PKC) to destabilize the neuronal cytoskeleton 16,17. Similar to NgR1, PirB

supports binding of Nogo66, MAG, and OMgp. In culture, functional ablation of PirB

promotes neurite outgrowth on substrate–bound MAIs and crude CNS myelin. Interestingly,

the combined perturbation of PirB and NgR1 signaling leads to a further release of neurite

outgrowth inhibition on crude CNS myelin but not on recombinant Nogo66 or MAG 10.

CSPGs are a diverse class of extracellular matrix molecules that influence axonal growth

and guidance of developing neurons 18. Following injury to the adult CNS, CSPG

expression is upregulated and abundant in reactive astrocytes associated with glial scar

tissue 4,19,20. CSPGs are comprised of a protein core with covalently attached

glycosaminoglycan (GAG) side chains. GAG chains are large, unbranched polymers

composed of ~20–200 repeating disaccharide units. Chondroitin sulfate (CS)–GAGs contain

alternating units of N–acetyl–galactosamine and glucuronic acid. Most commonly, the

hydroxyl groups at position 4 (CS–A) or position 6 (CS–C) of N–acetyl–galactosamine are

sulfated. In CS–B, iduronic acid replaces glucuronic acid in the CS disaccharide unit. In CS–
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D and CS–E, two sulfate groups per disaccharide unit are present. CSPG inhibition is largely

abrogated by bacterial chondroitinase–ABC (Ch’aseABC), indicating that CS–GAGs are

important for neuronal growth inhibition 7,8,21,22.

Similar to MAIs, CSPG–mediated inhibition depends on activation of RhoA and

conventional PKCs 16,17,23. Mechanistic studies recently identified the receptor protein

tyrosine phosphatase sigma (RPTPσ) as a high–affinity receptor for CSPGs 24. RPTPσ is a

member of the leukocyte common antigen–related protein (LAR) family that also includes

LAR and RPTPδ. RPTPσ binds to CS–GAG chains and the structurally related heparan

sulfate (HS)–GAG chains via its first Ig like domain 24,25. The association of RPTPσ with

CS– and HS–GAGs critically depends on the presence of an evolutionarily conserved cluster

of basic amino acid residues. Functional ablation of RPTPσ enhances neurite outgrowth in

the presence of CSPGs in vitro, and following CNS injury promotes growth of sensory

afferents 24, corticospinal tract axons 26, and retinal ganglion cell axons 27. The incomplete

release of CSPG inhibition in RPTPσ –deficient neurons suggests the existence of additional

mechanisms of CSPG inhibition. Here we report on the identification of the Nogo receptor

(NgR) family members NgR1 and NgR3 as novel CSPG receptors.

Results

NgRs participate in prototypic MAI independent inhibition

To determine the role of Nogo receptor family members in CNS myelin inhibition, we

generated NgR1, NgR2, NgR3 triple null mice (NgR123−/−) (Supplementary Fig. 1).

NgR123−/− mice are born at Mendelian ratios, viable into adulthood, fertile, and

indistinguishable from wildtype (WT) littermate controls at the gross anatomical level.

When plated on crude CNS myelin, postnatal day 7 (P7) cerebellar granule neurons (CGNs),

but not dorsal root ganglion (DRG) neurons, of NgR123−/− mice show a significant (P<

0.001, one way ANOVA, Tukey’s post–hoc), yet incomplete release of growth inhibition

(Fig. 1 and Supplementary Fig. 2). Compared to CGNs isolated from WT, NgR1−/−,

NgR12−/−, or NgR3−/− mice, CGNs from NgR123−/− mutants grow significantly longer

neurites on myelin. Remarkably, in two different types of neurons, CGNs and DRGs, the

combined loss of NgR1 and NgR2 does not result in enhanced neurite growth on crude CNS

myelin (Fig. 1 and Supplementary Fig. 2). Because only NgR1 and NgR3, but not NgR2, are

expressed in P7 CGNs 12,15, this suggests that NgR3 participates in myelin inhibition. This

is somewhat surprising, as NgR3 does not associate with recombinant Nogo, MAG or

OMgp 12.

To directly test whether NgR3 participates in neurite outgrowth inhibition of endogenously

expressed Nogo, MAG, or OMgp, experiments were repeated with CNS myelin isolated

from Nogo, MAG, OMgp triple mutant mice (NMO−/−) 28. Consistent with previous

reports 28,29, NMO−/− myelin is less inhibitory than WT myelin (Fig. 1 and Supplementary

Fig. 2). Importantly, on NMO−/− myelin, CGNs from NgR123−/− mice continue to extend

longer neurites (P< 0.001, one way ANOVA, Tukey’s post–hoc) than CGNs from WT,

NgR1−/−, NgR12−/−, or NgR3−/− mice (Fig. 1). This observation indicates that NgR3

participates in Nogo–, MAG– and OMgp–independent growth inhibition. Because loss of

NgR1 or NgR3 alone is not sufficient to promote growth on myelin, this suggests some

degree of functional redundancy among these two receptors.

NgR1 and NgR3, but not NgR2, associate with neural GAGs

To identify candidate NgR3 ligand(s), we generated alkaline phosphatase (AP)–tagged

receptor fusion proteins and assayed binding to rat brain tissue sections. Prior to the onset of

CNS myelination, NgR1 and NgR3, but not NgR2, bind strongly to numerous fiber tracts in
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the brain and spinal cord (Fig. 2a). After myelination, a more uniform binding pattern is

observed with a much less pronounced labeling of fiber tracts (data not shown). Importantly,

brain sections of NMO−/− and NgR123−/− triple mutants, p75−/− single mutants, and mice

lacking select gangliosides show no substantial reduction in soluble receptor binding

(Supplementary Fig. 3). In COS–7 cells, components of the NgR1 holoreceptor complex,

including p75, TROY, and Lingo–1 30, fail to support NgR3 binding (Supplementary Fig.

4). This suggests that binding of NgR3 to brain is not mediated by previously identified

components of the NgR1 complex. Receptor deletion studies further revealed that the LRRs

are not required for binding, and identified two discontinuous and evolutionarily conserved

sequence motifs, in both NgR1 and NgR3, that are necessary for binding to brain (Fig. 2b–e

and data not shown). Motif 1 (m1) is located in the CT capping domain, and interestingly,

overlaps with the FRG motif previously shown to participate in sialic acid–dependent

binding of the ganglioside GT1b to NgR1 31. Motif 2 (m2), separated from m1 by

approximately 130 amino acid residues, is located near the juxtamembrane region of the

NgR1 and NgR3 stalk domain. Motif m2 in NgR1 and NgR3 is comprised of a highly

conserved cluster of basic amino acid residues, deletion of which completely abolishes

binding to brain (Fig. 2b–e). Furthermore, a soluble form of NgR1 in which the basic

residues of m2 are replaced by seven alanines [NgR1(7ala)–Fc] no longer binds to brain

tissue (Fig. 2d).

To assess whether the association of NgR1 and NgR3 with neural tissue is the result of a

protein–protein interaction, brain sections were subjected to heat or protease treatment.

Remarkably, binding was largely resistant to either treatment (Supplementary Fig. 3),

suggesting a possible interaction with neural glycan(s). Pretreatment of brain tissue sections

with various glycosidases revealed sensitivity to heparinase and Ch’aseABC. Moreover, in

the presence of heparin, binding was completely abolished (Fig. 3a and Supplementary Fig.

3). Together these studies suggest that NgR1 and NgR3 associate with neural

glycosaminoglycans.

NgR1 and NgR3 complex with select CS–GAGs

To examine the specificity of the GAG association, AP–NgR1 and AP–NgR3 fusion

proteins were preincubated with various types of CS–GAGs. Strikingly, CS–B, CS–D and

CS–E, but not CS–A or CS–C, effectively compete with soluble NgR1 and NgR3 for

binding to brain sections (Fig. 3b). To test whether NgR1 and NgR3 bind to purified GAGs

directly, we developed a sandwich ELISA, in which biotinylated GAGs were adsorbed to

streptavidin–coated microtiter plates and then incubated with soluble AP–tagged NgRs

(Supplementary Fig. 5a). Consistent with binding experiments to rat brain tissue, NgR1 and

NgR3 bind robustly to heparin and purified CS–GAGs, indicating that these receptors bind

GAGs directly (Fig. 3c and Supplementary Fig. 5b). NgR1 and NgR3 bind with high

specificity and selectivity to different types of monosulfated and disulfated GAGs. Strong

binding was observed to monosulfated CS–B, and disulfated CS–D and CS–E. The

dissociation constants for these interactions are in the low nanomolar range (Fig. 3c and

Supplementary Fig. 5b). No interactions with CS–A or CS–C were detected. This argues

against a nonspecific interaction with negatively–charged compounds and underscores the

selectivity of the NgR1– and NgR3–GAG associations.

Notably, the first three Ig like domains of RPTPσ [RPTPσ(1–3)] show very similar GAG–

binding profiles (Fig. 3c). At increasing doses, RPTPσ(1–3)–Fc effectively competes with

NgR1 for binding to CS–E, indicating that these two receptors complex with, at least in part,

overlapping CS–GAG epitopes (Supplementary Fig. 5c). Functional studies with primary

neurons show that soluble RPTPσ(1–3)–Fc and NgR1–Fc block the growth inhibitory

activity of CSPGs toward P7 CGNs in vitro. The neutralizing effects of NgR1–Fc critically
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depend on the presence of the GAG–binding motif m2, as soluble NgR1(7ala)–Fc fails to

block CSPG inhibition (Fig. 3d).

The CSPG and MAI binding sites on NgR1 are dissociable

To further characterize the relation of CSPG and MAI binding sites on NgR1, we generated

a chimeric receptor construct in which the GAG–binding portion of NgR1 (amino acid

residues 278–445) was replaced by the corresponding, non–GAG–binding sequence of

NgR2 (amino acid residues 281–420). Nogo66, MAG, and OMgp bind strongly to this

chimeric NgR1/NgR2 receptor, indicating that the GAG–binding sequences of NgR1 are not

necessary for MAI binding (Fig. 4a). A soluble form of this same chimeric receptor fails to

bind to rat brain tissue sections or to GAGs directly (Supplementary Fig. 5d–e). This

suggests that MAIs and CSPGs bind to distinct and dissociable sites on NgR1 (Fig. 4b).

Moreover, the presence of CS–B, CS–D, or CS–E does not substantially influence binding

of AP–Nogo66 to NgR1 (Fig. 4c).

Neuronal Nogo receptors participate in CSPG inhibition

To determine whether loss of NgRs leads to disinhibition of neurite growth on substrate

bound CSPGs, CGNs from NgR single and compound mutants were analyzed (Fig. 5). Loss

of NgR1 or NgR3 alone, or the combined loss of NgR1 and NgR2 (NgR12−/−), is not

sufficient to attenuate CSPG inhibition. Loss of all three NgRs (NgR123−/−), however,

results in significant (P< 0.001, one way ANOVA, Tukey’s post–hoc), yet incomplete

release of CSPG inhibition. Furthermore, release of inhibition for CGNs isolated from

NgR123−/− and RPTPσ−/− pups is comparable (Fig. 5). Dose–response experiments show

that when challenged with high concentrations of CSPGs, NgR123−/− and RPTPσ−/−

neurons are strongly inhibited and lose their growth advantage over WT neurons

(Supplementary Fig. 6a). This suggests that these receptor systems share some degree of

functional redundancy. At high doses of CSPGs, loss of NgRs may be compensated by

RPTPσ and vice versa. NgRs are not abundantly expressed in P7 DRGs 15 and NgR123−/−

DRG neurons are not disinhibited on CSPG substrate. In a parallel experiment with DRG

neurons from RPTPσ−/− mice, neurite length is increased on CSPGs (Supplementary Fig.

6b). Collectively, these studies show that NgR1 and NgR3 bind CS–GAGs directly and

participate in CSPG–mediated neurite outgrowth inhibition in a neuronal cell–type specific

manner.

NgR1 and NgR3 associate in a ligand dependent manner

NgRs are GPI–anchored proteins, and thus depend on interactions with transmembrane

receptor components to signal growth inhibition across the neuronal plasma membrane. To

assess whether NgR1 and NgR3 employ shared signaling mechanisms, we assayed binding

of NgR3–Fc to the previously identified NgR1 receptor components p75, TROY, and

Lingo–1 in COS–7 cells. We observed no binding of soluble NgR3 to p75, TROY, Lingo–1,

or NgR1 (Supplementary Fig. 4). There are conflicting results on whether NgR1 and NgR3

interact 32,33. We therefore revisited this issue and found that NgR1 and NgR3 are part of

the same immune complex when co–expressed in HEK293T cells. The NgR1–NgR3

association is ligand dependent and is only observed in the presence of exogenously–applied

CSPGs (Supplementary Fig. 4), suggesting that the two receptors may be part of the same

receptor complex. In this same assay, no association of NgR1 with NgR2 is observed,

neither in the presence nor the absence of CSPGs. Next we examined whether NgR1, NgR3,

and p75 may be part of the same receptor complex. In HEK293T cells co–transfected with

NgR1, NgR3, and p75, anti–NgR1–pull down experiments revealed that the three receptors

are present in the same immune complex if cells are treated with CSPGs (Supplementary

Fig. 4).
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To directly test whether p75 is important for CSPG mediated neurite outgrowth inhibition,

P7 CGNs from p75−/− mice were plated on substrate bound CSPGs. Loss of p75 does not

result in a significant release of CSPG inhibition (Supplementary Fig. 4). Together these

experiments show that p75, NgR1, and NgR3 do interact in the presence of CSPGs;

however, p75 is not necessary for CSPG–mediated outgrowth inhibition. Our studies

confirm and expand on previous work showing that versican V2 mediates neurite outgrowth

inhibition in CGNs and DRG neurons in a p75–independent manner 17.

CSPGs in the injured CNS support binding of NgR1 and NgR3

Similar to other CNS fiber tracts, severed retinal ganglion cell (RGC) axons in the rodent

optic nerve fail to show spontaneous long distance axonal regeneration. Retro–orbital crush

injury to the optic nerve results in a global upregulation of CSPGs along the nerve 34.

Importantly, injured but not control optic nerve sections support strong binding of soluble

NgR1–Fc and NgR3–Fc, and the GAG–binding motif m2 of NgR1 and NgR3 is necessary

for this binding (Fig. 6). Moreover, binding of soluble receptors is largely abrogated by

pretreatment of injured optic nerve sections with Ch’aseABC. Residual binding of NgR1–Fc

is likely due to association with endogenous MAIs (Fig. 6). Together these studies suggest

that CSPGs are endogenous ligands for neuronal NgR1 and NgR3.

Regeneration is enhanced in NgR123−/− and NgR13−/− mice

In the adult mouse retina, NgR1, NgR2, and NgR3 are all strongly expressed in RGCs (Fig.

7a). Retinal stratification (Fig. 7b) and optic nerve myelination (Fig. 7c) in NgR123−/− mice

appear normal. To assess RGC axon targeting to the superior colliculus, the suprachiasmatic

nucleus, and the lateral geniculate nucleus, the right eye of adult WT and NgR123−/− mice

was injected with Alexa 594–conjugated Cholera Toxin β (CTB–red) tracer, and the left eye

with Alexa 488–conjugated Cholera Toxin β (CTB–green) tracer. No defects in RGC axon

central projections or target innervation were observed (Fig. 7d–f). Thus, germline ablation

of all three NgRs does not appear to compromise retinal stratification, optic nerve

myelination, or RGC axonal pathfinding.

To assess whether NgRs contribute to the regenerative failure of injured CNS axons, we

performed retro–orbital optic nerve crush injury in Nogo receptor single and compound

mutant mice. Compared to injured wildtype controls, NgR123−/− mice show a modest but

significant (P< 0.001, one way ANOVA, Tukey’s post–hoc) increase in RGC axon

regeneration (Fig. 8). At two weeks post–injury, significantly more GAP43+ fibers are

observed at 0.2–1.0 mm distal to the injury site in NgR123−/− mice compared to WT mice.

Because NgR1 and NgR2 are known to associate with MAIs, the NgR123−/− regeneration

phenotype may be a reflection of (i) decreased Nogo, MAG and OMgp inhibition, (ii)

decreased CSPG inhibition, or (iii) a combination thereof. To address this issue, we directly

compared regeneration of NgR1−/−, NgR2−/−, and NgR3−/− single mutants, as well as

NgR12−/− and NgR13−/− double mutants, to NgR123−/− triple mutants. Loss of NgR1,

NgR2, or NgR3 alone, or the combined loss of NgR1 and NgR2 (NgR12−/−), does not result

in significantly enhanced RGC axon regeneration compared to WT mice (Fig. 8,

Supplementary Fig. 7, and Supplementary Table). However, NgR13−/− mice show a similar

degree of axon regeneration as NgR123−/− mice. This suggests a novel role for NgR3 in

signaling neuronal growth inhibition. When coupled with neurite outgrowth studies in vitro,

showing that NgR1 and NgR3 operate as functionally redundant CSPG receptors, this

suggests that the optic nerve regeneration in NgR13−/− and NgR123−/− mice is at least in

part a reflection of decreased CSPG inhibition.

As RPTPσ is expressed in adult RGCs 27, we examined whether the combined loss of NgR1

and NgR3 on an RPTPσ−/− background (NgR13/RPTPσ−/−) results in a further increase of
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regenerating axons. Few regenerating axons were observed in RPTPσ−/− single mutants,

with no significant difference compared to WT controls. Compared to NgR13−/− double

mutants, NgR13/RPTPσ−/− triple mutants show a further increase in the number of

regenerating axons (P< 0.001, one way ANOVA, Tukey’s post–hoc), suggesting a genetic

interaction among these receptors (Fig. 8, Supplementary Fig. 7, and Supplementary Table).

An advantage of optic nerve regeneration studies is that the growth potential of RGCs can be

sensitized by intraocular (i.o.) injection of the yeast cell wall extract Zymosan, resulting in

the release of RGC survival and growth–promoting factors, including oncomodulin 35,

CNTF, and LIF 36. WT mice that receive i.o. Zymosan show greatly enhanced regeneration

of RGC axons, exceeding the regeneration observed in non–Zymosan–treated NgR123−/−

and NgR13/RPTPσ−/− mice (Fig. 8). Importantly, NgR123−/− mice that receive i.o.

Zymosan show significantly more (P< 0.05, one way ANOVA, Tukey’s post–hoc)

regenerating axons than WT, NgR1−/−, NgR2−/−, NgR3−/−, or RPTPσ−/− single mutants, as

well as NgR12−/− double mutants, subjected to i.o. Zymosan. NgR13−/− and NgR123−/−

mice with i.o. Zymosan show a similar regeneration phenotype. At several distances from

the injury site, NgR13/RPTPσ−/− triple mutants with i.o. Zymosan show a further increase in

the number of regenerating axons compared to NgR123−/− mice with i.o. Zymosan (P< 0.05,

one way ANOVA, Tukey’s post–hoc) (Fig. 8, Supplementary Fig. 7, and Supplementary

Table).

In mice, optic nerve injury leads to the death of ~ 70% of RGCs by two weeks post–injury

(Supplementary Fig. 8). The enhanced regeneration observed in NgR123−/− mice is not a

result of increased RGC survival, as similar numbers of injury induced–RGC death were

observed in WT and NgR123−/− triple mutants. Intraocular Zymosan administration partially

protects RGCs from axotomy–induced cell death; however, the protective effect of Zymosan

is similar in WT and NgR123−/− mice (Supplementary Fig. 8). Consistent with the view that

a decrease in RGC death is not sufficient to promote axonal regeneration, p53–deficient

RGCs are more resistant to injury–induced cell death but fail to show enhanced

regeneration 1. To assess whether i.o. Zymosan influences expression of NgRs or RPTPσ in

RGCs, we performed in situ hybridization at 3 and 7 days post–Zymosan injection, but did

not observe any obvious changes (Supplementary Fig. 9).

Discussion

The main finding of the present study is the identification of two novel CSPG receptors. We

show that NgR1 and NgR3 bind directly and with high affinity to select types of CS–GAGs

and operate as functionally redundant CSPG receptors. Loss of NgR family members

individually is not sufficient to overcome CSPG inhibition; however, the combined loss of

NgR1 and NgR3 leads to a significant release of CSPG inhibition. In NgR123−/− triple

mutants, severed RGC axons show enhanced regenerative growth. Interestingly, NgR13−/−,

but not NgR12−/− double mutants, phenocopy the optic nerve regeneration phenotype of

NgR123−/− mice. A further enhancement of axon regeneration is observed in NgR13/RPTPσ
triple mutants, revealing a genetic interaction among NgR family members and the

previously identified CSPG receptor RPTPσ. Collectively, our studies provide unexpected

evidence for shared receptor mechanisms for “prototypic myelin inhibitors” and CSPGs, two

major classes of growth inhibitory molecules abundant in the adult mammalian CNS.

NgR1 and NgR3 bind with high selectivity to CS GAGs

CSPG inhibition depends on the presence of CS–GAG chains; we therefore explored the

molecular basis of Nogo receptor–GAG interactions. We identified two sequence motifs in

each receptor, both of which are necessary for GAG binding. Motif 1 is located in the LRR–
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CT capping domain and identical to the GT1b binding motif identified in NgR1 31. Motif 2

is located in the distal stalk region juxtaposed to the GPI anchor.

Remarkably, NgR1 and NgR3 show exquisite specificity toward select types of CS–GAGs.

Binding to monosulfated CS–B, but not CS–A or CS–C, is very robust. In addition, the

disulfated GAGs CS–D and CS–E bind strongly to NgR1 and NgR3. Identical binding

preferences were observed for RPTPσ. Competition of soluble NgR1 and RPTPσ(1–3)

ectodomain for CS–E binding suggests that two very different protein modules complex

with at least partially overlapping CS–GAG structures. Dose–response experiments show

that loss of all NgRs or RPTPσ is sufficient to attenuate inhibition of neurite outgrowth at

low and intermediate, but not at high doses of CSPGs. A very recent study identified the

receptor tyrosine phosphatase LAR as a CSPG receptor 37. Together, these findings reveal a

significant degree of functional redundancy among CSPG receptor mechanisms and suggest

that antagonism of multiple NgR and LAR family members will be required to fully

overcome CSPG inhibition.

Additive effects of manipulating extrinsic and intrinsic pathways

The relatively modest regeneration phenotype observed in NgR123−/− and NgR13/

RPTPσ−/− mice at two weeks post–injury is consistent with previous studies showing that

expression of a dominant negative form of NgR1 in RGCs 38 or blocking of RhoA with C3

transferase 39 is not sufficient to promote substantial regeneration of severed optic nerve

axons. In a similar vein, removal of one or several MAIs results in inconsistent and often

poor regeneration in spinal cord injured mice 28,29. Collectively, mouse genetic studies

suggest that germline ablation of multiple growth inhibitory ligands or receptors is not

sufficient to promote robust and long–distance regeneration in different fiber tracts of the

injured adult CNS.

A significant impact of environmental inhibitory signals on limiting axon regeneration was

revealed, however, when genetic manipulations were combined with activation of RGC

intrinsic growth programs. On an NgR13−/−, NgR123−/−, or NgR13/RPTPσ−/− background,

i.o. Zymosan injection results in significantly enhanced axonal growth distal to the injury

site compared to WT, NgR12−/−, or RPTPσ−/− mutant mice with i.o. Zymosan. While the

additive effects of simultaneous release of growth inhibitory mechanisms and activation of

intrinsic growth programs have been reported 38,40,41, our data show that in growth enabled

RGCs, members of the NgR family and LAR family collaborate to negatively impact the

number and length of regenerating axons following CNS injury.

NgR3 participates in neuronal growth inhibition

Enhanced axon regeneration observed in the optic nerve of NgR123−/− mice is mimicked by

NgR13−/−, but not NgR12−/− double mutants. This suggests that on an NgR1−/− background,

NgR3, but not NgR2, contributes to the regenerative failure of severed RGC axons. As

NgR3 does not directly associate with Nogo, MAG, or OMgp, but supports CSPG binding

and participates in CSPG inhibition in vitro, our findings suggest that NgR3–CSPG–

mediated growth inhibition contributes to the regenerative failure of CNS axons in vivo.

While CSPGs are the first ligands identified for NgR3, they also bind to NgR1, further

underscoring the high promiscuity of NgR1. CSPGs are found in crude CNS myelin

preparations 17,42 and present in the CNS myelin used for this study (data now shown).

Similar to the enhanced neurite outgrowth of NgR123−/− neurons on CNS myelin (Fig. 1),

the enhanced growth of neurons functionally depleted of NgR1 and PirB 10 may be, at least

in part, a reflection of decreased MAI and CSPG inhibition.
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Implications for experience dependent neural plasticity

While it has been known for some time that MAIs and CSPGs share similar downstream

signaling pathways 16,17, the level at which MAI and CSPG signaling cascades converge to

regulate neuronal cytoskeletal dynamics has not yet been determined. Here we identify

NgR1 and NgR3 as novel and functionally redundant CSPG receptors. We provide evidence

that Nogo, MAG, OMgp, and CSPGs share receptor components and perhaps signal through

related receptor complexes to block neuronal plasticity, sprouting, and axonal regeneration.

In support of this idea, the myelin inhibitor Nogo–A shares structural and sequential

similarities with neurocan, an inhibitory CSPG implicated in blocking neuronal

regeneration 43, suggesting a common origin for two seemingly unrelated inhibitors of

growth. The newly discovered connection between CSPGs and NgRs is not only relevant for

neuronal repair, but may also provide a mechanistic explanation for why two seemingly

unrelated manipulations, such as Ch’aseABC infusion into the mature visual cortex and

germline ablation of NgR1 or Nogo result in enhanced ocular dominance plasticity

following monocular deprivation 21,44. Mounting evidence suggests that mechanisms that

limit neuronal growth and plasticity following CNS injury and disease resemble those that

negatively regulate neuronal growth and synaptic structure under physiological

conditions 45,46.

The identification of NgRs as shared receptors for MAIs and CSPGs provides new insights

into how a diverse group of inhibitory cues regulates neuronal structure and function under

physiological conditions and following injury. We propose that Nogo receptors are part of a

multicomponent receptor system that serves as a signaling platform to initiate pathways that

limit neuronal growth and increase structural stability of synapses. When combined with

recent findings that NgR1and its ligands Nogo and OMgp influence synaptic

transmission 47, experience–dependent network refinement 44, and spatial memory 48, the

present findings expand the function of these molecules beyond neural repair, and shed light

on a vital part of the neuronal machinery that limits growth and plasticity in CNS health and

disease.

Methods

Transgenic mice

All animal handling and surgical procedures were performed in compliance with local and

national animal care guidelines and approved by the University of Michigan Committee on

Use and Care of Animals (UCUCA). NogoABC−/−;MAG−/−;OMgp−/−, RPTPσ−/−, NgR1−/−,

NgR2−/−, and p75NTR−/− mice have been described 15,24,28. NgR3−/− germline mutants were

generated by Lexicon Genetics and kindly provided by M. Greenberg (Harvard Medical

School). NgR1 and NgR2 conditional mutants have been described elsewhere 31. NgR3

conditional knockout mice were generated by flanking exon2 with loxP sites

(Supplementary Fig. 1). To generate germline deletion mutants, conditional knockouts were

crossed with protamine–cre transgenic mice and then intercrossed with each other, or onto

an RPTPσ−/− background, to generate double and triple mutants.

To confirm that NgR123−/− mice are null for NgR1, NgR2, and NgR3, brain extracts of

adult WT and NgR123−/− mice were analyzed by western blotting. To enrich for NgRs,

brain membranes were isolated, lysed in RIPA buffer (Sigma) containing protease inhibitor

cocktail (Sigma), and affinity precipitated with agarose Concanavalin A beads (Vector

Laboratories) overnight at 4°C. Bound glycoproteins were subjected to SDS–PAGE, blotted

onto nitrocellulose membranes (Thermo Fisher Scientific), and probed with polyclonal anti–

NgR1, anti–NgR2, anti–NgR3 or anti–β–actin.
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Neurite outgrowth assays

To assay myelin inhibition, 96–well plates were coated with poly–D–lysine hydrobromide

(50μg/ml; Sigma) overnight, rinsed in water, air dried, and then incubated with a 5μl spot of

BSA (40μg/ml) or CNS myelin (40μg/ml) prepared from wildtype or

NogoABC−/−;MAG−/−;OMgp−/− (NMO−/−) mice 28. Proteins were adsorbed to poly–D–

lysine for 3 hours at 37°C. Wells were then rinsed and incubated with laminin (10μg/ml;

Sigma) for 1 hour at 37°C. P7 CGNs and DRGs were prepared as described previously 12,

and cultured for 24 hours before fixation with 4% paraformaldehyde, blocking in 1% horse

serum and 0.1% Triton X–100 in PBS, and staining with anti–class III β–tubulin (TuJ1;

Promega). To visualize the spotted myelin, wells were also stained with anti–myelin basic

protein (Sigma). Alexa Fluor–conjugated secondary antibodies (Invitrogen) were used for

fluorescent labeling.

To assay CSPG inhibition, 5μl spots (1, 2, 10, 100μg/ml) of either a mixture of large,

extracellular chondroitin sulfate proteoglycans isolated from embryonic chicken brain

(Millipore) or BSA were adsorbed on 96–well plates for 3 hours at 37°C before coating with

poly–D–lysine hydrobromide and laminin. After 24 hours in culture, neurite length of CGNs

or DRGs was determined as described above. To visualize the spotted CSPGs, wells were

also stained with anti–chondroitin sulfate (CS56; Sigma). For some experiments, receptor

fusion proteins (10μg/ml) or the ROCK inhibitor Y–27632 (10μM) were added to the wells

at the time of CGN plating.

Construction of fusion proteins

AP– and Fc–tagged fusion proteins were constructed by standard PCR cloning using the

Tth–DNA polymerase (Applied Biosystems). Constructs for AP–Fc, AP–NgR1(ΔGPI), AP–

NgR2(ΔGPI), AP–NgR3(ΔGPI), AP–Nogo66, AP–OMgp, and MAG–Fc have been

described previously 12,18. Additional constructs included AP–NgR1NT–LRR–CT(Ala24–

V311), AP–NgR2NT–LRR–CT(Ser30–Thr314), AP–NgR3NT–LRR–CT(Ser22–Pro307), AP–

NgR1CT+stalk (Val263–Glu445), AP–NgR2CT+stalk (Ala264–Ser397), and AP–NgR3CT+stalk

(Asp258–Val413). Soluble Fc fusion proteins contain a PAM–myc signal sequence and a C–

terminal Fc region of human IgG1. Constructs were assembled in the expression vector

pcDNA3.0 as described 12 and include NgR1–Fc(Cys27–Gly448), NgR1Δm2–Fc(Cys27–

Gly412), NgR1(7ala)–Fc (residues 414–429 RRRPGCSRKNRTRSHC of NgR1 were

replaced by AAAPGCSAATSTASHC – the location of an internal Spe1 restriction site

introduced for PCR construction is underlined), NgR2–Fc(Cys31–Gly399), NgR3–Fc(Pro25–

Val420), NgR3Δm2–Fc(Pro25–Met397), NgR1(Cys27–Lys277)/NgR2(Val281–Gly399)–Fc, and

RPTPσ(Ig1–3)–Fc(Glu30–Val315).

Binding assays

COS–7 cells grown in 24–well plates were transiently transfected (Lipofectamine 2000)

with plasmid DNA encoding p75NTR, TROY, Lingo–1, L–MAG, NgR1, NgR3, NgR1(7ala),

chimeric NgR1(Cys27–Lys277)/NgR2(Val281–Leu420), or GFP. Ligand receptor binding

studies were carried out and developed as described previously 12. For some COS–7 cell

binding assays, CS–GAGs, at a concentration of 1mg/ml, were added to the wells at the time

of ligand incubation.

To monitor binding of soluble Nogo receptors to brain tissue sections in situ, binding studies

with embryonic (E18) and neonatal (P1–P3) rat or mouse brains were carried out as

described previously 12,18. Additional binding studies included longitudinal optic nerve

sections of adult mice. Consecutive optic nerve sections were stained with anti–GFAP

(Millipore).
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To assess whether the association of AP–NgR1CT+stalk or AP–NgR3CT+stalk to brain tissue

sections is mediated by protein–protein interactions, brain sections were preincubated at

75°C for 3 hours or treated with trypsin (10 units for 30 minutes at 37°C) prior to incubation

with AP–fusion proteins. To explore whether glycoconjugates participate in binding of

soluble Nogo receptors to brain tissue, sections were enzymatically treated with

glycosidases according to manufacturer’s instructions prior to adding the AP–fusion

proteins. Enzymes included N–acetylglucosaminidase, Vibrio cholerae neuraminidase,

heparinase III (Flavobacterium heparinium), chondroitinase–ABC (all from Calbiochem),

glycopeptidase F (New England Biolabs), and endoneuraminidase N (kindly provided by U.

Rutishauser). Some injured optic nerve sections were incubated with chondroitinase–ABC

(1unit/ml in Tris–acetate buffer – pH 8.0 – with 0.02% BSA) for 3 hours at 37°C prior to

addition of receptor fusion proteins. To assay whether specific types of GAG side chains

block binding of soluble NgRs to brain tissue, competition binding experiments were carried

out in the presence of heparin or different types of CS–GAG chains (50μg/ml, Seikagaku

Glycobiology).

To determine whether NgRs or RPTPσ bind directly to GAG chains, enzyme–linked

immunosorbent assays (ELISAs) were used as described previously 49. Briefly, GAG chains

were biotinylated with EDC and EZ–Link Sulfo–NHS–LC–LC–Biotin (Thermo Scientific)

and adsorbed for 15 minutes to ELISA plates (Immulon4, NUNC) precoated with

streptavidin (5μg/ml; Invitrogen). Plates were blocked (5% BSA), rinsed with HBS, and

incubated with various amounts of fusion proteins (diluted with 5% BSA) for 2 hours at

22°C. Following five washes with HBS, bound AP activity was monitored with a BluePhos

Microwell Substrate Kit (KPL). For competitive binding experiments, immobilized GAG

chains were preincubated with various amounts of RPTPσ(Ig1–3)–Fc for 16 hours at 4°C,

and then incubated with AP–NgR1 (1nM) for 2 hours at 22°C. Bound AP activity was

measured as described above.

Immunoprecipitation

HEK293T cells (in 10 cm culture dishes) were transfected with various combinations of

p75NTR, NgR1, NgR1–myc, NgR2–myc, and NgR3–myc expression constructs. After 48

hours, the cells were incubated in lysis buffer containing the following: 20mM Tris–HCl

(pH 7.5), 150mM NaCl, 5mM EDTA, 1% NP–40, and protease inhibitor mixture. For some

assays, cells were incubated for 30 minutes with 100μg/ml of CSPG mixture prior to lysis.

Cell lysates were tumbled overnight at 4°C in the presence of either anti–p75 (Promega) or

anti–NgR1, and precipitated with Protein G Plus/Protein A–Agarose (Calbiochem) after

incubation at 4°C for 2 hours. Precipitated beads were rinsed three times with lysis buffer,

and bound proteins were eluted with 2X SDS sample buffer. Precipitates were analyzed by

immunoblotting, using anti–NgR1, anti–p75 (Promega), anti myc (Cell Signaling), or anti–

β–actin (Sigma).

Optic nerve surgery

Adult mice (6–8 weeks of age) of either sex were anesthetized with an intraperitoneal

injection of Ketamine (100mg/kg; Fort Dodge Animal Health) and Xylazine (10mg/kg;

Akorn, Inc.). The optic nerve was exposed through an incision in the conjunctiva and

compressed for 10 seconds with angle jeweler’s forceps (Dumont #5, Fine Science Tools) at

approximately 1mm behind the eyeball. Care was taken not to damage or rupture the

ophthalmic artery. For intraocular (i.o.) injection of Zymosan, 5μl of a suspension (12.5μg/

μl in sterile PBS; Sigma) was injected manually using a Hamilton syringe with a 30 gauge

removable needle. Following optic nerve surgery, the operated eye was rinsed with sterile

PBS and ophthalmic ointment was applied (Butler AHS). All surgeries were performed

under aseptic conditions. Fourteen days after optic nerve injury, mice were given a lethal
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dose of anesthesia and perfused through the heart with PBS followed by ice–cold 4%

paraformaldehyde.

Histochemical studies

In situ hybridization of mouse retina with cRNA probes specific for NgR1, NgR2, NgR3,

and RPTPσ was carried out as described previously 12,27. For immunohistochemical

procedures, cryosections of adult retina were stained with anti–calbindin (Swant, 1:2,500

dilution) or anti calretinin (Swant, 1:2,500 dilution), and then counterstained with Hoechst

33342 (1:30,000 dilution). To assess axon density and myelination, optic nerves were

embedded in epon and stained with Toluidine blue. To assess retinal ganglion cell death at

various time points following optic nerve injury, retinal sections were stained with anti–class

III–β–tubulin (TuJ1), and in some instances, with anti–active caspase–3 (Promega).

For intraocular injections of anterograde tracer, 6–week–old mice received bilateral

injections (2μl) of 1μg/μl Alexa 488– and Alexa 594–conjugated Cholera Toxin β
(Invitrogen) in the left and right eye, respectively. Five days post–injection, mice were

perfused transcardially, and their brains were dissected, post–fixed in 4 % paraformaldehyde

overnight, and cryoprotected in 30% sucrose overnight. Brain tissue was embedded in OCT

Tissue–Tek Medium (Sakura Finetek) and coronal sections (50μm thickness) were imaged.

To visualize regenerating axons in the injured optic nerve, eyes with optic nerves attached

were dissected, post–fixed, and cryoprotected. Optic nerves were embedded and longitudinal

sections (14μm thickness) were stained with anti–GAP–43. The appropriate Alexa Fluor–

conjugated secondary antibody (Invitrogen) was then used for fluorescent labeling.

Statistical analysis

For quantification of neurite outgrowth, UTHSCSA ImageTool for Windows was used, and

processes equal or longer to approximately one cell body diameter were measured. For each

condition, at least 150 neurites were quantified, and the mean and SEM of neurite length for

each genotype was determined from multiple, independent experiments. For quantification

of retinal ganglion cell death, the density of TuJ1–positive cells in the ganglion cell layer per

field of view (at least 10 sections, 3 independent experiments per condition) was counted.

For quantification of activated caspase–3–positive retinal ganglion cells, the number of cells

labeled for activated caspase–3 was calculated as a percentage of the total number of cells

(TuJ1–positive) per field of view (at least 10 sections, 3 independent experiments per

condition). Quantification of optic nerve binding assays and in situ hybridization (at least 20

sections, 4 independent experiments per condition) was performed as previously

described 50, using Microsuite Five (Olympus) quantification software. All data were

analyzed using one–way analysis of variance followed by Tukey’s post–hoc comparisons.

All statistics were performed using SigmaStat 3.0 for Windows (Systat Software).

To assess regenerative axonal growth, the number of GAP–43–positive axons at

prespecified distances from the injury site was counted in at least three sections per nerve.

These numbers were converted into the number of regenerating axons per nerve at various

distances as described previously 38. All data were analyzed using one–way analysis of

variance followed by Tukey’s pos–hoc comparisons. All statistics were performed using

GraphPad Prism 5.00 (GraphPad Software). Our finding that loss of all three NgRs elicits

significant retinal ganglion cell regeneration is based on two independently generated data

sets produced by two independent surgeons (K.T.B. and Y.K). Both data sets were analyzed

separately and lead to the same conclusions (Supplementary Table). In addition, no

significant differences in axon regeneration following injury (with or without intraocular
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Zymosan injection) were observed between mice on three different genetic backgrounds

(129, C57BL/6, BALB/c) (data not shown).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Loss of all three Nogo Receptors results in enhanced growth on CNS myelin
(a) Postnatal day 7 (P7) cerebellar granule neurons (CGNs) from WT, NgR1−/−, NgR12−/−,

and NgR3−/− pups are strongly inhibited when plated on crude CNS myelin substrate (40μg/

ml). In marked contrast, CGNs from NgR triple mutant (NgR123−/−) mice grow longer

neurites on CNS myelin. On CNS myelin isolated from NogoABC;MAG;OMgp triple null

(NMO−/−) mice (40μg/ml), CGNs from WT, NgR1−/−, NgR12−/−, and NgR3−/− pups show

enhanced neurite outgrowth. A further release of inhibition is observed when NgR123−/−

neurons are plated on NMO−/− CNS myelin. On a BSA control substrate, neurite length of

all five genotypes is comparable. (b) Quantification of neurite length. At least 300 neurites

of TuJ1–labeled cells were counted per condition (n=9 independent experiments). Light gray

bars (BSA); black bars (WT myelin); dark gray bars (NMO myelin). Results are presented

as mean ±SEMs. ** P< 0.001 (one way ANOVA, Tukey’s post–hoc). Scale bar, 50μm.
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Figure 2. NgR1 and NgR3, but not NgR2, contain two discontinuous and evolutionarily
conserved sequence motifs necessary for binding to brain tissue
(a) Coronal sections of E18 rat brain showing the binding pattern of AP–NgR1 and AP–

NgR3. No binding is observed for AP–NgR2. (b–c) Binding of (b) NgR1–Fc and (c) NgR3–

Fc to E18 brain sections is abolished upon deletion of a cluster of basic residues (motif m2)

in the stalk region. (d) Schematic of receptor deletion constructs and their relative binding to

E18 rat brain tissue compared to soluble NgR1 [NgR1(ΔGPI)]. Soluble NgR1 (red) and

NgR3 (yellow), but not NgR2 (green), bind strongly to brain tissue sections. The LRRs of

NgR1, previously shown to participate in myelin inhibitor binding, are dispensable for

binding to neural tissue. Deletion of a cluster of basic amino acid residues in the C–terminal

region of the NgR1 and NgR3 stalk (motif m2), or replacement of these residues with

alanines [NgR1(7ala)], completely abolishes binding. (e) Sequence alignment of binding

motifs m1 and m2 of NgR1 and NgR3. In the LRR–CT domain, residues F278 and R279 in

NgR1 and residues F273 and R274 in NgR3 (motif m1) are important for GAG binding.

Motif m2 is comprised of a cluster of basic amino acids, including residues 414–426 in

NgR1 and residues 403–415 in NgR3. The conserved residues are bolded and the basic

residues are in blue. Scale bar, 40μm.
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Figure 3. NgR1 and NgR3 interact directly with specific GAGs
(a) Binding of soluble AP–NgR1 to P1 rat brain tissue sections is sensitive to heparinase

(Hep’ase) and chondroitinase–ABC (Ch’aseABC) treatment (1unit/ml). (b) Binding of

soluble AP–NgR1 and AP–NgR3 to E18 rat brain tissue sections in the presence of PBS

(vehicle control), 50μg/ml monosulfated CS–GAGs (CS–A, CS–B, or CS–C), or 50μg/ml

disulfated CS–GAGs (CS–D or CS–E). Only CS–B, CS–D, and CS–E compete effectively

with NgR1 and NgR3 for binding to brain tissue sections. (c) ELISA binding studies

revealed a direct association of soluble NgR1 and RPTPσ(1–3) with specific GAGs (insets

show Scatchard plot analysis). The calculated Kds for CS–B, CS–D, CS–E, and heparin are

3.2, 1.3, 1.0, and 1.2nM (NgR1) and 1.4, 3.0, 0.1, and 0.1nM [RPTPσ(1–3)], respectively.

(d) WT P7 rat CGNs are strongly inhibited when plated on substrate–bound CSPGs. Long

neurites are seen on a BSA control substrate. In the presence of NgR1–Fc or RPTPσ(1–3)–

Fc, but not NgR1(7ala)–Fc or IgG1 control, CSPG inhibition is abolished. On a BSA

substrate, soluble receptors do not influence neurite outgrowth. Quantification of neurite

length is shown as a percentage of the IgG1–BSA control (100%). At least 300 neurites of

TuJ1–labeled cells were counted per condition (n=4 independent experiments). Gray bars

(BSA); black bars (CSPGs). Results are presented as mean ±SEMs. ** P< 0.001 (one way

ANOVA, Tukey’s post–hoc), n.s.= not significant. Scale bar: a, 20μm; b, 40μm; d, 50μm.
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Figure 4. Binding sites for MAIs and CSPGs on NgR1 are distinct and dissociable
(a) In transiently transfected COS–7 cells, wildtype NgR1 and the GAG–binding–deficient

mutant [NgR1(7ala)] show very similar binding of the MAIs AP–Nogo66, MAG–Fc, and

AP–OMgp. The NgR1 fragment F278–E445 (AP–NgR1Δ15CT+stalk) is sufficient for high–

affinity binding to neural GAGs. When residues 278–445 in NgR1 are replaced with the

corresponding sequences of NgR2, resulting in construct NgR1C27–K277/NgR2V281–L420,

binding of MAIs is not diminished compared to wildtype NgR1. Ligand binding to GFP–

transfected–COS 7 cells is shown as a negative control. (b) Schematic of NgR1, showing the

regions necessary for binding of MAIs and GAGs. The GAG–binding motifs m1 and m2 of

NgR1 are distinct and dissociable from the Nogo–, MAG–, and OMgp–binding sequences.

(c) In the presence of bath applied CS–B, CS–D, or CS–E GAGs (1mg/ml), binding of AP–

Nogo66 to NgR1–expressing COS–7 cells is not altered. Scale bar, 20μm.
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Figure 5. Nogo receptors mediate CSPG inhibition
(a) In vitro, WT P7 CGNs are strongly inhibited when plated on substrate–bound CSPGs

(10μg/ml). Studies with CGNs from NgR1−/−, NgR12−/−, and NgR3−/− mutants revealed no

significant release of CSPG inhibition. Loss of all three NgRs (NgR123−/−) or RPTPσ alone

(RPTPσ−/−) leads to a significant, yet incomplete release of CSPG inhibition. On a control

substrate (BSA), neurite length of all six genotypes is comparable. (b) Quantification of

neurite length. Gray bars (BSA); black bars (CSPGs). At least 300 neurites of TuJ1–labeled

cells were counted per condition (n=8 independent experiments). Results are presented as

mean ±SEMs. ** P< 0.001 (one way ANOVA, Tukey’s post–hoc), n.s.= not significant.

Scale bar, 70μm.
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Figure 6. Binding of soluble NgR1 Fc and NgR3 Fc to optic nerve is enhanced by injury
(a) Longitudinal sections of uninjured and injured adult mouse optic nerve (7 days following

retro–orbital nerve crush) were incubated with NgR1–Fc, NgR3–Fc, NgR1(7ala)–Fc, and

NgR3Δm2–Fc. Soluble NgR1–Fc and NgR1(7ala)–Fc, but not NgR3–Fc or NgR3Δm2–Fc,

bind weakly to uninjured optic nerve sections. Following injury, binding of NgR1–Fc and

NgR3–Fc is strongly increased and depends on the presence of the proteoglycan binding

motif m2, as no increase was observed for NgR1(7ala)–Fc and NgR3 m2–Fc. Following

crush injury to the optic nerve, GFAP immunoreactivity is upregulated along the entire

nerve. Treatment of injured optic nerve sections with 1unit/ml chondroitinase ABC–

(Ch’ase) strongly reduces NgR1–Fc and NgR3–Fc binding, suggesting that endogenous

CSPGs participate in the binding of NgR1 and NgR3. (b) Quantification of binding to optic

nerve sections. All binding is shown as a fold increase relative to AP–Fc. At least 20

sections were counted per condition (n=4 independent experiments). Light gray bars

(Uninjured); black bars (Injured); dark gray bars (Injured + Ch’ase). Results are presented as

mean ±SEMs. ** P< 0.001 (one way ANOVA, Tukey’s post–hoc), n.s.= not significant.

Scale bar, 30μm.
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Figure 7. Retinal stratification, optic nerve myelination, and RGC central projections appear
normal in NgR123−/− mice
(a) Sections of adult wildtype (WT) and Nogo receptor triple mutant (NgR123−/−) mouse

retina were subjected to in situ hybridization with digoxigenin–labeled cRNA probes

specific for NgR1, NgR2, and NgR3 transcripts. All three receptors are strongly expressed

in the ganglion cell layer (arrow) and the inner nuclear layer, but are absent from the outer

nuclear layer of the retina. No signal was detected on parallel–processed sections of

NgR123−/− retina. (b) Hoechst 33342 nuclear staining, as well as anti–calbindin and anti–

calretinin immunolabeling, of adult WT and NgR123−/− retina did not reveal any noticeable

differences in retinal organization among the two genotypes. (c) Toluidine blue labeling of

epon–embedded adult WT and NgR123−/− optic nerve cross sections reveals a comparable

number of axons and degree of myelinated fibers. (d–f) The fidelity of RGC central

projections in six–week–old WT and NgR123−/− mice was assessed by anterograde fiber

tracing. Five days after injection of Alexa 594–conjugated Cholera Toxin β into the right

eye and Alexa 488–conjugated Cholera Toxin β into the left eye, mice were sacrificed,

perfused, and brain sections analyzed by fluorescence microscopy. Right eye (red) and left

eye (green) RGC projections to the (d) superior colliculus, (e) suprachiasmatic nucleus and

(f) lateral geniculate nucleus in NgR123−/− mice are indistinguishable from age–matched

WT controls. Scale bar: a, b, 80μm; c, 5μm; d, 100μm; e, f, 60μm.
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Figure 8. NgR123−/− and NgR13/RPTPσ−/− compound mutants show enhanced fiber
regeneration following crush injury to the optic nerve
Two weeks following injury, regenerating axons in optic nerve sections were visualized by

anti–GAP43 immunolabeling. The injury site is marked with an asterisk. (a) WT mice show

very limited regenerative axonal growth following injury. (b) In NgR123−/− mice, many

GAP43+ fibers grow beyond the lesion site. (c) In NgR13/RPTPσ−/− (NgR13/σ−/−) mice, a

further increase of GAP43+ fiber growth is observed. (a′), (b′), and (c′) depict higher

magnification images of the region 0.5 to 0.75mm distal to the lesion site [dotted line in

images (a), (b), and (c), respectively]. (g) Quantification of the number of GAP43+ axons at

0.2 to 1.2mm distal to the lesion site. Light gray bars (WT, n=6); black bars (NgR1−/−, n=7);

purple bars (RPTPσ−/−, n=5); dark gray bars (NgR123−/−, n=8); blue bars (NgR13/σ−/−,

n=4). (d) Intraocular injection of Zymosan enhances regenerative axonal growth in WT

mice. A further increase is observed in (e) NgR123−/− mice, which is further enhanced in (f)
NgR13/σ−/−, mice. (d′), (e′), and (f′) depict higher magnification images of the region 0.5

to 0.75mm distal to the lesion site [dotted line in images (d), (e), and (f), respectively]. (h)

Quantification of the number of GAP43+ axons at 0.2 to 1.6mm distal to the lesion site in

Zymosan–injected mice. Light gray bars (WT + Zymosan, n=6); black bars (NgR1−/− +

Zymosan, n=6); purple bars (RPTPσ−/− + Zymosan, n=4); dark gray bars (NgR123−/− +

Zymosan, n=8); blue bars (NgR13/σ−/− + Zymosan, n=3). Results are presented as mean

±SEMs. ** P< 0.05 (one way ANOVA, Tukey’s post–hoc). Scale bar, 200μm.
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