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Background. Accurate classi	cation for di
erent non-Hodgkin lymphomas (NHL) is one of the main challenges in clinical
pathological diagnosis due to its intrinsic complexity.�erefore, this paper proposes an e
ective classi	cationmodel for three types
of NHL pathological images, includingmantle cell lymphoma (MCL), follicular lymphoma (FL), and chronic lymphocytic leukemia
(CLL). Methods. �ere are three main parts with respect to our model. First, NHL pathological images stained by hematoxylin
and eosin (H&E) are transferred into blue ratio (BR) and Lab spaces, respectively. �en speci	c patch-level textural and statistical
features are extracted fromBR images and color features are obtained fromLab images both using a hierarchical way, yielding a set of
hand-cra�ed representations corresponding to di
erent image spaces. A random forest classi	er is subsequently trained for patch-
level classi	cation. Second, H&E images are cropped and fed into a pretrained google inception net (GoogLeNet) for learning high-
level representations and a so�max classi	er is used for patch-level classi	cation. Finally, three image-level classi	cation strategies
based on patch-level results are discussed including a novel method for calculating the weighted sum of patch results. Di
erent
classi	cation results are fused at both feature 1 and image levels to obtain a more satisfactory result. Results. �e proposed model is
evaluated on a public IICBU Malignant Lymphoma Dataset and achieves an improved overall accuracy of 0.991 and area under
the receiver operating characteristic curve of 0.998. Conclusion. �e experimentations demonstrate the signi	cantly increased
classi	cation performance of the proposed model, indicating that it is a suitable classi	cation approach for NHL pathological
images.

1. Introduction

Lymphoma is a type of malignant tumors that originate from
the lymphoid hematopoietic tissues [1], which are divided
into the Hodgkin lymphomas (HL) and the Non-Hodgkin’s
lymphomas (NHL). NHL is one of the common malignant
tumors with the fastest growth rate, and chronic lymphocytic
leukemia (CLL), follicular lymphoma (FL), and mantle cell
lymphoma (MCL) are the major types of NHL. Patho-
logical characteristics vary complicatedly among di
erent
lymphoma subtypes. And the vision disparities of di
erent
subtypes are indistinguishable. �erefore, accurate classi	ca-
tion of various lymphoma histopathology has become one of
the di�cult challenges for hematologists and pathologists, as
well as the development of computer vision methods.

Histopathological image analysis is an important part
of computer aided diagnosis (CAD). Complex structure
information in pathological images provides great value for
diagnosis of many diseases including most tumors. �ere is
a mass of complicated pathological information including
abundant spatial structure, various cell types, and variation
in cellmorphology in histopathological images. Traditionally,
these characteristics are found and analyzed by pathologists
with clinical experiences, which is time-consuming and
ine�cient. With the development of CAD, approaches have
been designed to automatically extract expressive features
from histopathological images for subsequent di
erentiation
tasks and then to facilitate disease diagnosis.

Traditionally, there are a large number of feature extrac-
tion and classi	cation approaches based on traditional
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machine learning or handcra�ed features which re
ect low
level characteristics involving morphological descriptors,
spatial arrangement, color and texture features. Sertel et al. [2]
obtained semantic description by model-based intermediate
representation (MBIR) and combined MBIR with low level
texture features for the grading of the follicular lymphoma
(FL). However, those three grades of FL have signi	cant
morphological di
erences which make it easier to identify
them. Baker et al. [3] utilized a coarse-to-	ne method to
extract the local features in a two-stage way for brain tumor
whole slide classi	cation, but they also pointed out that
the method might not be e�cient for small pathological
image classi	cation with identi	ed lesions. �ere are some
approaches with good classi	cation performances but just for
binary classi	cation tasks. Fukuma et al. [4] extracted mor-
phological features and spatial arrangement features based on
graph theory as feature descriptions. Cao et al. [5] combined
texture features, spatial distribution, and semantic features of
the nuclear structure to describe the various morphology of
the nucleus and the structural and interpretation information
of the image. �ese binary classi	cation methods are hard
to be extended to multiclass classi	cation. Zhou et al. [6]
developed an image classi	cation platform to give a standard
solution for di
erent problems, which sacri	ced pertinence
for speci	c disease and resulted in a low accuracy of 70.9%
for lymphoma classi	cation. Meng et al. [7] developed an
approach to lymphoma classi	cation that divided images
into 25 subblocks from which a set of 505 color and texture
features were extracted. However, its weighting scheme was
performed in a class level and majority voting was still used
for image label acquisition, which might lead to losing a part
of local information. Song et al. [8] proposed a method to
extract high-dimensional multimodal descriptor, and subcat-
egory discriminant transform (SDT) was used to enhance
discriminative power of descriptors. �is approach extracted
su�cient image information and achieved decent results, but
it used deep learning method just for comparison purpose
instead of bene	tting from making use of the full power of
deep learning. �ose above approaches extract customized,
manually designed features which require domain-speci	c
knowledge, and the extracted features just represent a portion
of the image characteristics.

With the rapid development of the theory of deep
learning, automatic learning approaches are developed for
feature extraction and medical image classi	cation. Zhou et
al. [9] proposed a multispectral feature learning model based
on convolutional sparse coding (CSC) and spatial pyramid
matching (SPM), which could automatically learn a set of
convolution 	lter banks from separate spectra. Vu et al.
[10] proposed an automatic feature extraction framework
by learning class-speci	c dictionaries, and a low-complexity
method was used for histopathology classi	cation and dis-
ease grading. �ey tried to explore the histopathological
image classi	cation issue from the perspective of feature
discovery and dictionary learning and obtained promising
results in di
erent datasets. Approaches based on convolu-
tional neural network (CNN) have been widely applied in
various medical visual recognition tasks and demonstrated
promising performances [11]. Gao et al. [12] proposed an

automatic framework for HEp-2 cell image classi	cation,
where a CNN with three convolutional layers is employed.
�e recently prevailed various CNN pretrained on ImageNet
can be explored to extend this work. Sirinukunwattana et
al. [13] proposed spatially constrained convolutional neu-
ral network (SC-CNN) for nucleus detection and a novel
neighboring ensemble predictor (NEP) was developed to
more accurately predict the cell nuclei class. Note that those
methods based on deep learning are awfully time consuming
since they need the training process.

Recently, there are some approaches that combine tra-
ditional handcra�ed features and high-level representations
of deep learning methods. Codella et al. [14] extracted a
combination of local binary pattern (LBP) and CNN features
based on several enhanced and segmented results, so it
required an early precise segmentation process. Song et al.
[15] proposed Fisher vector (FV) encoding combined with
multiple types of local features including high-level features
fromCNN and applied a novel separation-guided dimension
reduction method, which achieved state-of-the-art results.
However, it had low feature extraction e�ciency due to
complicated computation.

To sum up, while a number of approaches have been pro-
posed, accurate histopathological image classi	cation, espe-
cially for malignant lymphoma images, still remains a chal-
lenging task due to some issues. First, the key to classi	cation
task is feature extraction and the above methods all explored
di
erent features to represent image information, but more
e�cient and complete representations still need extracting
in an appropriate way. Second, some methods performed
classi	cation by employing patches-division and showed
their ability for local knowledge extraction, but they have
not considered di
erent classi	cation contributions for those
cropped patches with diverse locations in one image. �ird,
most of those methods were just based on either handcra�ed
features or high-level features. Some approaches combined
them together, but still needed improvement to achieve better
performance with lower computational complexity.

In this study, to address these problems, we propose a
hierarchical local information and transfer learning based
approach speci	c to transformed image spaces for the clas-
si	cation of MCL, FL, and CLL histopathological images.
Original RGB images are transformed to blue ratio and
CIE Lab image space [16] to amplify the texture and color
information, respectively. �en image patches are cropped
at two hierarchies; parent patches are cropped from trans-
formed images and subpatches are obtained from parent
patches by utilizing sliding window. Handcra�ed features
are extracted from subpatches speci	c to di
erent image
spaces and parent-patch features are statistically computed
from corresponding subpatches representations. Random
forest classi	er is trained for parent patch classi	cation.
Di
erent strategies for image level classi	cation are dis-
cussed, including a novel distance matrix weighting (DMW)
method for calculating weighted sum of parent patch results.
Furthermore, a pretrained Google Inception Net v3 model
is 	ne-tuned to perform patch-level classi	cation based on
transfer learning. Prediction fusion at both feature and image
level is employed for more adaptable performance.
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Figure 1: �e lymphoma histological image samples for di
erent NHL subtypes: (a) CLL, (b) FL, and (c) MCL.

�e contributions of this paper can be summarized as
follows.

(i) It proposes a novel lymphoma subtypes classi	cation
approachutilizing amultiple hierarchies classi	cation
method from local to global, which improves the
completeness of features and reduces the spatial com-
plexity of computation simultaneously by combining
small patch level feature extraction and e�cient
image level classi	cation strategies.

(ii) It shows the bene	ts of appropriate image level clas-
si	cation strategy based on patch level results by
comparing three strategies, namely, majority voting,
mean score of patches, and weighted sum of patch
scores.

(iii) It proposes a novel distancematrix weighting (DMW)
method to calculate appropriate weights for patch
level results and presents improved performance.

(iv) It presents that more e
ective features can be extract-
ed from transformed image space. Di
erent image
space transformations are employed to enhance par-
ticular image characteristics. Space-speci	c feature
set can be extracted which is better than features
extracted from original images.

(v) It shows that transfer learning technique based on
deep CNN network can provide better e�ciency for
lymphoma classi	cation. Pretrained Google Incep-
tion Net is 	ne-tuned to improve the performance
and leave out time-consuming training process simul-
taneously.

�is paper is organized as follows. Section 2 introduces
the dataset used in this study and illustrates the detailed
methodology. Section 3 shows the experimental setup and
results. Section 4 presents the comparison with other existing
works and discussions for experiment performances. Finally,
the conclusions are provided in Section 5.

2. Materials and Methodology

2.1. Dataset. In this study, a public dataset named IICBU
malignant lymphoma dataset [18] with respect to studies in
National Cancer Institute and National Institute on Aging,
both in the United States [19, 20], is used. �ere are 10

cases for each of these three lymphoma types, namely, CLL,
FL, and MCL, and in total 30 H&E stained lymphoma
histological slides used for this study. A Zeiss Axioscope
white lightmicroscopewith a 20× objective and a color digital
camera AxioCam MR5 are used to obtain these images.
Lesion regions in these slides are digitally photographed
and reserved without compression in the tif format, using
RGB color model, with 1388 × 1040 resolution and 24 bits
quantization. �e 	nal dataset contains 374 images with 113,
139, and 122 regions of CLL, FL, and MCL. In our study, the
whole data set is randomly divided into training and testing
sets by a ratio of 7:3.

Figure 1 shows the samples of histological images em-
ployed in our experiments to evaluate the proposed approach.
A CLL sample is depicted in Figure 1(a), an FL sample
is shown in Figure 1(b), and an MCL sample is presented
in Figure 1(c). �ese images are from biopsies of di
erent
patients in di
erent hospitals, so the inner class di
er-
ence could be prominent because of the staining variance
[21], which makes the classi	cation task quite challeng-
ing.

2.2. Method. �e proposed classi	cation pipeline takes an
H&E stained malignant lymphoma image section as input
and 	nally yields as output the image level classi	cation result
with likelihood estimations for each class. Figure 2 illustrates
the overall 
ow of our proposed methodology which has four
basic steps.

(a) Image Space Transformation. Both single channel and
multiple channel image transformation methods are consid-
ered. �e original images are mapped into the blue ratio
gray space to emphasize cellular morphology. �e CIE Lab
color space transformation is applied to original RGB images
to amplify the color characteristic. �ese two space trans-
formation methods are used to enhance di
erent features
of original images by which targeted discriminative features
can be extracted subsequently. �is process can also be
considered as a preprocessing step.

(b) Handcra�ed Features Extraction and Classi	cation. A set
of texture and statistical features are obtained from blue
ratio gray space and color features are extracted from Lab
space images. A hierarchical local-to-global feature extrac-
tionmethod is used to obtain complete patch-wise features in



4 BioMed Research International

Blue Ratio

Lab

v

Color 
v

Textural

Statistical

Sub-patch Features 

Patch-wise
Feature

Parent-patch

Parent-patch 

Features

Random

Forest
Crop 

Patches

Sliding 

Window

Fine-tuning Pre-trained GoogleNet

So�max

Pre-processing Handcra� Feature Extraction Learn Patch-

level Classi�er

Original Images

Pre-processing

Handcra� 
Feature

GoogleNet +So�max

Patch-level
Prediction

Patch-level 
Prediction

Image-level

Prediction

Image-level 
Prediction

Random
Forest

Final Image-
level Prediction

Crop 

Patches

Crop 

Patches

Image- Level 
Prediction Strategies

Automatic Feature Extraction & Learn Classi�er

0

S 1

2

...

...

...

...

Patch-level

Labels

Patch-level

Labels

Image-level Labels

Patch/Image Level Supervised Learning

Original Images

Training

Testing

Sliding

Window

Figure 2:�e overall 
ow of the proposed method.

di
erent scales. �en di
erent feature subsets are combined
to train a patch level random forest classi	er.

(c) Transfer Learning BasedHigh-Level Feature Extraction and
Classi	cation. A pretrained deep convolutional neural net-
work is 	ne-tuned to extract patch level automatic features
from cropped original images. A so�max classi	er is con-
nected to the output layer to implement patch level classi	-
cation.

(d) Multi-Path Integration and Image Level Classi	cation.
Image level prediction is calculated based on patch level
prediction of this image using several strategies. Weighted
fusion in both patch level and image level prediction is used
to integrate results from di
erent paths.

Detailed description of the proposed pipeline’s steps is
shown in Figure 2.

2.2.1. Image Space Transformation

(A) Blue Ratio Image. Chang et al. [22] proposed that RGB
images could be transformed into a one channel gray space
named blue ratio image to enhance the nuclear dye and
attenuate background. And it is time-consuming or even
impractical to extract some kinds of handcra�ed features in
three channel images. �erefore, in order to calculate texture
and statistical features of original images in a more e�cient
way, the original RGB images can be mapped into blue ratio
image space. �e conversion policy is de	ned as

�� = 100 × �
1 + � + � × 256

1 + � + � + � (1)

where �, �, and � are intensities of blue, red, and green
channels andBR represents the intensity at the corresponding
position in transformed blue ratio gray space. �e 	rst term
enhances the nuclear signal and the second term attenuates
the background. Figure 3(b) illustrates the blue ratio transfor-
mation result for the original image as shown in Figure 3(a).
Subsequently, texture and statistical features are extracted in
the transformed gray level images.

(B) CIE Lab Color Space. �e CIE Lab color space is a color
mode enacted by International Commission on Illumination
(CIE) in 1976 [16]. It is a device-independent color system
based on physiological features. It has three basic coordinates� ∗ � ∗ �∗, abbreviated as Lab [23]. L component represents
the luminosity, and � and � represent the green-red and blue-
yellow color value components, respectively. �e range of L
channel’s value is [0, 100], which corresponds to di
erent
lightness from black to white. �e range of � channel’s value
is [-128, 127] and b channel has values in range [-128, 127].
Figure 3(c) is a sample of Lab color space transformation
result for the original image in Figure 3(a).

RGB color space is transformed into XYZ color space
	rst and then the XYZ space is converted into Lab color
space [24], as given by (2) and (3), respectively. Subsequently,
color features are extracted from the transformed Lab
images.

[[
[

�


�
]]
]
= [[
[

0.412453 0.357580 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

]]
]
[[
[

�
�
�
]]
]

(2)



BioMed Research International 5

(a) (b) (c)

Figure 3: Sample patches of di
erent image spaces. (a) One sample patch of original RGB image for CLL. (b) Blue ratio image. (c) Lab color
space image.
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where �� = 0.950456, 
� = 1.0, and �� = 1.088754. �(�) is
de	ned as

� (�) =
{{{{{{{
�1/3 if � > ( 6

29)
3

1
3 (

29
6 )
2 � + 4

29 otherwise

(4)

2.2.2. Handcra�ed Feature Extraction

(A) Overall Process. Based on the image preprocessing results
discussed in Section 2.2.1, discriminative patch-wise manual
features are extracted in a local to global way. �e entire
process for manual feature extraction can be expounded in
four major steps as follows.

(a) Cropping Parent Patches. Big parent patches are cropped
in preprocessed 1388 × 1040 images with window size �1.
Parent patches are cropped in a nonoverlapping way to
reduce subsequent computation complexity. An appropriate
value of parent window size �1 is necessary to capture local
information completely and precisely.

(b) Cropping Subpatches. Relatively smaller subpatches are
cropped from parent patches using sliding window with
window size �2. In order to fully extract local information,
subpatches are cropped in an overlapped way with overlap-
ping ratio ��.
(c) Extracting Subpatch Features. �e preprocessed single or
multiple channel images with original size are 	rst sliced into�1 × �1 parent patches. �en �2 × �2 subpatches are obtained

from each parent patch using sliding window. Speci	c n-
dimensional feature sets are extracted from subpatch. For
example, texture features are extracted from single channel
patch, and three channel Lab images contribute color fea-
tures.

(d) Calculating Parent Patch Features. Since each parent
patch has its corresponding subpatches set, its features can
be generated from subpatches’ features. As described in
Section 2.2.2, n-dimensional features are extracted from each
subpatch. First, we can calculate the mean and standard
deviation as well as the 10th and 90th percentile of each
dimension of the n features among all subpatches cropped
from this parent patch, which yields a total of 4n-dimensional
features as the parent patch’s representation.

Finally, 4n features at parent patch level are extracted.
Since it is more likely that parent patches contain complete
and representative information, computation of features from
subpatch level to parent patch level is done to obtain more
meaningful and discriminative features. �e detailed kinds
of original features extracted from subpatch are discussed
below.

(B) Features Extraction in Blue Ratio Images. As described
in Section 2.2.1, blue ratio image emphasizes the foreground
in H&E stained histopathology images, namely, the nuclear
structure, and cellular morphology is discriminative for
tumor classi	cation. In addition, blue ratio image is a single
channel gray space image which reduces computation cost of
some texture and statistic features.

Local binary pattern (LBP) texture representations and a
set of statistical features, expressed as ���� and ���	, respec-
tively, as explained below, are extracted from processed blue
ratio image in view of its characteristics.

LBP is a local texture descriptor which has the charac-
teristics of simple calculation, insensitivity to illumination
changes, and good texture expression ability [25].�e speci	c
operation steps are as follows:

(a) Set the center pixel of the window with a 	xed radius
r and sampling points’ number p as the threshold, and
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compare the pixel values of the p sample points with
it.

(b) If the pixel value of the sample point is greater than
the center pixel value, the corresponding position of
this pixel point is marked as 1, otherwise it is 0.

(c) �e above procedure produces a p-bit binary number,
which is the LBP value of the center pixel of the
window.

�erefore, an LBP operator with  sample points in
a circular region of radius � will produce 2
 patterns. As
the neighborhood sampling points’ number  increases, the
type of binary pattern augments exponentially. �e statistical
histogram of the LBP patterns is usually used to express
image information when the LBP operator is used for texture
classi	cation, and excessive pattern types will result in too
large data quantity and too sparse histogram. �erefore, it
is necessary to perform dimensionality reduction on the
original LBP patterns, that is to use fewer feature dimensions
to represent image information e
ectively.

Ojala et al. proposed using uniform local binary patterns
(ULBP) to reduce the dimension of LBP operator since most
LBP patterns only contain two 0-1 or 1-0 transitions in real
images [26]. �e “uniform pattern” is de	ned as follows: if
the cyclic binary value corresponding to an LBP has at most
two 0-1 or 1-0 transitions, this binary pattern is one kind of
uniform pattern. Speci	cally, let p be the sampling points’
number, there are 2 patterns for 0 transition, 2( −1) patterns
for 1 transition, and ( − 1)( − 2) patterns for 2 transitions.
Moreover, nonuniform patterns with more than 2 transitions
are regarded as one pattern; thus a total of 2 + 2( − 1) +( − 1)( − 2) + 1 =  ( − 1) + 3 patterns are generated.
As a consequence, the statistical histogram dimension of LBP
is reduced from 2
 to  ( − 1) + 3. For instance, for a 	xed
radius �, when the sampling points number  = 8, the feature
dimension is reduced from 28 = 256 to 8 × (8 − 1) + 3 = 59.

�e detailed LBP and statistical features extraction set-
tings are as follows:����: ULBP for radii 1 and 2 with 8 sampling points is
extracted, which is 118-dimentional for each subpatch. So ����
contains 472 features for each parent patch.���	: 9 statistical features of the gray level histogram are
computed for each subpatch includingmaximum, minimum,
sum, mean, standard deviation, median, 	rst and third
quartiles, and interquartile range. So ���	 contains 36 features
for each parent patch.

(C) Features Extraction in Lab Images. RGB color channels
tend to be a
ected by color variance in images; hence Lab
color space is used to extract color features. As illuminated
in Section 2.2.1, Lab color space contains three channels
of which � and � channels represent color component.
�erefore, the color representation ��	� is extracted as follows:��	�: Extracting statistics from color histogram with 85
bins of a and b channels, respectively, and cascading the two
results. As a result, 170-dimentional features can be extracted
from each subpatch and ��	� contains 680 features for one
parent patch.

2.2.3. High-Level Feature Extraction. CNN is a multilayer
neural network including convolutional, pooling, and fully
connected layers, which can learn features in an automatic
and supervised way. It has shown success in biomedical
imaging applications [13, 27, 28]. Some customized deep
CNN models trained on ImageNet have displayed improved
performance, and their e
ectiveness on biomedical images
implies natural and biomedical images which virtually share
similar low level features [29].

Since a deep network usually contains a large number
of parameters that need to be fully trained and optimized,
suitable parameter initialization is extremely helpful for
training process, which is of great importance for model’s
	nal performance. Poor parameter initialization may lead to
slow convergence rate and insu�cient parameter training,
especially for small biomedical data sets. �e deep network
trained on ImageNet performs well on the complex classi	ca-
tion tasks of other natural images, and some existing studies
have shown that classi	cation network learning from natural
images has certain transfer e
ects on biomedical image data
sets [30]. �is e
ectiveness, which may originate from the
similarity of natural images and biomedical images in some
low level texture and shape features, has also been veri	ed
by experiments in this paper. �erefore, the pretrained deep
network on ImageNet can provide excellent parameter ini-
tialization. �is paper makes some customized modi	cations
to the network output structure based on the initialized
parameters and performs 	ne-tuning process on the whole
network using the lymphomadata set tomake itmore suitable
for our classi	cation task.

Speci	cally, the Google Inception Net (GoogLeNet) v3
model pretrained on ImageNet [31] is applied to classi	cation
task in this study. It is a deep network with 42 layers and
provides state-of-the-art classi	cation result for ImageNet
dataset. �e original RGB image is cropped into �3 × �3
patches and 2048-dimensional local features �� are densely
extracted from the last fully connected layer for each patch.
�e patches are used to perform a basic 	ne-tuning process,
that is, to add a fully connected linear layer with the true
number of classes a�er the last layer in GoogLeNet and
perform backpropagation just for last fully connected layers.
In this way, the pretrained GoogLeNet is customized to 	t
characteristics of this speci	c data set. Finally, a so�max clas-
si	er is connected a�er the network to perform classi	cation.
Parameters in other layers keep invariant as in the pretrained
model.

By utilizing transferred GoogLeNet, time used for the
training process can be saved signi	cantly; meanwhile, the
classi	cation performance is improved due to powerful
representation ability and high universality of pretrained
GoogLeNet.

Note that training a new customized CNNmodel for spe-
ci	c biomedical imaging application is a more usual choice
than using pretrained models. A non-pretrained Google
Inception Net v3 implemented by ourselves is experimented
for comparison. �emodel is trained totally using datasets in
this study. Experimental result shows the improved e�ciency
of transfer learning in this dataset with small number of
biomedical images.
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2.2.4. Integration and Classi	cation

(A) Patch Level Integration and Classi	cation. Di
erent fea-
ture sets are extracted for each parent patch in Sections 2.2.2
and 2.2.3, including LBP features r���, statistical features���	, Lab color features ��	�, and high-level features ��. For
handcra�ed features ����, ���	, and ��	�, an auxiliary random
forest classi	er is trained on speci	c feature set ! to perform
patch level classi	cation. Feature set ! can be a single type
of manual features, namely, ����, ���	, or ��	�, and it can
also be a combination of multiple kinds of features, which
involves a fusion process at feature level. �ere are mainly
two kinds of feature combination modes considered in this
study, which are!1 : {����, ���	} and!2 : {����, ���	, ��	�}, since
feature set !1 is extracted from blue ratio image and !2 is an
expansion of !1 with additional color feature fromLab image.
For high-level feature ��, the so�max classi	er cascaded a�er
GoogLeNet is used for patch level classi	cation.

(B) Image Level Classi	cation. One original sized image
can be cropped into a set of parent patches. �ere are
di
erent methods for parent patch classi	cation as discussed
in Sections 2.2.2, 2.2.3, and 2.2.4. For each parent patch,
the probability scores for three classes can be calculated.
Image level classi	cation can be performed based on par-
ent patch prediction result considering that patches of the
corresponding original image re
ect local knowledge of the
whole image. For image level classi	cation, three strategies
are chosen to make su�cient use of patch level result and
to obtain convictive image level prediction. Two of them are
commonly used approaches illustrated as follows.

(a) Majority Voting (MV). Assume an original image I can be
cropped into m parent patches. Let "1, "2, and "3 denote
the numbers of patches classi	ed as the 	rst, second, and
third classes. #(max(["1, "2, "3]), ["1, "2, "3]) calculates
the 	nal prediction class of the whole image, where #($, %)
is the function that calculates value $’s index in array %.
(b) Mean Score (MS) of All Patches. Since each parent patch
has probability scores for three classes, scores for the whole
image can be calculated taking average over all parent patches’
scores. �e image level classi	cation result can be obtained
based on image scores.

In addition, a novel strategy to calculate weighted sum
of patch scores for image level classi	cation is proposed.
Di
erent patches are corresponding to di
erent locations of
one image and contain various local information, so they own
di
erent discrimination and contribution for classi	cation
task. �erefore, appropriate weights for di
erent patches are
favorable for acquisition of conclusive image classi	cation
result. �e most crucial part is the determination of weights.
A distance matrix weighting (DMW) method is proposed to
determine weights in this study, which is described below.

Suppose the patchwith closer association to other patches
is inclined to provide more contribution to the whole image.
�is hypothesis is made based on the fact that the lymphoma
samples in this study are all sections from lesions, so class-
speci	c characteristics are re
ected onmost cropped patches.

One original image I can be cropped into m parent
patches {&1, &2, . . . , &
}. Speci	c feature set can be extracted
for each parent patch, which generates m patch-wise feature
sets {�1, �2, . . . , �
}. And patch level prediction scores set{�1, �2, . . . , �
} can be obtained from the trained classi	er
based on feature set for each parent patch, where �� is the
classi	cation score for the '�ℎ patch and contains three score
values corresponding to three classes. For one patch &�, a
weight *� should be calculated.

First, a distance matrix -� is generated for all patches
based on their feature values. Let /�� = ;(��, ��) denote
the element of row ' and column < in -�, where ;($, %)
is a function to calculate distance between vectors $ and%, and Euclidean distance is used in our study. �en the
average distance /�� between parent patch &� and all others
is calculated based on-� as follows:

/�� = 1
" − 1


∑
�=1
/�� (5)

In essence, /�� is the mean value of the @�ℎ row in -�,
and the patch with smaller average distance should be given
greater weights. �us a distance score A/� for patch &� is
de	ned by taking the reciprocal of /�� to represent this
inversely proportional relationship, making it convenient to
calculate patch weight.

A/� = 1
/�� = (" − 1) 1

∑
�=1 /�� (6)

�en the weight *� for patch &� is calculated as follows:

*� = A/� 1
∑
�=1 A/� (7)

Finally the image-level classi	cation score A� is obtained
based on patch level prediction scores set A{�1, �2, . . . , �
}
and weights setC{*1, *2, . . . , *
} as shown in the following
equation:

A� =

∑
�=1
*� ⋅ �� (8)

As a result, we consider totally three image-level classi	-
cation strategies denoted asMV,MS, and DMW.

(C) Image Level Integration. Di
erent feature set selection
methods at patch level can be combined with one of the
image level classi	cation strategies. �e probability scores of
multiple methods can be fused at both patch level and image
level. �ere are mainly 	ve method combination modes
experimentalized in this study:

(a) E1(!1+;-C): Feature set!1 at patch level combined
with DMW at image level.

(b) E2(!2 + -A): Feature set !2 at patch level combined
withMSmethod at image level.

(c) E3(!1+!2+;-C): For one original image, two patch

level prediction scores sets A1 = {�(1)1 , �(1)2 , . . . , �(1)
 },
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A2 = {�(2)1 , �(2)2 , . . . , �(2)
 } of cropped parent patches can
be obtained based on !1 and !2, respectively, where�(�)� is the classi	cation score of the image’s '�ℎ parent
patch based on feature set !�. Score fusion at patch
level can be performed by calculatingweighted sumofA1 and A2 to integrate characteristics of two methods.
�en the 	nal patch level probability score set A =*� ⋅ A1 + (1 −*�) ⋅ A2 can be obtained. DMW strategy
is used for image level classi	cation.

(d) E4(�� + ;-C): High-level feature set �� combined
with DMW at image level.

(e) E5(E3 + E4): Weighted summation with weight *� of
image level results A�3 and A�4 from E3 and E4. �e
	nal image level probability score A�5 = *� ⋅ A�3 + (1 −*�) ⋅ A�4.

Method combination modes E1, E2, and E3 are based on
handcra�ed features among which E3 integrates features inE1 and E2, whereas E4 is totally based on deep automatic
features. In order to bind handcra�ed and automatic features,
the image level probability scores of E3 and E4 are fused by
weighted summation in E5.

Note that there are more alternative combination modes
at features, patches, and images levels. �e core principle is to
choose di
erent typical feature sets in di
erent combination
modes, and three image-level strategies are all experimentally
evaluated with speci	c features and the best strategy is
	nally combined with this feature set (except image level
fusion method E5). Finally, only several typical choices are
experimentally compared to discuss each part’s classi	cation
contribution.

3. Experiments and Results

3.1. Evaluation Metrics. Classi	cation performances at both
patch level and image level can be evaluated using several
commonly used metrics calculated as follows:

ACC = 1
F
�∑
�=1
I (� ($�) = %�) (9)

SEN (I�) = Num (PC (I�))
Num (GT (I�)) (10)

SPE (I�) = Num (PC (−I�))
Num (GT (−I�)) (11)

P (I�) = Num (PC (I�))
Num (PT (I�)) (12)

R (I�) = Num (PC (I�))
Num (GT (I�)) (13)

F1 (I�) = 2 × P (I�) × R (I�)
P (I�) + R (I�) (14)

where ACC represents the overall classi	cation accuracy.
SEN(I�) and SPE(I�) mean the sensitivity and speci	city for

class I�. P(I�), R(I�), and F1(I�) are precision, recall, and !1
score for class I�, respectively. I(�($�) = %�) de	nes that if�($�) = %�, I(�($�) = %�) = 1, otherwise I(�($�) = %�) =0. −I� denotes all the other classes except I�. Num(PC(I�)),
Num(PT(I�)), andNum(GT(I�)) represent correctly predicted
number of class I�, the total number of all predicted I�, and
the total number of I� in the ground truth, respectively. Note
that recall is equal to sensitivity. Furthermore, area under
the receiver operating characteristic curve (AUC) is also
calculated for evaluation.

3.2. Parameter Sensitivity. Some parameters in the study
have high sensitivity for 	nal performances, such as sizes
of parent and subpatches, overlapping rate of subpatches,
number of decision trees of random forest classi	er, and 	ne-
tuning iteration times of pretrained GoogLeNet. Sensitivity
of these parameters is experimentally analyzed by observing
both patch and corresponding image levels classi	cation
performances when just one primary parameter is adjusted at
a time, as shown in Figure 4. Sensitivity for three parameters:
parent patch size �1, subpatch size �2, and subpatch overlap
rate �� are depicted in Figure 4. (a), (b), (c) are patch level
accuracy and (d), (e), (f) are the corresponding image level
accuracy.

Figures 4(a) and 4(d) show the patch and image levels
accuracy with di
erent parent patch size �1, respectively. Let
the subpatch size �2 = 50 and its overlapping rate �� =0.5. �e selected feature set is ���� + ���	 extracted from
blue ratio image and a random forest classi	er with 350
decision trees is trained for classi	cation. Majority voting
(MV) is applied for image level prediction. Note that the
above is the default experimental setup for all the subsequent
experiments. Performances for three parent patch scales
(100×100, 200×200, and 300×300) are compared at both
patch level and image level.

Subpatch size impacts completeness of local knowledge
extraction and then may make a di
erence for the 	nal
results. �e accuracy for di
erent subpatch size at patch and
image levels is shown in Figures 4(b) and 4(e), respectively.
Parent patch is cropped in a nonoverlapping way considering
calculation complexity, so only the subpatch overlapping rate�� is experimented as shown in Figures 4(c) and 4(f). Parent
patch size is 	xed to �1 = 300 in above experiments. Default
setup is used for other parameters.

Transfer learning is used by applying the pretrained
GoogLeNet model and performing 	ne-tuning process for
the last fully connected layer using dataset in this study.
Patch-level accuracy on testing set for di
erent iteration
times � in 	ne-tuning process is shown in Figure 5. Size �3
of the input original RGB patch is set to 300. Ten percent
of training data is randomly divided into validation set to
monitor training situation. �e model is implemented based
on tensor
ow. Learning rate J = 0.001 and cross entropy
loss function are used. Stochastic gradient descent (SGD)
is selected as the optimizer and the training batch size is
set to 100. As shown in Figure 5, the test accuracy increases
as � increases and reaches maximum 83.55% when �=9000,
but a�er that, the accuracy begins to decline because of
over	tting.
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Figure 4: Sensitivity for three parameters at both patch and image levels.
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Figure 5: Patch level classi	cation accuracy of transferred
GoogLeNet with di
erent 	ne-tuning iteration times t.

A random forest (RF) classi	er is used for patch-wise
classi	cation based on handcra�ed features as discussed in
Section 2.2.4. �e in
uence of RF’s decision tree numberF� is experimentally evaluated. Figure 6 exhibits patch level
classi	cation accuracy with di
erent decision tree numbers.
Parent patch size �1 is set to 200. Other related parameters
are determined using default setup.�e e
ect of decision tree
number varies among di
erent classes; however, as a whole,
RF classi	er obtains best patch level classi	cation result
when F� = 200. Note that Figure 6 only shows patch level
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Figure 6: Patch level classi	cation accuracy for di
erent decision
tree number.

performance, and rational choice for image level classi	cation
strategy maymake additional adjustment for 	nal prediction.

Weighted fusion is used at both patch and image levels as
described in Section 2.2.4 with weights *� and *�, which are
set to 0.7 and 0.5, respectively, using parameter scanning.

3.3. Experimental Results. To evaluate the contributions of
di
erent feature sets, several kinds of features involved in
this study are tested and compared. Speci	c RF classi	ers are
trained for di
erent handcra�ed feature sets ����, ���	, ���	 as
well as their combination. Fine-tuned GoogLeNet combined
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Table 1: Patch level classi	cation accuracy for di
erent feature set.

Feature Set CLL FL MCL Total

Gist 0.5424 0.5829 0.6252 0.5850

LPQ 0.6556 0.8070 0.6405 0.7083

���� 0.7343 0.8171 0.7000 0.7546

���	 0.7828 0.8713 0.7414 0.8029

��	� 0.7394 0.8837 0.8631 0.8348

�� 0.7394 0.8837 0.8631 0.8355

{����, ���	} 0.8253 0.8969 0.8324 0.8549

{����, ���	, ��	�} 0.9283 0.9217 0.9324 0.9271

CLL TotalMCLFL
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Figure 7: Classi	cation accuracy of di
erent image level classi	ca-
tion strategies.

with so�max is used to test high-level feature ��. To con	rm
the e�ciency of the concerned features, two additional kinds
of handcra�ed features Gist [32] and local phase quantization
(LPQ) [33] are considered. �e accuracy of di
erent feature
sets is displayed in Table 1, where parent patch size �1 = 200.
Fine-tuning iteration time of GoogLeNet is set to 9000.

Several strategies in image level classi	cation are used
to take full advantages of patch level results as illustrated
in Section 2.2.4. Figure 7 shows the image level accuracy of
the three strategies. Parent patch size �1 = 200, and default
setup is used for other parameters. �e impact of di
erent
image level strategies is mainly re
ected in classi	cation
performance for CLL in this setup. By utilizing the proposed
DMW image level strategy, the accuracy for CLL is signi	-
cantly improved compared with commonly usedMV. In fact,
our experimental result shows the proposed method DMW
can provide better or comparative performance for di
erent
parameters setups, which indicates its e�ciency is superior
to those of other commonly used methods to calculate image
level results based on patch level predictions.

�ere are mainly several method combination modes
(a)∼(e) in Section 2.2.4. Fusion at patch level, namely, com-
bination mode E3, is based on E1 and E2. Fusion at image
level is implemented in E5 based on E3 and E4. Image level
classi	cation accuracy of the 	ve combination schemes E1 ∼E5 is shown in Figure 8. Performances for E1, E2, and E4 are
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Figure 8: Image level classi	cation accuracy for di
erent method
combination modes.

relatively low because these combination modes are based on
speci	c feature set, but they show di
erent discrimination
power for three classes. �erefore, combination modes that
fuse their characteristics obtain improved performances. E3
combines E1 and E2 by score fusion at patch level which pro-
vides prominent performance improvement. E5 integratesE3
and E4 through weighted summation at image level results
and obtains further amelioration for classi	cation of CLL,
which is considered as the 	nal scheme for this classi	cation
task. Table 2 shows the classi	cation indices including overall
accuracy (ACC), overall area under the curve (AUC) and
AUC, sensitivity (SEN), recall (R), speci	city (SPE), precision
(P), and !1 score for each class of di
erent method combina-
tion modes E1 ∼ E5.
4. Comparison and Discussions

To further evaluate our model, several existing methods
for this lymphoma dataset are used for comparison, as
shown in Table 3. Method combination mode E5 is used
as a representative of our method since it has the best
performance and shows better classi	cation results than
those of the state-of-the-art methods can be obtained. �e
current state-of-the-art method [15] proposed Fisher vector
(FV) encoding combinedwithmultiple types of local features.
It applied a novel separation-guided dimension reduction
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Table 2: Image level classi	cation indices for di
erent method combination modes.

Index E1 E2 E3 E4 E5
ACC Overall 0.9558 0.9558 0.9823 0.9558 0.9912

AUC Overall 0.9846 0.9971 0.9943 0.9894 0.9982

CLL 0.9709 0.9903 0.9820 0.9875 0.9972

FL 0.9987 1 1 0.9907 0.9960

MCL 0.9971 0.9985 1 0.9912 1

SEN/R CLL 0.9091 0.9697 0.9697 0.9697 1

FL 0.9767 0.9302 0.9767 0.9429 0.9767

MCL 0.9730 0.9730 1 0.9189 1

SPE CLL 0.9750 0.9500 0.9875 0.9500 0.9875

FL 0.9429 0.9714 0.9857 0.9429 1

MCL 0.9474 0.9474 0.9737 0.9737 0.9868

P CLL 0.9677 0.8889 0.9697 0.9412 0.9706

FL 0.9767 1 1 0.9545 1

MCL 0.9231 0.9730 0.9737 0.9414 1

F1 CLL 0.9375 0.9275 0.9697 0.9552 0.9851

FL 0.9767 0.9639 0.9882 0.9655 0.9882

MCL 0.9474 0.9730 0.9867 0.9444 1

Table 3: Image level classi	cation performance of our method and existing studies.

Index Ours [15] [17] [7] [14] [8]

ACC(%) 99.1 97.9 85 92.7 95.5 96.8

AUC 0.998 0.993 - - - -

method and provides 97.9% accuracy and 0.993AUC.Codella
et al. [14] used descriptors including LBP and CNN based on
segmented results. SVMwas used as classi	er and it obtained
95.5% accuracy. Song et al. [8] proposed a method to extract
high-dimensional descriptor and subcategory discriminant
transform (SDT) was used to enhance discriminative power
of descriptors, which achieved the accuracy of 96.8%. Meng
et al. [7] proposed a framework based on the Collateral Rep-
resentative Subspace Projection Modeling (CRSPM) super-
vised classi	cation model for histology image classi	cation.
Shamir et al. [17] presented an open source utility Wndchrm
for standardized classi	cation which provided accuracy of
85% for lymphoma classi	cation. In our study, we achieve
99.1% accuracy and 0.998AUCwithmethod combinationE5 .

Table 3 provides a quantitative comparison in terms of
AUC and ACC values, which can be seen as complementary.
�e results demonstrate the advantages of our proposed
model for lymphoma classi	cation over the state-of-the-art
approaches. Song et al. [15] calculated both ACC and AUC
and achieved the best performance in existing approaches
with 97.9%ACC, while we achieve 99.1% accuracy employing
the E5 combination mode with a similar AUC value. �is
suggests that the extracted feature sets and RF classi	er in
our study is more discriminative for malignant lymphoma
pathological images.

According to Table 3, our method achieves better accu-
racy than all other existing methods. Shamir et al. [17] pro-
posed solutions based on an open source platform for stan-
dardized support of di
erent problems, including tissue age

di
erentiation, subcellular protein localization, lymphoma
subtyping, and pollen grain distinction. It is not targeted so
the performance for lymphoma is relatively low. Meng et al.
[7] and Song et al. [8] extracted high-dimensional features
and applied popularmachine learningmethod; however, they
have not considered deep learning techniques. According
to our research, high-level features of CNN have promising
contribution for 	nal classi	cation. Codella et al. [14] and
Song et al. [15] both combined handcra�ed and high-level
features to perform classi	cation. Codella et al. [14] applied
a segmentation process which is time-consuming, and the
segmentation-based features can easily be nondiscriminative
due to imprecise segment results. Song et al. [15] utilized
Fisher vector to encode the whole image, which resulted
in low e�ciency in feature extraction stage. In addition,
Codella et al. [14] and Song et al. [15] performed classi	cation
with SVM, while our study experimentally con	rmed that
random forest classi	er can achieve better performance for
this classi	cation task.

To sum up, accurate lymphoma classi	cation is an
important prerequisite for malignant lymphoma CADs. Our
proposed classi	cation method performs well in di
erent
image space transformations of original images, noting that
blue ratio and Lab space amplify the texture and color
characteristics of original images, respectively. �erefore,
the subsequent feature extraction with customized feature
sets speci	c to image spaces is meaningful. Classi	cation is
performed utilizing multiple hierarchies of local knowledge,
which ensures the completeness of features and e�ciency
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of the whole approach. Patch based classi	cation reduces
the spatial complexity but sacri	ces some local information,
so the strategy for image level classi	cation is investigated
in detail for a remedy. Transfer learning is used to reduce
consumption of time and it shows improved performance.
Multiple paths are combined at di
erent stages to fuse
their characteristics su�ciently. Random forest classi	er is
employed, and it shows better performances than commonly
used SVM.

5. Conclusions

�is paper proposes a new CAD model for lymphoma
classi	cation on H&E stained histopathological images. �is
model includes three major steps, namely, image space
transformation, feature extraction, and classi	cation design.
First, original images are transformed into di
erent image
spaces including blue ratio and Lab. �en two hierarchies
of patches are cropped to perform a local-to-global clas-
si	cation. A�er that, speci	c feature set is extracted from
corresponding image space. RF classi	er is then trained
for patch level classi	cation based on handcra�ed features.
Meanwhile, transfer learning is introduced by utilization of
a pretrained GoogLeNet model which also performs patch
level classi	cation. Finally, image level classi	cation strategies
are discussed and fusion at di
erent levels is performed.
�e identi	cation task is performed on IICBU Malignant
LymphomaDataset. �e experiment results and comparisons
with the related work present that out proposed model can
achieve better identi	cation performances than others. We
demonstrate the bene	ts of our multihierarchy classi	cation
scheme and the novel DMW method for weights computa-
tion of patch-level results, as well as the advantages of image
space transformation.

In the future, we intend to apply the proposed model
on more kinds of datasets to evaluate its generality when
extended to di
erent problems.�e analysis of alternative for
pretrained CNN can be performed to explore the potential of
deep learning. Moreover, since the lymphoma sections in this
study are all from lesions, a preceding lesion identi	cation
procedure can be designed for those datasets containing extra
normal tissues. �en the proposed hierarchical strategy can
be applied to the classi	cation for precise identi	ed lesions.
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