
NHtapDB: Native HTAP Databases

ABSTRACT
Hybrid Transactional/Analytical Processing (HTAP) database in a
natural productive environment must leverage multimodal data to
generate valuable real-time business insights, and execute OLAP
queries in-between online transactions. State-of-the-art and state-
of-the-practice systems adopt (1) a separate database and disparate
business applications that leverage machine learning techniques
to generate real-time business insights and (2) dual-format stores
to guarantee the performance of different workloads—row-based
storage for OLTP workloads and column-based storage for OLAP
workloads. They fail to achieve the above goals because of massive
data transfer overhead rooted in separate systems and dual-format
stores. To this end, we propose NHtapDB, the first native HTAP
database, providing business insight in real-time (within millisec-
onds to seconds). NHtapDB (1) provides a near-data machine learn-
ing framework to facilitate generating real-time business insight,
and predefined change thresholds will trigger online training and
deployment of new models, and (2) offers a mixed-format store
to guarantee the performance of HTAP workloads, especially the
hybrid workloads that consist of OLAP queries in-between online
transactions. We make rigorous test plans for NHtapDB with an
enhanced state-of-the-art HTAP benchmark.

PVLDB Reference Format:
Guoxin Kang, Lei Wang, Simin Chen, Jianfeng Zhan. NHtapDB: Native
HTAP Databases. PVLDB, 14(1): XXX-XXX, 2023.
doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
NHtapDB is a vision paper, so it is not available for lacking of experiments.

1 INTRODUCTION
The goal of the traditional HTAP database (THtapDB) is to support
Online Analytical Processing (OLAP) on the fresh data generated
by the Online Transaction Processing (OLTP) [2, 5–7]. OLTP work-
loads generally read and write a small number of rows by index.
OLAP workloads are read-intensive and involve complex queries
on a few columns but numerous rows. Despite the abundance of
THtapDB, they perform poorly in generating real-time business
insights and guaranteeing the performance for HTAP workloads
because of the vast data transfer overhead rooted in (1) a separate
database, disparate business applications leveraging machine learn-
ing techniques, and (2) dual-format stores: row-based storage for
OLTP workloads and column-based storage for OLAP workloads.

First, state-of-the-art or state-of-the-practice THtapDB work-
loads often run for a relatively long time (from minutes to hours),

� Jianfeng Zhan is the corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

Real-time
recommendation

application

Real-time
fraud detection

application

Real-time
inventory/pricing

application

Real-time
N

 application
Store 1 Store 2 Store 3 Store N

…

Out-of-date business insights

Poor HTAP performance

Data transfer

O(N)
(N data transfers between THtapDB

 and business applications)

Row-format store Column-format store

THtapDB

Before

After

Near-data machine learning framework

Real-time business insights

Mixed-format store

Good HTAP performance

Real-time
recommendation

application

Real-time
fraud detection

application

Real-time
inventory/pricing

application
…

Real-time
N

 application

St
at

e
of

 th
e

ar
t

N
H

ta
pD

B

Data distilling module

O(1)
(1 data transfer within NHtapDB)

Predefined change threshold

Figure 1: Themotivation for theNativeHTAPdatabase:mas-
sive data transfer overhead results in the lack of capability
of generating real-time business insights: the state-of-the-
art systems (before) vs. NHtapDB (after).

incapable of providing real-time business insights and preventing it
from satisfying the fleeting needs of customers. Consistent with the
previous work [4], the implication of real-time emphasizes perform-
ing a task like data analysis or user behavior simulation interactively
within milliseconds to seconds. THtapDB deployer focuses much
of its effort on guaranteeing online transactions and complex query
performance. They ignore the enormous benefits that real-time
business data can bring to business applications [14, 17] and, as a
result, fail to build the necessary infrastructure.

As shown in Figure 1, state-of-the-art architecture is separated
into two parts: THtapDB and disparate business applications. Self-
governed business applications leverage the data loader [12] to
retrieve business data from the database, pre-process the business
data into training samples, and then feed the training samples to

ar
X

iv
:2

30
2.

09
92

7v
1

 [
cs

.D
B

]
 2

0
Fe

b
20

23

https://doi.org/XX.XX/XXX.XX
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

the business applications. As an independent OS process, each self-
governed business application needs its own data loader instance to
transfer data from databases. However, the long distance between
THtapDB and business applications results in a long data turn-
around time and O(N) data transfer, as shown in Figure 1, making
it challenging to satisfy the fleeting needs of customers.

THtapDB stores a large amount of up-to-date data critical for
business applications, but there is an urgent need to establish en-
abling facilities to generate real-time business insights from shar-
ing business data. In E-commerce, many self-governed business
applications, such as real-time recommendations, fraud detection,
inventory/pricing, etc., need multiple real-time customer services
based on the same business data. A typical scenario is real-time
business insights in e-commerce that capture the real-time prefer-
ences of the customer to generate more accurate recommendations
(predictions), which is a significant source of revenue for business
applications. For example, in Amazon, the real-time recommenda-
tion can increase transactions by 35% [18]. If the recommendation
is not real-time, the customer will likely leave the current session
and purchase in another e-commerce application.

Besides, state-of-the-art THtapDB does not utilize multimodal
data very well. Multimodal data refers to the different data types
from different sources that may be complementary [13]. Multimodal
data includes more details about customer behaviors that happened
in business applications, such as customer clicks and customer
reviews in e-commerce platforms, such as Taobao [16], so the fusion
of these multimodal data could provide more accurate real-time
business insights.

Second, the actual HTAP workloads consist of hybrid transac-
tions that execute OLAP queries in-between online transactions [4,
8], rather than the separate OLTP and OLAP workloads. How-
ever, state-of-the-art or state-of-the-practice THtapDB adopts row-
format, column-format, or dual-format stores that exaggerate the
challenges in guaranteeing the HTAP workload performance.

For example, in e-commerce, customers prefer to purchase the
best-selling commodity within their budget and other constraints,
which is a typical HTAP workload. The related statements in the
HTAP transaction are as follows.

1) SELECT MAX(ws_quan t i t y)
FROM web_sa l e s
WHERE ws_pr i c e between 64 and 64 + 1 6 ;

2) UPDATE cus tomer SET c _ba l an c e = 1024
WHERE c _ i d = 2 5 6 ;

The best-selling commodity selection calls the OLAP MAX func-
tion (ws_quantity) in structured query language (SQL), which is
performed between online transactions — purchase operations in-
volving banking and credit card activity (c_balance).

Row-based storage allows online transactions to locate the rows
to update quickly. At the same time, column-based storage permits
read-intensive OLAP queries to scan and aggregate operations
over specific columns quickly. Nevertheless, a single row-based or
column-based data organization is insufficient for HTAP workloads
that have OLAP workloads in-between OLTP operations.

Using a dual-format store [3, 5] will introduce data transfer
overhead between the row-based store and column-based store
as shown in Figure 1. To keep data fresh, row-based data updates
must be propagated to column-based storage as soon as possible.
The previous work [4] revealed the peak HTAP performance using
a dual-format store is lower than the peak OLTP performance
by one order of magnitude. Consequently, a more suitable data
organization for HTAP workloads is one of THtapDB’s reform
goals.

Our solution. As shown in Figure 1, to mitigate the heavy data
transfer overhead O(N) between THtapDB and business applica-
tions, we built the native HTAP databases (NHtapDB), which not
only makes a near-data machine learning infrastructure for acquir-
ing real-time business insights but also handle HTAP workloads
well. To provide real-time business insights, NHtapDB adopts the
near-data machine learning framework that leverages predefined
change thresholds to trigger online training to update the models in
real-time. We implement data distilling instance that loads the real-
time data, pre-processes it into training samples, and feeds training
samples into models. And the near-data machine learning frame-
work implements unified management for multiple models. When
NHtapDB receives customer queries, the corresponding model must
be updated until the customer leaves to satisfy their needs. The rec-
ommendation model must be updated in real-time to recommend
the highly matched commodities lists if a customer searches for a
commodity. As soon as a customer purchases a product, the real-
time fraud detection model must be updated to identify fraudulent
and anomalous activity associated with the transaction. NHtapDB
implements a mixed-format store, which eliminates the inherent
data transfer overhead between row-based and column-based stores
that exist in the dual-format store. With the cooperation of the
near-data machine learning framework, the mixed-format store,
and other infrastructure, the data transfer overhead is reduced from
N+1 times to 1 time. A simple upper-bound performance model
in Section 2 shows the gap between the data transfer overhead
of the two systems using near-data machine learning framework
(NHtapDB) and separate machine learning systems (THtapDB) is
10,000 times in the case of 50 business applications.

Overall, the spotlights of NHtapDB can be summarized as fol-
lows:

(1) For real-time business insights, NHtapDB integrates a near-
data machine learning framework to mitigate data transfer over-
head between the database and the business applications. The ma-
chine learning engine abstracts three essential elements: state, ac-
tion, and reward. To dynamically satisfy the customer’s preferences,
the machine learning engine uses the current state of the customer
session as a new training sample to immediately update the model,
then outputs the action, and finally calculates the reward to evaluate
the action.

(2) NHtapDB provides a mixed-format store to handle the HTAP
workloads with zero data transfer overhead. Mixed-format store
splits the records into row-based update partitions and column-
based read-only partitions. The row-based partitions are respon-
sible for update operations, and the column-based partitions are
leveraged for analytical queries. Mixed-format store eliminates the
inherent data transfer overhead in dual-format store. Besides, the

2

HTAP Queries

SQL Compute Engine

Real-time Business Insights

Real-time Applications

Mixed-format Store

Structured Data Semi-Structured Data Unstructured Data

Computation

Storage Data DistillingReal-time Analytics

Multiple Data Sources

Near-data Machine Learning
Framework

Figure 2: The overview of NHtapDB.

mixed-format store adopts the split write-ahead logging (WAL) [11]
to guarantee insert and delete performance.

To demonstrate NHtapDB, we make rigorous demonstration
plans. First, we will demonstrate the near-data machine learning
framework provides real-time business insights. Second, we will
demonstrate themixed-format store can handle the HTAPworkload
well.

2 WHY DOWE NEED NHTAPDB?

To demonstrate the motivation, we build a simple upper-bound
performance analysis model to evaluate the application (end-to-end)
latencies under THtapDB and NHtapDB. We mainly consider the
near-data machine learning framework’s effect in NHTapDB.While
under THtapDB, as an independent OS process, self-governed busi-
ness applications leverage the data loader [12] to retrieve business
data from the database and provide the service. This simple model
fails to consider the effect of different stores, e.g., mixed-format
stores under NHTapDB vs. dual-formal or single-store in THtapDB.

The application’s latency includes two components: the data
transfer latency and the computation latency. Data transfer la-
tency is the key to significantly reducing overall latency. Conse-
quently, we compare the data transfer latency between THtapDB
and NHtapDB.We assume there are 50 business applications (N=50),
and each business application needs to deal with the 1GB data anal-
ysis. For the THtapDB solution, the total transfer bandwidth is 500
MB/Second (using the state-of-art NFS solution for data transfer),
and that of NHtapDB is 100GB/Second (using the memory space
access on the same OS process). The data transfer latency of the
THtapDB solution is 100 seconds (the transfer bandwidth for each
application is 10MB/S, and the transfer latency of each application
is 100 seconds). At the same time, that of NHtapDB is only 0.01
seconds (the transfer bandwidth is constant at 100GB/Second, and
the transfer latency of each application is 0.01 seconds). The gap
between the data transfer overhead of the two systems is 10,000
times.

3 NHTAPDB OVERVIEW
NHtapDB is a powerful HTAP database that ensures HTAP per-
formance and provides real-time business insights based on multi-
modal data fusion. In this section, we sketch one possible architec-
ture for NHtapDB, depicted in Figure 2. NHtapDB is composed of
two main layers: the computation layer and the storage layer.

3.1 Computation layer
An efficient computation layer is supported by two modules:

(1) Near-data machine learning engine aims at accelerating busi-
ness data into insights in real-time to satisfy the fleeting needs
of customers. It defines and implements three essential elements
to support online training – state, action, and reward. ML engine
first receives the current state of the customer, then performs the
suitable action, and finally calculates the reward to evaluate the
action. ML engine needs to reuse other state-of-the-art techniques,
such as feature engineering.

(2) The SQL compute engine is stateless, scalable, and aware of
storage. It chooses the cheapest logical plan according to estimated
execution costs and then transforms the logical plan into a physical
execution plan based on the storage layout.

3.2 Storage layer
The storage layer comprises amixed-format store and a data-distilling
module.

Mixed-format store guarantees HTAP performance by eliminat-
ing the data update propagation delays inherent in dual-format
stores. In dual-format stores, the OLAP delays have two sources,
one is the data update propagation delays from row-based store
to column-based store, and the other is the OLAP execution de-
lays. Mixed-format store splits row records into row-based update
partitions and column-based non-update partitions so that online
transactions and analytical queries execute in parallel. To improve
SQL performance, a mixed-format store needs cooperation with
other techniques, such as caching, indexes, and SQL computation
engines.

The data distilling module adopts a novel lightweight multi-
modal data fusion technique to acquire real-time business insights.
When the predefined change thresholds are triggered, it will re-
ceive structured business data from the database. In addition, it
receives multimodal business data from multiple data sources, such
as stream systems. Following data cleansing, feature extraction, and
other processes, the above business data is formed into training
samples, which are then fed into the computation layer for online
learning.

4 NHTAPDB DESIGN
In this section, we introduce two key design aspects of NHtapDB
depicted in Figure 4. We describe the use case of near-data machine
learning framework and mixed-format store in detail below.

4.1 Near-data machine learning framework
Near-data machine learning framework defines and implements
three essential elements on top of heterogeneous models for real-
time business insights. This subsection explains the three elements
and the machine learning model instance as shown in Figure 3.

3

Customers Portrait

Customers Feedback

Commodity Infos

Multi-
dimension Real-time

Multimodel Feature Extraction and Matching Module

Customers
Module（Commodity Lists）

States Weighted Multi-
dimensional Rewards

Recommendation
Module

Actions

Timely
Feedback

Figure 3: Machine learning model instance — real-time rec-
ommendation model.

4.1.1 Essential elements. Near-data machine learning framework
defines and implements three elements: state S, actionA, and reward
function R.

State S is the set of all possible states, 𝑆𝑡 represents the state at
time step t.

Action A is the set of available actions depend on states, 𝐴𝑡 is
the action taken at time step t.

Rewards R provides a reward to assess the actions selected.

4.1.2 Machine learning model instance. We give the instance of a
real-time recommendation model, which reuses the three essential

Table 1: Partial features of multi-dimension data (𝑝1–𝑝2: cus-
tomer portrait features; 𝑐1–𝑐5: click feedback features; 𝑞1–𝑞2:
text/image query feedback features; 𝑟1–𝑟2: additional labels
feedback features; 𝑖1–𝑖3: commodity information features).

Variate Features Description Description

𝑝1 time the time of day string
𝑝2 location the location of customer string

𝑐1 pv commodity page view bool
𝑐2 buy buy commodity bool
𝑐3 cart add commodity to shopping cart bool
𝑐4 favorite favorite commodity bool
𝑐5 duration commodity page view duration string
𝑞1 text query query in natural language string
𝑞2 image query query in image string
𝑟1 price real-time price range float
𝑟2 inventory real-time inventory quantity int

𝑖1 category commodity category one-hot
𝑖2 subcategory commodity subcategory one-hot
𝑖3 style commodity style string

elements and defines recommendation, customer, and multimodal
feature extraction modules, as explained below.

At the time step 𝑡 , the recommendation module precepts the
current state 𝑆𝑡 of the customers and recommends the suitable
commodity list to the customer. Next, it receives weighted multi-
dimensional rewards 𝑅𝑡 representing the quality of the recommen-
dation, and then it receives the new state 𝑆𝑡+1 at time step 𝑡+1.

Customers module. Customers send timely feedback and receive
the recommended commodity list. Timely feedback reveals inter-
actions between customer and commodity in the current state,
including click feedback and search feedback. Click feedback im-
plied real-time customer preference information, which contains
commodity page view (pv), adding commodity to shopping cart
(cart), buying the commodity (buy), favorite commodity (favorite),
and commodity browsing duration (duration). And search feedback
refers to the real-time text/image query and additional labels, di-
rectly indicating the customer’s needs. For example, in Taobao [16],
customers could use text or images to search for the commodity.
They could also use additional labels to filter targeted commodities
quickly, and common labels include real-time inventory quantity
and price range. Above feedback is sent to the multimodal feature
extraction and matching module for further processing.

Multimodal feature extraction and matching module It collects
multi-dimension data for feature extraction and matching, which
includes customer portraits, customer feedback, and commodity
information. And the feature is used for the current state 𝑆𝑡 repre-
sentation. Features of the above data are depicted in table 1. Cus-
tomer portrait features refer to the time of day, location, customer
scenario, etc. Given a customer 𝑖 , the corresponding portrait is
mapped to feature 𝑝𝑡

𝑖
. Customer feedback is detailedly described in

the customer module. The click feedback feature is denoted as 𝑐𝑡
𝑖
.

Text query feature is denoted as 𝑞𝑡𝑡𝑒𝑥𝑡 . And the image query feature
is denoted as 𝑞𝑡

𝑖𝑚𝑎𝑔𝑒
. Real-time analytics generates an additional

label that is denoted as 𝑟𝑡
𝑖
. Commodity information collects the

basic attributes of a commodity, such as a commodity category,
commodity subcategory, and commodity style, which is denoted as
𝑖𝑡
𝑖
.
Next, the current state 𝑆𝑡 is delivered to the recommendation

module.
Recommendation module. It receives the current state 𝑆𝑡 and

recommends the commodity list to the customer. Later, it receives
weighted multi-dimensional rewards 𝑅𝑡 , which evaluate the quality
of the recommendation. Multi-dimensional rewards have six parts:
customer portrait reward 𝑅𝑡𝑝 , click feedback reward 𝑅𝑡𝑐 , text query
reward 𝑅𝑡𝑡𝑒𝑥𝑡 , image query reward 𝑅𝑡

𝑖𝑚𝑎𝑔𝑒
, additional label reward

𝑅𝑡𝑟 , and commodity information reward 𝑅𝑡
𝑖
. And the final reward

𝑅𝑡 at the time step t is:

𝑅𝑡 = 𝛽 + _1𝑅
𝑡
𝑝 + _2𝑅

𝑡
𝑐 + _3𝑅

𝑡
𝑡𝑒𝑥𝑡 + _4𝑅

𝑡
𝑖𝑚𝑎𝑔𝑒 + _5𝑅

𝑡
𝑟 + _6𝑅

𝑡
𝑖 (1)

In turn, the recommendation module proceeds with the next
round of interaction with the customer module at the time step
𝑡 + 1.

4.2 Mixed-format Store
NHtapDB adopts a mixed-format store to guarantee the perfor-
mance of HTAP workloads. Mixed-format store architecture is

4

Index

Row-based Data

Index

Row-based Data

Index

Row-based Data

Index

Dictionary

Column-based Data

Index

Dictionary

Column-based Data

Index

Dictionary

Column-based Data

. . .
. . .

WAL WAL

Log Compression

Row Group 1

Row Group 2

Row Group N

Update Partitions Non-Update Partitions

Update/Insert/Delete Insert/Delete

Figure 4: Mixed-format store architecture.

shown in Figure 4. Mixed-format store adopts the range parti-
tion strategy to divide all row records into 𝑟𝑜𝑤 𝑔𝑟𝑜𝑢𝑝𝑠 evenly
to leverage modern computers’ multi-core parallelism. The 𝑟𝑜𝑤
𝑔𝑟𝑜𝑢𝑝𝑠 splits row records into 𝑢𝑝𝑑𝑎𝑡𝑒 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 and 𝑛𝑜𝑛-𝑢𝑝𝑑𝑎𝑡𝑒
𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 based on whether their column attributes are updated.
The 𝑢𝑝𝑑𝑎𝑡𝑒 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 are placed in row-based format for OLTP
performance, and the 𝑛𝑜𝑛-𝑢𝑝𝑑𝑎𝑡𝑒 partitions are placed in column-
based format for OLAP performance. For example, the CUSTOMER
table in the TPC-C benchmark places the 𝐶_𝐼𝐷 , 𝐶_𝐵𝐴𝐿𝐴𝑁𝐶𝐸,
and 𝐶_𝐷𝐴𝑇𝐴 attributes into the row-based store, and places the
other attributes into the column-based store. At the same time,
the mixed-format store avoids the data update propagating over-
head between row-based and column-based data. The mixed-format
store must cooperate with state-of-the-art indexes and dictionary
techniques [1, 10, 15] to improve SQL performance.

NHtapDB adopts split write-ahead logging (WAL) [11] for atom-
icity and durability. WAL sequentially records the transactions’
prewritten, commit, and rollback behaviors into the persistent de-
vices. There are three kinds of log items – update log items, insert
log items and delete log items. The data in update partitions are
updated as update log items. The original insert and delete log
item is split into a row log item and a column log item. Only when
the row log item is committed the corresponding column data are
inserted or deleted as the column log item. We adopt a log compres-
sion strategy to ease the unnecessary insert and delete pressure of
column-based data. Log compression strategy deletes column log
items whose row log entries are rollback. The original log item will
not be committed until both the row and column log items have
been committed.

5 DEMONSTRATION
NHtapDB connects the underlying storage and the upper machine
learning models, shortens the data turnaround time, and uses real-
time analytics to help provide real-time business insights.

Our demonstration plan aims to show that.

a) Near-data machine learning framework provides real-time
business insights with low data transfer overhead.

b) Mixed-format store guarantees HTAP performance.

For the first objective, we conduct experiments on the multi-
modal dataset [9]. Near-data machine learning framework has one
test case.

1) 𝑇𝑒𝑠𝑡 𝑐𝑎𝑠𝑒 1 : Evaluating the data transfer overhead between
database and business applications.

For the second objective, we use the OLxPBench suite [4], which
is the first benchmark addressing the necessity of introducingHTAP
workloads that execute OLAP queries in-between online trans-
actions [4, 8] and providing multiple HTAP workloads. We ran
the OLxPBench in different configurations by varying the type
and sending rate of workload. In the demonstration, we compare
NHtapDB with state-of-the-practice HTAP databases – TiDB [3].

2) 𝑇𝑒𝑠𝑡 𝑐𝑎𝑠𝑒 2 : Comparing the HTAP performance of TiDB and
NHtapDB.

REFERENCES
[1] Martin Boissier, Rainer Schlosser, and Matthias Uflacker. 2018. Hybrid data

layouts for tiered HTAP databases with pareto-optimal data placements. In 2018
IEEE 34th International Conference on Data Engineering (ICDE). IEEE, 209–220.

[2] Amirali Boroumand, Saugata Ghose, Geraldo F. Oliveira, and Onur Mutlu. 2022.
Polynesia: Enabling High-Performance and Energy-Efficient Hybrid Transac-
tional/Analytical Databases with Hardware/Software Co-Design. In 2022 IEEE
38th International Conference on Data Engineering (ICDE). 2997–3011. https:
//doi.org/10.1109/ICDE53745.2022.00270

[3] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: a Raft-based HTAP
database. Proceedings of the VLDB Endowment 13, 12 (2020), 3072–3084.

[4] Guoxin Kang, Lei Wang, Wanling Gao, Fei Tang, and Jianfeng Zhan. 2022.
OLxPBench: Real-time, Semantically Consistent, and Domain-specific are Es-
sential in Benchmarking, Designing, and Implementing HTAP Systems. In
2022 IEEE 38th International Conference on Data Engineering (ICDE). 1822–1834.
https://doi.org/10.1109/ICDE53745.2022.00182

[5] Tirthankar Lahiri, Shasank Chavan, Maria Colgan, Dinesh Das, Amit Ganesh,
Mike Gleeson, Sanket Hase, Allison Holloway, Jesse Kamp, Teck-Hua Lee, et al.
2015. Oracle database in-memory: A dual format in-memory database. In 2015
IEEE 31st International Conference on Data Engineering. IEEE, 1253–1258.

[6] Per-Åke Larson, Adrian Birka, Eric N Hanson, Weiyun Huang, Michal
Nowakiewicz, and Vassilis Papadimos. 2015. Real-time analytical processing
with SQL server. Proceedings of the VLDB Endowment 8, 12 (2015), 1740–1751.

[7] Juchang Lee, SeungHyun Moon, Kyu Hwan Kim, Deok Hoe Kim, Sang Kyun Cha,
and Wook-Shin Han. 2017. Parallel replication across formats in SAP HANA for
scaling out mixed OLTP/OLAP workloads. Proceedings of the VLDB Endowment
10, 12 (2017), 1598–1609.

[8] Guoliang Li and Chao Zhang. 2022. HTAP Databases: What is New and What is
Next. In Proceedings of the 2022 International Conference on Management of Data.
2483–2488.

[9] Junyang Lin, An Yang, Yichang Zhang, Jie Liu, Jingren Zhou, and Hongxia Yang.
2020. InterBERT: Vision-and- Language Interaction for Multi-modal Pretraining.
CoRR abs/2003.13198 (2020).

[10] Chen Luo, Pinar Tözün, Yuanyuan Tian, Ronald Barber, Vijayshankar Raman,
and Richard Sidle. 2019. Umzi: Unified multi-zone indexing for large-scale HTAP.
In Advances in Database Technology-22nd International Conference on Extending
Database Technology, EDBT 2019, Lisbon, Portugal, March 26-29, 2019. OpenPro-
ceedings. org, 1–12.

[11] Chandrasekaran Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and
Peter Schwarz. 1992. ARIES: A transaction recovery method supporting fine-
granularity locking and partial rollbacks using write-ahead logging. ACM Trans-
actions on Database Systems (TODS) 17, 1 (1992), 94–162.

5

https://doi.org/10.1109/ICDE53745.2022.00270
https://doi.org/10.1109/ICDE53745.2022.00270
https://doi.org/10.1109/ICDE53745.2022.00182

[12] Iason Ofeidis, Diego Kiedanski, and Leandros Tassiulas. 2022. An Overview of
the Data-Loader Landscape: Comparative Performance Analysis. arXiv preprint
arXiv:2209.13705 (2022).

[13] Sharon Oviatt, Björn Schuller, Philip R Cohen, Daniel Sonntag, Gerasimos Potami-
anos, and Antonio Krüger. 2018. The Handbook of Multimodal-Multisensor Inter-
faces: Signal Processing, Architectures, and Detection of Emotion and Cognition-
Volume 2. Association for Computing Machinery and Morgan & Claypool.

[14] Bruno L Pereira, Alberto Ueda, Gustavo Penha, Rodrygo LT Santos, and Nivio
Ziviani. 2019. Online learning to rank for sequential music recommendation. In
Proceedings of the 13th ACM Conference on Recommender Systems. 237–245.

[15] Christian Riegger, Tobias Vinçon, Robert Gottstein, and Ilia Petrov. 2019. MV-PBT:
multi-version index for large datasets and HTAP workloads.

[16] Jing-Cheng Shi, Yang Yu, Qing Da, Shi-Yong Chen, and An-Xiang Zeng. 2019.
Virtual-taobao: Virtualizing real-world online retail environment for reinforce-
ment learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 33. 4902–4909.

[17] Anuruddha Thennakoon, Chee Bhagyani, Sasitha Premadasa, Shalitha Mihiranga,
and Nuwan Kuruwitaarachchi. 2019. Real-time credit card fraud detection using
machine learning. In 2019 9th International Conference on Cloud Computing, Data
Science & Engineering (Confluence). IEEE, 488–493.

[18] Bo Zhou and Tianxin Zou. 2022. Competing for recommendations: The strate-
gic impact of personalized product recommendations in online marketplaces.
Marketing Science (2022).

6

	Abstract
	1 Introduction
	2 Why do we need NHtapDB?
	3 NHtapDB Overview
	3.1 Computation layer
	3.2 Storage layer

	4 NHtapDB Design
	4.1 Near-data machine learning framework
	4.2 Mixed-format Store

	5 Demonstration
	References

