
This paper is included in the Proceedings of the

2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the

2019 USENIX Annual Technical Conference

is sponsored by USENIX.

NICA: An Infrastructure for Inline Acceleration
of Network Applications

Haggai Eran, Technion–Israel Institute of Technology & Mellanox Technologies;

Lior Zeno, Maroun Tork, Gabi Malka, and Mark Silberstein,

Technion–Israel Institute of Technology

https://www.usenix.org/conference/atc19/presentation/eran

NICA: An Infrastructure for Inline Acceleration of Network Applications

Haggai Eran1,2, Lior Zeno1, Maroun Tork1, Gabi Malka1, and Mark Silberstein1

1Technion – Israel Institute of Technology 2Mellanox Technologies

Abstract
With rising network rates, cloud vendors increasingly deploy

FPGA-based SmartNICs (F-NICs), leveraging their inline pro-

cessing capabilities to offload hypervisor networking infras-

tructure. However, the use of F-NICs for accelerating general-

purpose server applications in clouds has been limited.

NICA is a hardware-software co-designed framework for

inline acceleration of the application data plane on F-NICs in

multi-tenant systems. A new ikernel programming abstraction,

tightly integrated with the network stack, enables application

control of F-NIC computations that process application net-

work traffic, with minimal code changes. In addition, NICA’s

virtualization architecture supports fine-grain time-sharing of

F-NIC logic and provides I/O path virtualization. Together

these features enable cost-effective sharing of F-NICs across

virtual machines with strict performance guarantees.

We prototype NICA on Mellanox F-NICs and integrate

ikernels with the high-performance VMA network stack and

the KVM hypervisor. We demonstrate significant acceleration

of real-world applications in both bare-metal and virtualized

environments, while requiring only minor code modifications

to accelerate them on F-NICs. For example, a transparent

key-value store cache ikernel added to the stock memcached

server reaches 40 Gbps server throughput (99% line-rate) at

6 µs 99th-percentile latency for 16-byte key-value pairs, which

is 21× the throughput of a 6-core CPU with a kernel-bypass

network stack. The throughput scales linearly for up to 6 VMs

running independent instances of memcached.

1 Introduction

SmartNICs with integrated FPGAs (F-NICs) [19, 68, 89, 119]

are an appealing platform for accelerating I/O intensive net-

work applications. They have been increasingly deployed in

data centers and public clouds [33, 66], e.g., in each MS Azure

server, enabling line-rate throughput and low, predictable la-

tency at high power efficiency [33]. Many hardware vendors,

including Intel, have already announced F-NICs in their future

offerings [98].

Data-center F-NICs are used mainly to accelerate infras-

tructure tasks, such as network functions [61, 72, 80, 119]

and software-defined networking [33, 66]. These tasks lever-

age the F-NIC’s inline processing capabilities, where data

is processed while being transferred between the host and

the network, without CPU involvement. In addition, F-NICs

are often repurposed as standalone FPGAs running complete

applications, e.g., search or deep learning [20, 24, 60, 86].

This paper explores new acceleration opportunities emerg-

ing from the growing deployment of F-NICs in clouds, be-

yond infrastructure tasks and monolithic applications. We

seek to leverage F-NICs for inline acceleration of data plane

processing in network-intensive applications. For example,

F-NICs may run datacenter tax tasks, such as deserialization,

hashing, and authentication, which reportedly consume over

a quarter of the CPU cycles in data centers [48]. An F-NIC

may serve as an extra caching layer for key-value stores, re-

sponding directly in case of a hit and eliminating the CPU

involvement. We show, for example, that this architecture

achieves near line-rate throughput (40 Gbps) for stock mem-

cached (§6.2.1). Promising results for application-specific

traffic steering, packet transformation, and network stack of-

floading have been reported in prior work [50, 83]. We discuss

these and other applications in §3.

Unfortunately, building such F-NIC-accelerated applica-

tions today is hard. First, there are no adequate operat-

ing system abstractions for inline acceleration of general-

purpose applications on F-NICs. Such abstractions should

associate F-NIC tasks with the application process, and they

should provide well-defined execution boundaries and iso-

lated per-task state while supporting easy integration of F-NIC

functionality with the application logic. OpenCL and CUDA

provide general lookaside acceleration support, but they are a

poor match for F-NICs because they require explicit kernel

invocation and data transfers that are irrelevant for the in-

line processing scenario. Floem [83] provides language-level

constructs to accelerate applications on SmartNICs, but it

targets CPU-based rather than FPGA-based SmartNIC archi-

tectures, and requires application refactoring to use its data

USENIX Association 2019 USENIX Annual Technical Conference 345

flow model, complicating acceleration of legacy workloads.

SmartNIC-accelerated networking frameworks such as Ac-

celNet, eBPF-XDP, and DPDK rte_security [33, 39, 84] are

domain specific and lack application-level abstractions. Sys-

tems for data plane acceleration, e.g. P4 and FlexNIC [13, 50],

expose packet-level match-action rules for F-NIC manage-

ment, but lack abstractions for application-level semantics.

Second, F-NICs provide no virtualization support, pre-

venting their sharing among cloud tenants. Existing virtual-

ization mechanisms for FPGAs [18, 23, 34, 51, 101, 118] and

GPUs [49, 73] rely on space partitioning or coarse-grain time

sharing of the compute fabric. The former, however, results in

hardware underutilization [51, 112, 116], whereas the latter

may affect processing latency due to slow context switching

and FPGA reconfiguration times [49, 51, 73, 91], making it

unsuitable for latency-sensitive tasks. More fundamentally,

F-NICs lack I/O path virtualization to isolate and protect

per-application I/O across shared buses between the network,

the FPGA and the host CPU. Thus, current F-NICs cannot

guarantee performance isolation for co-located applications.

We introduce NICA, a system for FPGA-based NIC Server

Acceleration. NICA introduces new software abstractions and

co-designed F-NIC hardware runtime for application acceler-

ation in cloud systems. NICA manages one or more Accelera-

tor Functional Units (AFUs) [42, 101] – application-specific

hardware accelerators hosted on an F-NIC. Such AFUs can

be developed by users, or provided by cloud vendors and

deployed on-demand.

OS abstraction. We introduce a novel ikernel (inline kernel)

abstraction, which represents an AFU in a user program. An

application dynamically attaches the ikernel to one or more

transport layer sockets, activating the respective AFU. Sub-

sequently, all traffic sent and received via these sockets is

processed by the AFU without CPU invocation. To communi-

cate via the sockets, the CPU may use standard POSIX sock-

ets API calls, or a high-performance zero-copy interface for

application-level messages. The ikernel abstraction is private

to a process and provides protection for the AFU applica-

tion and network state. We discuss the ikernel abstraction, its

network stack integration, and FPGA runtime support in §4.1.

AFU virtualization. NICA supports sharing of AFUs among

multiple virtual machines (VMs) while guaranteeing state pro-

tection and quality of service (QoS). We address two primary

requirements: (1) AFU I/O channel virtualization, including

host and network traffic, by adding anti-spoofing, classifica-

tion, and packet schedulers for the I/O sent and received by

AFUs; and (2) fine-grain AFU time-sharing, which uses a

hardware task scheduler that switches contexts at a fine gran-

ularity, thus allowing better hardware utilization for latency-

sensitive applications. We describe AFU virtualization in §4.2

and show how it enables performance isolation in §6.

NICA provides necessary on-FPGA services for accelerat-

ing applications on F-NICs in a multi-tenant setting, including

an FPGA-resident network transport layer, compute and I/O

scheduling blocks, and AFU state isolation. However, the

development of high-throughput network-focused AFUs on

FPGAs is beyond the scope of this paper. Fortunately, some

promising solutions are emerging, such as template libraries

with optimized building blocks for network processing [32].

In addition, we believe that cloud providers will increasingly

offer AFUs using an “app marketplace” deployment model [4,

17, 40], with a variety of AFUs ready to be used on their

infrastructure (see §3).

We prototype NICA1 on Mellanox Innova F-NICs [68]

with a Xilinx FPGA and 2GB of onboard memory. We imple-

ment the ikernel API, integrate it with the VMA kernel-bypass

network stack [69], and implement the AFU virtualization

support in the KVM hypervisor. We also co-design the FPGA

hardware support for the software abstractions and AFU vir-

tualization, and we integrate full UDP and partial TCP layer

implementation in FPGA.

We evaluate the system with microbenchmarks and accel-

erate two real-world applications: a memcached server and a

Node.js-based IoT monitoring server, by implementing the

respective AFUs on the F-NIC. Enabling F-NIC acceleration

required minimal software changes: 107 additional lines of C

and 20 additional lines of JavaScript respectively.

A transparent hot-item cache AFU integrated with

memcached serves GET hits at 6 µs 99th-percentile latency

and 40.3 Mtps throughput for 16B keys/values, 99% of the

40 Gbps line rate and 21.6× faster than the 6-core CPU base-

line. For a Zipf(0.99)-distributed workload with 0.2% SETs,

NICA acceleration results in a 4.6× speedup.

NICA allows sharing of an F-NIC among multiple VMs

while providing significant performance gains. It introduces

negligible throughput and latency overheads while maintain-

ing a fair bandwidth allocation, controllable by the hypervisor.

In summary, we make the following contributions:

• We introduce an ikernel OS abstraction for inline accelera-

tion of applications on F-NICs.

• We design an F-NIC virtualization framework that supports

I/O QoS and low-latency time sharing of compute resources.

• We implement NICA for Mellanox F-NICs, analyze its per-

formance, and demonstrate the development simplicity and

performance benefits for accelerating memcached and a

Node.js-based IoT server.

2 Background

We describe the F-NIC architecture and survey FPGA pro-

gramming principles and sharing mechanisms.

2.1 F-NIC architecture

We describe bump-in-the-wire F-NICs, focusing on Mellanox

Innova, but others [19, 80, 89] are similar.

1https://github.com/acsl-technion/nica

346 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/acsl-technion/nica

Figure 1: A bump-in-the-wire F-NIC

Bump-in-the-wire. A typical F-NIC (Figure 1) combines a

commodity network ASIC (e.g., ConnectX-4 Lx NIC) with

an FPGA and local DRAM. The FPGA is located between the

ASIC and the network port, interposing on all Ethernet traffic

in and out of the NIC. The FPGA and the ASIC communicate

directly via an internal bus (e.g., 40 Gbps Ethernet), and a

PCIe bus connects the ASIC to the host.

The bump-in-the-wire design reuses the existing data and

control planes between the CPU and the NIC ASIC, with

its QoS management, and virtualization support (SR-IOV),

mature DMA engines, and software stack.

F-NIC programming. The development of an F-NIC-

accelerated application involves both hardware logic on

FPGA and associated software on the CPU. F-NIC vendors

provide a lightweight shell IP: a set of low-level hardware

interfaces for basic operations, including link-layer packet

exchange with the network and the host, onboard DRAM ac-

cess, and control register access. However, the vendor SDK

leaves it to customers to implement higher level features such

as FPGA network stack processing or virtualization support.

2.2 FPGA concepts

Field Programmable Gate Arrays (FPGAs) are “a sea” of

logic, arithmetic, and memory elements, which users can con-

figure to implement custom compute circuits. FPGA compute

capacity is determined by the area available for the circuits.

FPGA development. FPGAs can be seen as “software-

defined” hardware. The software definition, a design, is im-

plemented using register transfer languages (RTL) such as

Verilog. Additionally, designers can use high-level synthesis

(HLS) tools to generate RTL, e.g., from a restricted version

of C++ [67]. However, HLS C++ programs are different from

CPU programs, and must follow certain rules, including ex-

plicit exposure of fine-grain pipeline- and task- parallelism to

achieve high performance. Implementation tools then compile

the design into an FPGA image targeting specific hardware.

Finally, users can load the image onto an FPGA (slow, up to

a few seconds), entirely replacing the previous design. Some

FPGAs support partial reconfiguration to replace only a sub-

set of the entire FPGA, a much faster process (milliseconds),

which unfortunately incurs significant area overheads [51].

FPGA sharing. There are three ways to share an FPGA:

space partitioning, coarse-grain, and fine-grain time sharing.

Space partitioning divides FPGA resources into disjoint

sets used by different AFUs [18, 20, 51]. If shared I/O in-

terfaces (memory, PCIe bus) are securely isolated and mul-

tiplexed, this method enables low-overhead FPGA sharing

among mutually distrustful AFUs but requires larger FP-

GAs to fit them all. Coarse-grain time sharing dynami-

cally switches AFUs via full or partial reconfiguration [20,

51]. It incurs high switching latency and thus is not suitable

for F-NICs’ latency-sensitive applications. Fine-grain time

sharing allows multiple CPU applications to use the same

AFU [44]. The AFU implements the context switch inter-

nally, in hardware. Packet processing applications such as

AccelNet [33] use this approach to process each packet in the

context of its associated flow. Such AFUs oversee switching

between the contexts; therefore this type of sharing requires

AFUs to be trusted to ensure fair use and state isolation be-

tween their users.

NICA combines both space sharing for untrusted AFUs,

and fine-grain time sharing for trusted AFUs, to achieve max-

imum utilization under area constraints of F-NICs.

3 Motivation

We consider emerging opportunities for application accelera-

tion by using F-NICs in clouds.

3.1 F-NICs in data centers

Microsoft has been among the first to deploy F-NICs at large

scale, having installed the Catapult F-NICs in over a mil-

lion Azure servers. Their recent work [33] analyzes the cost,

power, and performance trade-offs of F-NICs in data cen-

ters and decisively shows their benefits. Following Azure,

other data centers, such as China Mobile [115], Tencent [66],

Huawei [88], and Selectel [94], are deploying F-NICs, and

leading hardware vendors are adding F-NICs to their offer-

ings [98]. These technology trends suggest that F-NICs will

become a commodity, motivating our goal to broaden the

scope of their applications.

3.2 Use cases for F-NIC acceleration

What sets F-NICs apart from stand-alone FPGAs is their

ability to interpose and process the network traffic to and from

the host with low overhead. For application acceleration, the

application data plane can be partitioned between the F-NIC

and the CPU, even for latency-sensitive fine-grain tasks.

We identify several common task categories in the server

data plane that benefit from F-NIC acceleration.

Filtering. F-NICs may execute compute-intensive process-

ing, such as per-message stateless authentication (e.g., JSON

web token validation [47]), and filter invalid requests before

reaching the CPU. We evaluate this example in §6.2.2.

Such filtering patterns arise in many server applications.

For example, F-NICs may implement high-performance, sim-

plified versions of popular services to accelerate common

behavior (fast path), falling back to the CPU for corner cases

(slow path). We show in §6.2.1 how an F-NIC-hosted key-

value store cache reduces server load.

USENIX Association 2019 USENIX Annual Technical Conference 347

Transformation. F-NICs may convert data formats, perform

(de)serialization, compression, encryption, or similar datacen-

ter tax tasks [48]. They can change data layout, e.g., transpose

matrices [35], sample, or realign data [2, 38] for efficient

CPU/GPU processing or storage. As F-NICs may run a (po-

tentially limited) network transport layer, they may speed up

CPU transport layer processing [50], as we show in §6.

Transformation is often combined with filtering. For exam-

ple, to accelerate the log-structured merge (LSM)-trees [22,

79], the F-NIC may store the tree’s first level in its local mem-

ory, executing updates without interrupting the CPU, batching

and sorting them before sending them to the host.

Steering. F-NICs may improve server performance using

application-specific packet steering and inter-core load balanc-

ing [50, 89], processing complex steering policies at line-rate,

e.g., using heavy-hitter approximation sketches [62].

Generation. Applications may offload the transmission of

outgoing messages to multiple destinations. Examples include

data replication and erasure coding in storage systems [38,

53, 77], and the shuffle stage in distributed analytics engines.

3.3 AFUs in the cloud

AFUs are custom accelerators that can be instantiated on

any compatible FPGA and used via a companion software

library. There are two deployment models for cloud AFUs: in

the FPGA-as-a-Service (FaaS) model, tenants use their own

AFUs on cloud infrastructure [3, 5, 41], whereas with the app

marketplace model, cloud providers offer common AFUs for

on-demand deployment [40].

For example, while Amazon provides FaaS, its Marketplace

offers third-party AFUs [4]. Similarly, Microsoft deploys its

own cloud hardware microservices [17, 24, 33]. The market-

place model opens more opportunities for better F-NIC uti-

lization. As cloud providers develop or audit these AFUs, they

can trust them to allow fine-grain sharing. By co-locating ten-

ants that request the same AFU, cloud providers may increase

their infrastructure utilization, thereby increasing power effi-

ciency [108] and reducing costs. Pre-designed AFUs are less

flexible than customer-provided AFUs, but vendors can offer

them at a lower cost due to the more aggressive sharing.

NICA’s design supports both deployment models.

4 Design

NICA overview. Figure 2 shows the main NICA components

with a single physical AFU. NICA comprises three layers:

application-visible OS abstractions and services inside a VM

integrated with the network stack (§4.1); the hypervisor layer

for managing F-NIC resources and QoS (§4.2); the hardware

layer which includes the support for OS abstractions, physical

AFU logic (pAFU), a virtualization framework exposing vir-

tual AFUs (vAFUs), and a hardware runtime with network I/O

services for application-level message processing on AFUs.

VM1

NICA driver

vAFU

NICA manager

Application logic

ASIC
NIC

libnica

Application

Hypervisor

ikernel

Network
stack

vAFU

pAFU

vAFU
FPGA

H
a
rd

w
a
re

S
o
ftw

a
re

NICA hardware
runtimeNetwork

Figure 2: NICA overview. Light blue shapes are NICA com-

ponents. Blue and brown lines are the data and control path

respectively. vAFU: virtual AFU, pAFU: physical AFU.

4.1 Abstractions for inline acceleration

Among our primary goals is to simplify the use of inline

accelerators in existing applications with minimal changes.

Our abstractions thus provide a general interface for AFU

management, which is compatible with standard network I/O

interfaces. They allow application control of AFU execution

and efficient communication between the host and the AFU.

4.1.1 The ikernel abstraction

An ikernel is an OS object that represents an AFU in a user

program. An owner process creates an ikernel and controls

it exclusively. Essentially, the ikernel extends the process

abstraction into the AFU, and NICA protects the ikernel state

from other CPU processes and ikernels.

To invoke an AFU, it must be associated with an active net-

work flow. Thus, applications activate the AFU by attaching

one or more sockets to its ikernel, thereby rerouting the asso-

ciated traffic through the AFU. The ikernel stops processing

the socket’s traffic when the application detaches or closes

the socket, keeping the AFU state intact for later invocations.

Dynamic attachment adds flexibility by enabling software

involvement in connection establishment and session prepara-

tion, thereby allowing applications to activate an ikernel only

for specific clients or request types, for example.

The attachment semantics depends on the protocol. For a

UDP socket, the ikernel receives all incoming packets des-

tined to the socket’s listening port. For TCP sockets, the effect

of attachment depends on the socket state. Attaching a con-

nected TCP socket migrates its state to the AFU hardware

network layer. After a process attaches a listening TCP socket

to an ikernel, the AFU handles new connection requests, as

applications with a high connection rate may benefit from ac-

celerating the connection establishment process. Nevertheless,

NICA notifies the host network stack about new connections,

off the critical path, to provide application control over these

connections from the host.

A process may create several shared-nothing ikernels of

the same AFU, e.g., to keep different cryptographic contexts

for a crypto-AFU, but our intended usage is one ikernel per

AFU per process. Multiple threads of a process may attach

348 2019 USENIX Annual Technical Conference USENIX Association

Function Purpose

ikernel∗ ik_create(uuid_t, int dram_size) Allocate an ikernel
void ik_destroy(ikernel∗) Deallocate an ikernel
int ik_attach(ikernel∗, int sock) Attach ikernel and socket
int ik_detach(ikernel∗, int sock) Detach ikernel and socket
int ik_command(ikernel∗, cmd∗ desc) Invoke RPC command

cr∗ ik_create_cr(ikernel∗) Allocate a ring
void ik_destroy_cr(cr∗) Deallocate a ring
int cr_post_recv/send(cr∗, buf∗) Pass buffers to the ikernel
int cr_poll(cr∗, wc∗, int n) Poll ring for completion

Table 1: Control (top) and data plane (bottom) ikernel API.

their sockets to the same ikernel, thereby sharing the AFU

state among them.

For now, a socket can be attached only to a single ikernel,

but we plan to enable ikernel chaining in the future (§4.4).

Alternatives. We choose the ikernel abstraction because it

captures the intuitive application-level semantics of inline

network processing. We also considered using match-action

rules, as in FlexNIC [50] and DPDK [84]. These are not asso-

ciated with sockets, but rather with packet header rules, e.g.,

selecting packets of a specific five-tuple. Such an interface

suits packet processing but is too low-level for application

logic offloading. The ikernel socket-level abstraction hides

the details of the hardware-resident network stack and allows

simpler integration with existing applications.

4.1.2 Control plane

The control APIs (Table 1) allow initialization, teardown, and

access to the AFU-resident application state. Under the hood,

they interact with the network stack on the host and on the

F-NIC to coordinate resource allocation and AFU processing.

Initialization and attachment. An ik_create call initial-

izes an ikernel given an AFU’s UUID. When the ikernel

attaches to a socket it updates the F-NIC network stack. Once

the ikernel is attached, the NICA driver tracks the socket state,

detaching the flow when the socket is closed. The application

may also detach an ikernel before the connection terminates.

The ik_create call may initialize a pre-loaded AFU or

load it at runtime using partial reconfiguration. The ikernel

abstraction hides the AFU hardware initialization details from

the user, leaving the OS in charge of manipulating the FPGA-

AFU allocation, similarly to AmorphOS [51].

Application state. Applications may access the ikernel state

in the AFU. The hardware could expose the state in two ways:

(1) as shared memory between the host and the F-NIC; or

(2) using remote procedure calls (RPC) from the CPU to the

AFU that retrieve/set the state. Shared memory might not

be efficient, however. First, FPGA logic can keep frequently-

accessed data in private memory, such as registers or block

RAM, for efficiency. This memory is not exposed to the CPU.

Further, access to the shared state requires explicit synchro-

nization, which is costly over PCIe. Therefore, we chose the

RPC model, which allows the AFU to implement arbitrary

atomic transactions, including e.g., getting a snapshot of its

state. Internally, NICA also uses the same mechanism to con-

trol transport layer and QoS parameters.

Error handling. An AFU that encounters an error exposes it

to an ikernel runtime which periodically checks for errors via

the RPC mechanism. In addition, the ikernel may abort the

connection or detach itself from the respective sockets and

forward packets without offloading.

4.1.3 Data plane

NICA provides two ways to perform network I/O with inline

acceleration: POSIX API and custom rings.

POSIX networking API. After attaching an ikernel to a

socket, the application may use standard I/O calls, e.g., send,

recv, and epoll_wait, while the AFU transparently pro-

cesses the data in-flight. We currently support the POSIX

APIs only for UDP sockets.

Custom rings. POSIX I/O interfaces incur the overhead of

extra data copies into user buffers [81] and host-side network

stack processing. On the other hand, an AFU may need to ex-

change application-level messages with the host application.

For example, a deserialization AFU may send ready-to-use

data objects to the application. Furthermore, an AFU may

need to steer the processed messages to different CPU cores,

i.e., for application-aware load balancing.

NICA introduces a custom ring2 (CR) abstraction that pro-

vides a zero-copy API for sending/receiving application mes-

sages, bypassing the host network stack. Each ikernel may

create multiple associated CRs to enable message steering for

multi-core systems.

The CR interfaces are similar to VIA/RDMA verbs [30]

(Table 1). Specifically, each CR comprises a queue pair (QP)

and a completion queue (CQ). The application allocates its

communication memory buffers and registers them with the

CR. It then posts the send/receive requests to the respective

queue in the QP. The request completions show up in the CQ.

Custom rings vs. random access. FPGA acceleration frame-

works [37, 43, 101] and some I/O intensive AFUs [29, 38, 60]

allow random access to CPU memory from the AFU, which

is useful for fine-grain sharing of data-structures between

the CPU and the AFU. NICA currently focuses on the AFU

tasks that communicate with the CPU via a streaming I/O

pattern, which is much easier to implement using a producer-

consumer CR interface. We leave support for random host

memory access for future work.

Synchronization. In the most common application scenarios,

networking or custom ring operations implicitly synchronize

the CPU application and the AFU processing. In more com-

plex cases, when the AFU accumulates the application state

(e.g., for network I/O monitoring or consensus), the ikernel

2The hardware uses a descriptor ring buffer just like a regular NIC, but

the buffer contents are application messages rather than raw packets.

USENIX Association 2019 USENIX Annual Technical Conference 349

RPC interface allows AFU developers to provide application-

specific mechanisms to safely access ikernel state.

4.1.4 Usability

We expect adding ikernels to existing applications to require

relatively small design or code changes. In case of filtering

(see §3.2), an application may still use POSIX sockets as

before, while receiving only the filtered data. For example,

memcached requires no changes to its data processing to use

the KVS cache AFU (§6). Data transformation tasks, such as

deserialization, may use custom rings to obtain or send back

the data in an application-friendly form. Steering applications

may use per-core custom rings to get the contents directly

to the correct application thread or a GPU. A generation

application, e.g., replication, may send only one data copy

via the custom ring, while the AFU will distribute it to pre-

configured destinations.

4.2 Virtualization

To support fine-grain sharing of AFUs, as required for low

latency applications, we introduce the notion of a virtual AFU,

vAFU, which represents a single isolated hardware entity on

the F-NIC. Each vAFU provides state protection and perfor-

mance isolation across all the shared resources on the F-NIC.

To clarify, a vAFU is a hardware entity, whereas an ikernel is

an OS object that belongs to a process. Connecting multiple

ikernels to the same vAFU might be possible, i.e., allowing

in-VM resource allocation policy enforcement, yet we do not

support it in our prototype.

One F-NIC may host multiple physical AFUs via space

sharing, whereas each such AFU may support multiple vAFUs

via fine-grain time sharing, as explained below. For example,

our key-value-store cache AFU supports 64 vAFUs, allow-

ing concurrent acceleration of up to 64 different memcached

servers on the same F-NIC (§6).

Fine-grain AFU sharing. Supporting multiple vAFUs on a

single physical AFU requires low-overhead hardware context

switching mechanism. The vAFU context includes the ikernel

state in DRAM and registers and the contexts of the sockets

connected via that vAFU. Each received packet may belong

to a different vAFU so slow context switch would not only

increase application latency but also increase the required

NICA internal buffer space.

To support fine-grain sharing, we store the vAFU context by

reserving fast memory for each vAFU rather than evict/reload

it to/from slow DRAM memory. Specifically, the AFU reg-

isters are replicated to store data for all concurrently active

vAFU contexts. Each vAFU is associated with a hypervisor-

chosen tag. The AFU switches to the context requested by the

scheduler by updating the active tag register. Such a context

switch can be extremely fast, e.g., up to 3 clock cycles in our

prototype.

However, the number of vAFUs that can be supported is

constrained due to the limited size of fast memory on the

FPGA. For more vAFUs, AFUs may use DRAM to store

the contexts and use latency hiding techniques, i.e., increased

concurrency. Our current prototype uses fast memory, yet it is

enough to host up to 64 vAFUs for the evaluated applications.

4.2.1 State protection

NICA protects the vAFU state in DRAM, fast memory, and

hardware registers. For the DRAM, we use a segment-based

MMU for simplicity. Similarly, we protect the control regis-

ters of the RPC interface by including a vAFU tag.

Additionally, NICA ensures correct steering of network traf-

fic to and from the vAFU via its on-NIC network stack (§5.3).

In particular, it guarantees that a vAFU will not perform net-

work spoofing attacks toward the host and will receive only

the packets destined to that vAFU. These two aspects are

essential for supporting untrusted AFUs in NICA.

4.2.2 Performance isolation

NICA supports isolation of I/O channels and compute re-

sources. The compute scheduling is necessary only among

the vAFUs of the same physical AFU. The FPGA loads dif-

ferent physical AFUs into different partitions, and thus they

do not share FPGA compute resources. DRAM bandwidth

partitioning is left for future work.

I/O bandwidth sharing. The bandwidth allocation between

tenants is often implemented inside a virtual switch or in the

NIC internal switch. However, in a bump-in-the-wire archi-

tecture the F-NIC sends vAFU-generated messages directly

to the network, bypassing these policies. Therefore, NICA

provides its own bandwidth allocation mechanisms, similar

to the traffic class (TC) mechanisms used in NICs [10].

To control the vAFU egress bandwidth, both towards the

CPU and towards the network, we add a set of TC queues (see

Figure 3). Packets are classified to these queues and sched-

uled. We use a work-conserving deficit round robin (DRR)

scheduler [95] to allocate bandwidth, but more complex poli-

cies can be used. NICA’s bandwidth scheduler is trusted and

used by all the vAFUs on the F-NIC.

The vAFU recognizes when the TC queues are full and

may drop the packets or propagate the contention if possible.

For example, it may slow down the host by using custom

ring flow control or slow down the sender through explicit

congestion notification (ECN).

NICA does not manage the ingress bandwidth into the

vAFU from the network or the host, as the sender (TOR or

host virtual switch) already shapes ingress traffic.

AFU compute sharing. An AFU must determine which

vAFU to activate at any given time, and which packets to

serve first. We considered two design options: a general com-

pute scheduler for all AFUs (similar to the I/O scheduler)

350 2019 USENIX Annual Technical Conference USENIX Association

or an internal AFU-specific scheduler for each AFU. These

two options represent an inherent trade-off between FPGA

resource consumption and design generality.

A generic scheduler in front of the vAFUs could reorder

packets according to a global policy, simplifying the AFU

design. However, such a scheduler requires deep input queues,

therefore increasing consumption of F-NIC fast memory. Fur-

ther, the need for queuing is protocol-dependent. For example,

TCP has its own input queues to receive out-of-order pack-

ets, so extra scheduling queues would be wasteful. Moreover,

AFUs may customize queue contents to save resources, e.g.

by keeping parsed requests instead of full packets.

We thus decided to implement a custom, application-

specific scheduler in each AFU.

4.3 AFU development

AFUs implement hardware interfaces to receive/transmit

transport layer and custom ring data, configuration and control

interfaces for RPC, and, optionally, provide vAFU scheduling

and virtualization.

All the packets passing through an AFU are tagged with

metadata that identifies the associated ikernel and flow, which

can be used by the AFU for ikernel state isolation. The AFU

receives per-TC usage levels and CR flow control (see §5.2).

While designing such FPGA hardware can be difficult, we

try to simplify the development by using high-level synthesis

to design our AFUs in C++, and use the ntl class library [32]

to implement common modules such as AFU schedulers and

control-plane interfaces. In addition, the NICA hardware run-

time handles some common tasks such as transport processing

and egress scheduling, thus simplifying AFU development.

4.4 Discussion

F-NIC transport layer. An inline AFU requires transport

layer services to process data at the application layer; it may

terminate flows or generate and send new messages. Our

current design uses a full implementation of UDP and TCP

logic in hardware. With this solution, the F-NIC effectively

runs its own complete network stack.

A complete TCP/IP stack in hardware simplifies AFU de-

velopment but increases F-NIC resource consumption and

maintenance difficulty [75]. To eliminate NIC transmission

buffers, an AFU could generate retransmissions on-demand

or use host memory [85, 97]. If packet reordering is rare,

an AFU may process received data only in-order, deferring

out-of-order packets to the CPU [85]. A resource-efficient

TCP design for inline AFUs warrants further research, so we

choose a simple solution to evaluate the ikernel abstraction

compatibility with TCP.

Virtual switch offloading. F-NICs intercept the inbound net-

work traffic before it reaches the CPU. As a result, it becomes

difficult to handle hypervisor policy and virtual networking

rules, e.g., as in Open vSwitch, because they are typically

handled by the hypervisor’s virtual switch software running

on CPU. This issue is not unique to NICA and exists with

standard SR-IOV NICs [33]. Typical solutions pass the first

packet to software and offload per-flow policy to hardware

match-action rules [33, 59, 78]. While this may take signif-

icant area of the F-NIC’s FPGA [33], future F-NIC designs

may be able to harden this functionality [20, 31].

Multi-AFU support and services. Our design provides all

the necessary mechanisms to run multiple AFUs on the

F-NIC: packet schedulers, steering, RPC and MMU isola-

tion modules. Currently, a single socket may only be attached

to a single AFU. However, there are use cases for chaining

several AFUs in a single application to accelerate various

aspects of the server’s traffic [16, 56, 117]. Multi-AFU chain-

ing requires extensions to resource isolation mechanisms and

software interfaces, which we plan to explore in the future.

5 Implementation

We implement NICA for the Mellanox Innova F-NIC and

integrate it with the KVM/QEMU hypervisor and VMA user-

space networking library [69].

5.1 AFU virtualization

NICA implements hardware virtualization of the physical

AFUs, exposing virtual AFUs (vAFUs in Figure 2) to VMs.

Currently, the hypervisor allocates one vAFU for each re-

quested ikernel. NICA isolates the vAFU I/O channels in

hardware and requires no software mediation.

We utilize the NIC’s SR-IOV functionality to virtualize

the data path (both POSIX and custom rings). SR-IOV en-

ables unmediated overhead-free access from the guest to the

NIC hardware. In general, implementing SR-IOV in custom

accelerators is quite challenging, but the bump-in-the-wire

architecture of our F-NIC allows reusing the existing NIC

hardware SR-IOV mechanism. For the control plane, which is

less sensitive to performance, NICA uses para-virtualization.

5.2 Software

We implement the NICA API in the libnica library. It inte-

grates with the VMA user-space networking library, providing

the POSIX socket API with kernel bypass and direct hardware

access. We modify VMA to support the ikernel abstraction.

The NICA VM driver mediates between libnica and the

hypervisor’s NICA manager daemon, using a para-virtual de-

vice (virtio-serial). The NICA manager runs in the hypervisor

and controls AFU hardware through the F-NIC kernel driver.

NICA software stack is about 2,200 LOC.

Custom ring using RoCE. We use the F-NIC’s RoCE sup-

port [105] to implement the CR, employing the ASIC NIC

USENIX Association 2019 USENIX Annual Technical Conference 351

FPGA - vendor shell

H
o

st
N

et
.

P
ar

se
r

S
te

er
in

g
Flow

table

AFU

S
ch

ed
.

T
ra

n
sp

o
rt

P
k

t.
 S

ch
ed

.

TCs

T
ra

n
sp

o
rt

C
R

MMU

DRAM
NICA runtime services RPC

H
o

st
N

et
.

Figure 3: NICA hardware runtime (only ingress is shown,

1 AFU). Isolation modules are green. Each AFU supports

multiple vAFUs. Sched.=Scheduler.

hardware and software layers using the bump-in-the-wire ar-

chitecture. The implementation associates CRs with RoCE

unreliable connected (UC) queue pairs (QPs). To send to a spe-

cific CR, NICA’s transport layer generates RoCE packets to

the host, targeting the appropriate QP. The ASIC RoCE engine

writes the data directly to the application buffers, providing

address translation, DMA, and completion notifications.

In our bump-in-the-wire F-NIC, the FPGA logic does not

have a direct end-to-end flow control mechanism with the host,

and UC does not provide such a mechanism either. Therefore,

NICA adds a credit-based flow control mechanism between

the AFU and the CPU application. The custom ring APIs

transparently invoke this mechanism.

5.3 Hardware runtime

Figure 3 shows our FPGA processing pipeline. For clarity, we

describe ingress (from network to host) only. The FPGA run-

time provides the hardware support for inline programming

abstractions and the essential services for inline acceleration.

These include: (1) the custom rings and RPC mechanism to

support efficient data and control plane primitives for ikernels;

(2) a memory management unit (MMU) for memory isolation;

(3) a network processing stack to support application-level

processing in the AFU, which includes the parser, flow steer-

ing, and the transport layer; and (4) a virtualization layer,

implementing AFU and packet schedulers.

We develop NICA and the evaluated AFUs in HLS [114]

and Verilog. Table 2 shows the FPGA resources and number

of code lines. NICA operates the FPGA at 216.25 MHz.

TCP/IP implementation. Our prototype includes full sup-

port for UDP and partial support for TCP. The UDP/IP ser-

vice splits/combines the header and the payload. As the CR

utilizes RoCE over UDP, it also uses the UDP/IP service.

The TCP implementation builds on an existing 10 Gbps

FPGA TCP/IP stack [96]. Its integration with NICA is incom-

plete, as it lacks virtualization and socket migration support

(though existing techniques apply [8, 27]). It is included pri-

marily to validate how NICA abstractions hold with TCP.

Table 2: FPGA utilization and lines of code. LUTs: lookup

tables, FFs: flip-flops, RAMB18: block RAM units.

Area (% of total) LOC
Module LUTs FFs RAMB18 HLS Verilog

S
y

st
em

NICA 13% 9% 13% 6643 1736
TCP stack 6% 4% 13% 15303 1110
Vendor shell 51% 32% 7%

A
p

p
s NICA-KVcache 5% 2% 2% 975

IoT server 10% 7% 8% 646 1627

5.4 Limitations

Our prototype may run only two physical AFUs, where one is

a minimal AFU that passes through unmodified traffic. This

is not a design limitation but stems from the FPGA area con-

straints (see Table 2). Further, NICA does not yet support

virtual switch offloading, and our current CR implementation

does not transmit, only receives. In addition, our F-NIC does

not support partial reconfiguration. We hope the next gen-

eration of the F-NIC [31] will resolve these limitations, as

it is expected to have a larger FPGA with more space and

hardened network virtualization support.

NICA performance drops dramatically when crossing

NUMA links. We are investigating a potential hardware bug.

6 Evaluation

Hardware setup. We use four machines with Intel® Xeon®

E5-2620 v2 2.1 GHz CPUs, connected via a Mellanox

SN2100 40 Gbps switch. Three (clients) use Mellanox

ConnectX®-4 Lx EN NIC, and one (server) uses a 40 Gbps

Mellanox® Innova™ Flex 4 Lx EN (1st gen.) F-NIC, equipped

with a Xilinx XCKU060 FPGA. The server is a dual socket

NUMA machine with 64 GB RAM. Hyper-threading and

power saving settings are disabled.

CPU baseline. We use VMA [69] user-level network stack

with kernel bypass, optimized by Mellanox and broadly used

for high-performance networking [33]. We use commodity

NICs with the same ASIC as our F-NIC but without the FPGA.

Due to the NUMA performance issue of the current prototype

(§5.4), to allow a fair comparison, we constrain our experi-

ments to the NUMA node closer to the NIC.

F-NIC maximum power consumption. The F-NIC con-

sumes up to 30 W [68] vs. 14.2 W [70] for the client NICs.

Performance measurement. We use sockperf [71], a

benchmarking tool optimized for VMA. To reliably measure

performance, we use performance counters on NICA’s FPGA

runtime, the NIC, and the switch. We run each experiment 5

times, each 60 second long.

NICA configuration. We set a max. of 4 TCs, 64 ikernels,

VMs, and custom rings, 1K UDP ports, and 10K TCP flows.

352 2019 USENIX Annual Technical Conference USENIX Association

1 4 16
 throughput [Gbps]

2
4
6
8

10
12

la
te

nc
y

[
se

c]

CPU VM CPU NICA VM NICA

(a) Throughput vs. latency (99th-

percentile) for echo. Vertical arrow:

line rate, CPU: kernel-bypass.

16 128 256 512 1024
payload [bytes]

0

20

40

th
ro

ug
hp

ut
 [G

bp
s]

UDP/6 CR/1 CR/6 line rate

(b) UDP on AFU. UDP: CPU

baseline (POSIX + kernel-bypass),

CR: custom ring/number of cores.

Figure 4: Microbenchmarks

6.1 Microbenchmarks

We use several microbenchmarks to evaluate the benefits

of NICA acceleration through filtering and transport layer

acceleration and to estimate virtualization overheads.

Experiment 1: Virtualization performance. Figure 4a

shows the throughput-latency comparison of bare-metal and

virtualized echo server AFU vs. the CPU baseline for 64-byte

packets. We measure no overheads of the AFU virtualization.

At 5 Gbps, the latency of the virtualized AFU is 2×/2.8×

lower than bare-metal/in-VM CPU server respectively. At

6.7 Gbps, the baseline latency spikes to 38 µs, while the AFU

achieves up to 27.6 Gbps at 4 µs latency, above which we see

packet drops. The stable low latency at high throughput is a

valuable property of F-NIC accelerators.

Experiment 2: UDP performance. We run a pass-through

AFU that receives UDP packets and transfers them to the host

via CRs, saving the host UDP processing. The CPU baseline

uses VMA for POSIX API kernel bypass, with 6 CPU cores.

Figure 4b shows the throughput for different packet sizes.

Offloading UDP processing to the AFU boosts the throughput

from 2.9× and 1.7× for small and large packets respectively.

For larger packets, a single-core CR outperforms 6-core UDP.

Experiment 3: TCP performance. We evaluate NICA’s

preliminary TCP support by accelerating a monitoring server

microbenchmark. The server receives integers as 18-byte

messages (4-byte integers with a 14-byte sockperf header) and

computes their average, alerting the user when the received

values are above a given threshold. With NICA, the AFU

maintains the average and sends only the messages above the

threshold via the custom ring (bypassing the host TCP stack).

For 6 flows from 6 clients, the AFU consumes 34.8M mes-

sages/sec, 3× faster than the baseline’s 11.5M messages/sec

(single core). The AFU benefits diminish as the portion of

the messages sent to the host increases, down to a modest

11% throughput improvement. This indicates that the F-NIC

transport layer processing contributes much less than filtering

to the overall performance benefits.

Experiment 4: I/O isolation overheads. We evaluate the

egress scheduler when using two AFUs: a traffic generator

AFU and a pass-through AFU. The former generates mes-

sages to the network at maximum throughput. The latter trans-

fers messages between the host and the network. These AFUs

share the network egress I/O channel and are assigned to sep-

arate traffic classes. We set the scheduler quantum to 1 KB.

We measure the latency of a few 64-byte packets sent via

the pass-through AFU while the generator AFU sends 1514-

byte packets. At 38.4 Gbps load, the low-latency pass-through

packets suffer a 1 µs overhead to 99th-percentile latency com-

pared to an empty system. This result demonstrates that the

I/O isolation mechanism achieves low overhead even under

heavy contention.

6.2 Application benchmarks

We accelerate two large applications: memcached and a

Node.js-based IoT server. We build a transparent cache AFU

for the former and an authentication AFU for the latter, inte-

grating both into the CPU software.

6.2.1 Transparent memcached cache

We prototype a transparent look-through cache for mem-

cached, called NICA-KVcache. The AFU parses mem-

cached’s ASCII UDP protocol and serves GETs directly

from its F-NIC DRAM-resident cache. The AFU passes GET

misses and other update requests to the host. Upon update,

the AFU invalidates the respective cache entry. The AFU

populates the cache by intercepting GET responses from the

host, ensuring coherence even if the host drops the updates

due to overload. The AFU caches keys/values of up to 16-byte

and uses a direct-mapped cache for simplicity.

We implement two designs: one with POSIX API and an-

other with CRs. The former requires changing memcached

to instantiate the ikernel and attach sockets. The latter intro-

duces CR polling to the memcached worker thread event loop.

Adding the F-NIC acceleration support required 107 and 135

LOC for the POSIX API and CR versions respectively.

Workload. We initialize the CPU server with 32 M 16-byte

keys and values (4 GB with overheads) and set the AFU

cache to store 2 M keys per-ikernel (128 MB RAM). The

CPU baseline uses an unmodified memcached with the VMA

network stack. Clients generate a YCSB-like [25] workload

with varying skew using sockperf.

Bare-metal performance. Figure 5a shows that for lower

skews (high miss rate), the CPU (6 cores) is the bottleneck.

With Zipf(0.99) distribution (YCSB’s default), NICA+CR

achieves 9× speedup. For 100% hit-rate, the AFU becomes

network-bound (99% of 40 Gbps line-rate), resulting in 21×

higher throughput than the baseline.

The cache hit-rate also dictates the latency distribution (not

shown). We observe a mixture of two distributions: cache hits

and cache misses. With Zipf(0.99) distribution and 1 Mtps

load, the F-NIC serves cache hits at a stable 2.1 µs. Misses,

served by the host, are 6 µs at the 99th-percentile, versus

USENIX Association 2019 USENIX Annual Technical Conference 353

0.1 0.4 0.7 0.9 1.1 1.4
 skew

0
10
20
30
40

th
ro

ug
hp

ut
 [M

tp
s]

CPU-only NICA NICA+CR

(a) Bare-metal throughput, varying

Zipf skew.

1 2 3 4 5 6
#VM

0
2
4
6
8

th
ro

ug
hp

ut
 [M

tp
s]

CPU-only VMs NICA+CR VMs

(b) Multi-VM scaling, Zipf(0.9) dis-

tribution.

1 10 100
Latency [log, sec]

0%
25%
50%
75%

100%
1 VM 6 VMs

(c) Latency CDF with virt., Zipf(0.9)

distribution.

Figure 5: NICA-KVcache results, CPU+VMA (kernel-bypass) vs. NICA with/without a custom ring (CR).

Table 3: NICA-KVcache throughput [Mtps] with 0.2% SETs.

Skew 0.90 0.95 0.99 1.10

Baseline (CPU-only with kernel-bypass) 1.55 1.55 1.55 1.55
NICA with custom ring 5.98 6.51 7.10 8.28

10.5 µs in the baseline. The latency improvement is due to

the reduced CPU load as a result of filtering.

Table 3 shows the throughput with 0.2% SETs (common

in Facebook [15]). At Zipf(0.99), NICA is 4.6× faster than

the baseline. With 10% SETs (not shown), CPU throughput

dominates, thus NICA shows no performance improvement.

Other KVS implementations. NICA-KVcache offers sig-

nificant advantages even when used with highly optimized

CPU-only KVS implementations, such as MICA [63], which

achieve line-rate throughput using CPU cores alone. In this

case, NICA-KVcache reduces the required number of CPU

cores by filtering all the cache hits and leaving only the

misses to the CPU, thereby improving the overall system

efficiency. More specifically, for a given hit rate in the NICA-

KVcache, achieving line-rate requires the CPU throughput to

be line_rate · (1−hit_rate) transactions per second.

For example, MICA [63] reaches 5 Mtps on a single CPU

core with 100% GETs for 32 M 16-byte keys and values (1GB

of data) with a Zipf(0.99) distribution. Optimistically assum-

ing perfect scaling, MICA would reach line-rate (59.5 Mtps)

with 12 cores, without NICA-KVcache acceleration. In con-

trast, with NICA-KVcache of size 128MB, running the same

Zipf(0.99) key distribution results in 75% hit-rate, thus the

CPU only handles 14.9 Mtps, utilizing just 3 CPU cores.

This result demonstrates that the use of NICA for accelerat-

ing key-value stores is cost-effective, considering that a single

CPU core is reportedly more expensive than a SmartNIC [33].

Accelerated KVS. Floem [83] implemented a similar key-

value store cache on a Cavium SmartNIC and reported a 3.6×

performance improvement with 100% hit-rate with write-

back, and no benefits for 10% SETs write-through, as in

NICA. Rather than memcached, Floem required a custom

KVS server, however. KV-Direct [60] with small requests

achieves comparable performance to NICA (with 100% hits)

but reaches 180 Mtps using client-side batching. Unlike

NICA-KVcache, its data-plane is fully implemented in hard-

ware, and it only uses the host for slab allocation.

Contribution of network-stack processing. Figure 5a

shows that using CR for low cache hit rates results in 2.2×

speedup over the CPU baseline. In this case, the use of CR

eliminates the network stack processing on the host but keeps

the application processing on the CPU. Naturally, higher hit

rates result in a higher portion of the requests handled by the

AFU, and much higher speedups. This experiment suggests

that the network stack offloading alone is not enough to reach

the full performance potential of the F-NIC acceleration.

Virtualization performance. We evaluate the performance

with a varying number of VMs. Each VM uses 5 GB of

server RAM, 1 dedicated CPU core, a vAFU, and 2 M keys

worth of vAFU cache. For Zipf(0.9), Figure 5b shows near-

linear scaling, consistently achieving a 5.6× speedup over the

CPU. Further, we observe no measurable negative impact of

virtualization on vAFU latency. The system achieves similar

results with 64 M keys per VM, utilizing most of the 64 GB

RAM of our machine.

Figure 5c shows the latency distribution of a single VM

and 6 VMs executions under 1.3 Mtps load, for a Zipf(0.90)

workload. The latency increases for the top 40% of the re-

quests, which matches the expected hit-rate. We observe that

the VM CPU latency is much higher than the bare-metal la-

tency reported above, but cache hits are served at the same

latency with and without virtualization.

This experiment confirms that AFU fine-grain sharing is

feasible and effective.

Network bandwidth isolation. We use 3 VMs, associated

with 3 TCs, and initially configure them to share the egress

bandwidth equally. We use a Zipf(1.4) distribution (99.9% hit-

rate), and a 20 Mtps load on each VM, to stress the scheduler.

Figure 6a shows the throughput of each VM over time.

At first, only VM 1 is active, using the whole AFU. When

VM 2’s clients start, the combined egress throughput is barely

above the AFU’s maximum (39 Mtps), and the clients pro-

cess 19 Mtps each. When VM 3’s clients start, the combined

throughput surpasses the maximum, and the scheduler divides

the bandwidth equally (13 Mtps per VM). At t3, we change the

bandwidth allocation to 40%/40%/20% and observe an asym-

354 2019 USENIX Annual Technical Conference USENIX Association

t1 t2 t3 t4 t5
 time

0

5

10

15

20

th
ro

ug
hp

ut
 [M

tp
s]

vm 1 vm 2 vm 3

(a) NICA-KVcache w. egress band-

width management.

t1 t2 t3
time

0

1

2

3

th
ro

ug
hp

ut
 [M

tp
s]

vm 1 vm 2

(b) IoT authentication throughput

w. internal scheduler.

Figure 6: QoS experiments

Table 4: Node.js goodput (valid req. received) under DoS.

Valid packet ratio 40% 60% 80% 100%

Baseline (req/sec) 1489 2294 3131 3960
NICA (req/sec) 5165 (3.4×) 5165 (2.3×) 5231 (1.6×) 5181 (1.3×)

metric allocation. This confirms the NICA egress isolation is

successful in allocating bandwidth among the tenants.

6.2.2 IoT authentication

We prototype an IoT monitoring server using Node.js

with JSON web token (JWT) stateless authentication. The

JavaScript-based server exposes an endpoint to which IoT

devices publish their measurement using the CoAP proto-

col [12], similarly to the SAMSUNG Artik IoT cloud API [92].

The payload of each request contains an authentication token,

which includes the device ID and a timestamp, and signed

using HMAC-SHA256. Invalid requests are discarded.

Our prototype authentication AFU parses received packets,

extracts the token, verifies the signatures (using a SHA-256

accelerator [99]) and drops requests with invalid tokens. Valid

requests are passed to the CPU and only undergo token expi-

ration check there.

We evaluate our IoT authentication accelerator against a

software-only Node.js server. Adding NICA support using

POSIX APIs required 20 JavaScript LOC and 34 lines for the

libnica generic Node.js module, demonstrating the simplicity

of integrating the ikernel abstraction with complex software.

In this experiment, we simulate a Denial of Service (DoS)

attack by sending a varying number of invalid tokens with

incorrect signatures in the input stream. Table 4 shows the

goodput, in requests/sec, as a function of the valid packet

ratio. While the baseline degrades linearly, NICA maintains a

constant goodput by filtering the invalid packets.

One may wonder whether optimizing the Node.js server

(e.g., rewriting it in C) would diminish the AFU acceleration

benefits. We argue that this is not the case. The AFU hardware

achieves the throughput of 3.5 Mtps, about 3 orders of magni-

tude higher than the software throughput. As long as the rest

of the CPU processing pipeline remains the bottleneck, the

AFU remains effective. Additionally, compute acceleration

alone results in only 30% speedup. The remaining speedup is

due to filtering invalid packets, which would be helpful in the

CPU-optimized version too.

AFU compute sharing. The AFU’s throughput can be

bounded by its SHA-256 hashing units and depends on the in-

put JWT token sizes. To fairly share the hashing units among

vAFUs, we introduce a custom DRR scheduler (§4.2.2)) that

controls the per-VM utilization of the AFU hashing units.

We use 2 VMs to demonstrate the performance isolation.

Clients send 10 Mtps of invalid requests to each VM, but

VM 2 receives requests with 40% larger tokens. We start the

experiment with the scheduler disabled and enable it mid-run.

Figure 6b shows the throughput of each VM over time.

At first, only VM 1 clients are active, allowing the AFU to

process at max speed (3.5 Mtps). When VM 2 begins receiv-

ing at t1, VM 1 processes only 28% of the requests, which is

below its fair share. With the scheduler enabled, at t2, both

VMs receive half of their respective maximum throughput.

We observe that NICA’s compute performance isolation is

essential to allow sharing of compute-bound AFUs.

7 Related work

NIC-based acceleration. Commodity NICs have been of-

fering network stack offloads ranging from checksum cal-

culations, segmentation, and receive-side-scaling (RSS) to

RDMA [9, 82, 87, 105, 110] and TCP offload engines [75].

Such offloads are limited to network and transport layer pro-

cessing, while NICA focuses on the application layer.

Our work builds upon previous attempts to accelerate gen-

eral purpose applications through inline processing in Smart-

NICs. Early work on Network Processing Units (NPUs) [1,

113] programming abstractions [16, 56] has shown the po-

tential of customizing the I/O path for applications. More

recently, FlexNIC [50] has proposed an RMT-based [14] NIC

for inline acceleration of application packet processing, show-

ing how to leverage RMT hardware for application accelera-

tion. Floem [83] aids design of NPU accelerated applications.

sPIN [38] offers inline acceleration of high-performance com-

puting (HPC) tasks such as tag-matching, data transformation,

or replication, but the Portals 4 host abstraction is unsuitable

for socket applications.

While we also consider inline acceleration, our goals, de-

sign, platform, and evaluation methodology are different.

FlexNIC focuses on applications of SmartNIC RMT accelera-

tion, whereas NICA offers convenient OS abstractions for inte-

grating inline accelerators into user applications. FlexNIC tar-

gets RMT SmartNICs with constrained functionality, whereas

NICA targets more flexible bump-in-the-wire FPGAs. These

may run large parts of application logic, necessitating more

expressive interfaces for state and execution management,

such as host-NIC network stack interaction. As RMT devices

USENIX Association 2019 USENIX Annual Technical Conference 355

are designed to work at line-rate, performance isolation of

concurrent application pipelines is unnecessary; conversely,

we show that QoS support is essential to expose F-NICs in

cloud systems.

Packet processing frameworks such as DPDK and eBPF-

XDP [39] include inline acceleration mechanisms, e.g., for

cryptographic protocols such as IPSec [84] or offloading eBPF

programs to SmartNICs [52]. However, these target system-

wide packet processing tasks, so they lack a transport layer,

network stack integration, and multiple application support.

Linux also supports attaching eBPF programs to sock-

ets [26], similarly to ikernels, to perform inline packet pro-

cessing. However, such programs cannot process transmitted

packets or generate new ones, and use a POSIX API data-path,

whereas ikernels enable zero-copy application messaging.

C-CORE [56] proposes the stream handlers abstraction for

inline processing, but unlike ikernels, they provide no virtu-

alization mechanisms. Streamline [16] is an OS subsystem

for tailoring application I/O path that uses UNIX pipes as

an abstraction, but it does not allow dynamic attachment and

configuration of filters.

Some F-NIC vendors have proprietary APIs for inline ap-

plication development. Solarflare AOE allows low latency

TCP transmission [97] from an F-NIC. Unlike NICA, it only

offloads transmissions. Maxeler MPC-N supports inline UDP/

TCP application acceleration [7]. All the above lack virtual-

ization support, and their proprietary host application abstrac-

tions are too hardware specific.

SmartNIC applications. Eden [6] and AccelNet [33] accel-

erate network functions on data-center end-nodes with Smart-

NICs. However, these are loosely coupled with host applica-

tions, whereas NICA’s model couples the AFU logic with the

host server logic.

Hardware accelerators for Network Function Virtualiza-

tion (NFV) [18, 34, 117] target the NFV domain and hence

do not provide abstractions for general purpose applications,

lack host-accelerator network stack integration provided by

ikernels, and provide no I/O path virtualization to/from the

accelerator.

Several works have accelerated specific applications on

F-NICs [24, 57, 60, 64, 106, 107]. NICA provides an infras-

tructure for building such AFUs in the clouds.

Languages for SmartNIC AFU development. P4 [13] is a

DSL for implementing network functions with implementa-

tions for FPGAs [100, 111]. The Click [55] router has been

ported to F-NICs [61, 90]. Emu [102] enables the develop-

ment of network functions on NetFPGA using HLS. These

can be used to simplify AFU development for NICA, but do

not provide application-level abstractions.

Floem [83] is a DSL for NPU-accelerated applications.

However, it requires refactoring applications to its DSL, while

ikernel abstraction is less intrusive.

FPGA virtualization and sharing. AmorphOS [51] im-

proves FPGA utilization by sharing an FPGA among multiple

AFUs, and dynamically switching AFUs. Its hull isolates

different AFUs used by different applications. We apply sim-

ilar mechanisms to F-NIC. However, AmorphOS does not

isolate FPGA network interfaces, and its context switching

mechanism is not suitable for latency-sensitive networking

applications.

Multes [44] shares an FPGA among tenants using a sin-

gle pipeline. AccelNet [33] allows flow-context switching on

a packet-by-packet basis. NICA’s fine-grained time-sharing

design is similar, but its goal is to virtualize inline acceler-

ators for application layer, rather than a standalone FPGA

application or cloud network/transport layers.

Remote/distributed FPGA frameworks [7, 19, 104] share

FPGAs over the network with a remote CPU. Other have

virtualized local look-aside accelerators [23, 36, 101, 118]. In

contrast, NICA virtualizes local inline networking AFUs.

Standalone FPGAs, GPUs, or switches. Our choice of

FPGA-based SmartNICs has been motivated by prior works

on accelerating networking applications [11, 21, 45, 76, 103,

109]. Unlike NICA, they focus on standalone FPGAs.

Other inline acceleration techniques let GPU kernels con-

trol communication using GPU-centric networking abstrac-

tions [28, 54, 58, 74], or process data in transit on program-

mable switches or network accelerators [46, 62, 65, 93]. Con-

versely, NICA provides tighter integration of server software

and AFUs. This simplifies integration with legacy programs

and makes acceleration transparent for clients.

8 Conclusion and future work

As F-NICs are becoming common in data centers, new use

cases for application layer inline acceleration are starting to

emerge. NICA provides the ikernel OS abstraction to easily

integrate F-NIC-based accelerators into applications and in-

troduces virtualization mechanisms to share them securely

and fairly in cloud systems. NICA’s real-world prototype

demonstrates the significant performance potential for inline

acceleration of virtualized server systems, with minimal soft-

ware development effort.

We believe NICA’s inline abstractions are suitable beyond

F-NICs and plan to investigate their use in CPU-FPGA sys-

tems and non-FPGA SmartNICs. NICA raises a range of

research topics, such as distributed heterogeneous architec-

tures, accelerator chaining, and reliable transport offloading,

which we will explore in the future.

Acknowledgments

We thank Chris Rossbach, Michael Swift, Ada Gavrilovska,
Aleksandar Dragojevic, and our shepherd Scott Rixner for
their valuable feedback. We also gratefully acknowledge the
support of the Israel Science Foundation (grant No. 1027/18),
the Israeli Innovation Authority Hiper Consortium, the Tech-
nion Hiroshi Fujiwara Cybersecurity center, as well as Mel-
lanox hardware donations and technical support.

356 2019 USENIX Annual Technical Conference USENIX Association

References

[1] M. Adiletta, M. Rosenbluth, D. Bernstein, G. Wolrich,

and H. Wilkinson. The next generation of Intel IXP

network processors. Intel Technology Journal, 6(3):6–

18, 2002.

[2] S. R. Agrawal, V. Pistol, J. Pang, J. Tran, D. Tarjan,

and A. R. Lebeck. Rhythm: harnessing data parallel

hardware for server workloads. In ASPLOS ’14. ACM,

2014, pp. 19–34.

[3] Alibaba Cloud. Instance type families: f1, compute

optimized type family with FPGA. (Accessed: Jan.

2019). URL: https://www.alibabacloud.com/help/doc-

detail/25378.htm%5C#f1.

[4] Amazon. AWS Marketplace – F1 search results. (Ac-

cessed: Dec. 2018). URL: https : / / aws . amazon .

com / marketplace / search / results ? x = 0 & y = 0 &

searchTerms=F1&page=1&ref_=nav_search_box.

[5] Amazon Web Services. Amazon EC2 F1 instances.

(Accessed: Jan. 2019). 2016. URL: https://aws.amazo

n.com/ec2/instance-types/f1/.

[6] H. Ballani, P. Costa, C. Gkantsidis, M. P. Grosvenor, T.

Karagiannis, L. Koromilas, and G. O’Shea. Enabling

end-host network functions. In SIGCOMM ’15. ACM,

2015, pp. 493–507.

[7] T. Becker, O. Mencer, S. Weston, and G. Gaydad-

jiev. Maxeler data-flow in computational finance. In,

FPGA Based Accelerators for Financial Applications,

pp. 243–266. Springer, 2015.

[8] M. Bernaschi, F. Casadei, and P. Tassotti. SockMi: a

solution for migrating TCP/IP connections. In PDP

2007, Feb. 2007, pp. 221–228.

[9] M. S. Birrittella, M. Debbage, R. Huggahalli, J. Kunz,

T. Lovett, T. Rimmer, K. D. Underwood, and R. C.

Zak. Intel® Omni-Path Architecture: enabling scal-

able, high performance fabrics. In HOTI 2015, Aug.

2015, pp. 1–9.

[10] D. L. Black, Z. Wang, M. A. Carlson, W. Weiss, E. B.

Davies, and S. L. Blake. An Architecture for Differ-

entiated Services. RFC 2475. Dec. 1998. URL: https:

//rfc-editor.org/rfc/rfc2475.txt.

[11] M. Blott, K. Karras, L. Liu, K. Vissers, J. Bär, and Z.

István. Achieving 10Gbps line-rate key-value stores

with FPGAs. In HotCloud’13. USENIX, 2013.

[12] C. Bormann, A. P. Castellani, and Z. Shelby. CoAP:

an application protocol for billions of tiny internet

nodes. IEEE Internet Computing, 16(2):62–67, Mar.

2012.

[13] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-

own, J. Rexford, C. Schlesinger, D. Talayco, A. Vah-

dat, G. Varghese, and D. Walker. P4: programming

protocol-independent packet processors. ACM SIG-

COMM Comput. Commun. Rev., 44(3):87–95, July

2014.

[14] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N.

McKeown, M. Izzard, F. Mujica, and M. Horowitz.

Forwarding metamorphosis: fast programmable

match-action processing in hardware for SDN. In

SIGCOMM ’13. ACM, 2013, pp. 99–110.

[15] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P.

Dimov, H. Ding, J. Ferris, A. Giardullo, S. Kulkarni,

H. Li, M. Marchukov, D. Petrov, L. Puzar, Y. J. Song,

and V. Venkataramani. TAO: Facebook’s distributed

data store for the social graph. In USENIX ATC 2013.

USENIX, 2013, pp. 49–60.

[16] W. d. Bruijn, H. Bos, and H. Bal. Application-tailored

I/O with Streamline. ACM Trans. Comput. Syst.,

29(2):6:1–6:33, May 2011.

[17] D. Burger. Microsoft unveils Project Brainwave for

real-time AI. (Accessed: Sep. 2018). 2017. URL: h

ttps: / /www.microsoft .com/en- us/research/blog/

microsoft-unveils-project-brainwave/.

[18] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia,

and P. Chow. FPGAs in the cloud: booting virtual-

ized hardware accelerators with OpenStack. In FCCM

2014, May 2014, pp. 109–116.

[19] A. Caulfield, E. Chung, A. Putnam, H. Angepat, J.

Fowers, M. Haselman, S. Heil, M. Humphrey, P. Kaur,

J.-Y. Kim, D. Lo, T. Massengill, K. Ovtcharov, M.

Papamichael, L. Woods, S. Lanka, D. Chiou, and D.

Burger. A cloud-scale acceleration architecture. In

MICRO-49. IEEE Computer Society, Oct. 2016.

[20] A. Caulfield, P. Costa, and M. Ghobadi. Beyond

SmartNICs: towards a fully programmable cloud. In

HPSR 2018, June 2018.

[21] S. R. Chalamalasetti, K. Lim, M. Wright, A. AuY-

oung, P. Ranganathan, and M. Margala. An FPGA

memcached appliance. In FPGA ’13. ACM, 2013,

pp. 245–254.

[22] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.

Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.

Gruber. Bigtable: a distributed storage system for

structured data. ACM Trans. Comput. Syst., 26(2):4,

2008.

[23] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X.

Chang, and K. Wang. Enabling FPGAs in the cloud.

In CF ’14. ACM, 2014, 3:1–3:10.

USENIX Association 2019 USENIX Annual Technical Conference 357

https://www.alibabacloud.com/help/doc-detail/25378.htm%5C#f1
https://www.alibabacloud.com/help/doc-detail/25378.htm%5C#f1
https://aws.amazon.com/marketplace/search/results?x=0&y=0&searchTerms=F1&page=1&ref_=nav_search_box
https://aws.amazon.com/marketplace/search/results?x=0&y=0&searchTerms=F1&page=1&ref_=nav_search_box
https://aws.amazon.com/marketplace/search/results?x=0&y=0&searchTerms=F1&page=1&ref_=nav_search_box
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://rfc-editor.org/rfc/rfc2475.txt
https://rfc-editor.org/rfc/rfc2475.txt
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/

[24] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael,

A. Caulfield, T. Massengill, M. Liu, D. Lo, S. Al-

kalay, M. Haselman, M. Abeydeera, L. Adams, H.

Angepat, C. Boehn, D. Chiou, O. Firestein, A. Forin,

K. S. Gatlin, M. Ghandi, S. Heil, K. Holohan, A. E.

Husseini, T. Juhasz, K. Kagi, R. Kovvuri, S. Lanka,

F. v. Megen, D. Mukhortov, P. Patel, B. Perez, A. Rap-

sang, S. Reinhardt, B. Rouhani, A. Sapek, R. Seera, S.

Shekar, B. Sridharan, G. Weisz, L. Woods, P. Y. Xiao,

D. Zhang, R. Zhao, and D. Burger. Serving DNNs in

real time at datacenter scale with project Brainwave.

IEEE Micro, 38(2):8–20, Mar. 2018.

[25] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrish-

nan, and R. Sears. Benchmarking cloud serving sys-

tems with YCSB. In SoCC ’10. ACM, 2010, pp. 143–

154.

[26] J. Corbet. Attaching eBPF programs to sockets. (Ac-

cessed: Jan. 2019). 2014. URL: https : / / lwn . net /

Articles/625224/.

[27] J. Corbet. TCP connection repair. (Accessed: Jan.

2019). 2012. URL: https://lwn.net/Articles/495304/.

[28] F. Daoud, A. Watad, and M. Silberstein. GPUrdma:

GPU-side library for high performance networking

from GPU kernels. In ROSS ’16. ACM, 2016, 6:1–

6:8.

[29] A. Dragojević. The configurable cloud: accelerat-

ing hyperscale datacenter services with FPGAs. Pre-

sented at MARS’17. (Accessed: Jan. 2019). 2017.

URL: https://sites.google.com/site/mars2017eurosys/

Program/keynotes/MARS%20alekd%20shared.pdf.

[30] D. Dunning, G. Regnier, G. McAlpine, D. Cameron,

B. Shubert, F. Berry, A. M. Merritt, E. Gronke, and C.

Dodd. The virtual interface architecture. IEEE Micro,

18(2):66–76, Mar. 1998.

[31] H. Eran, D. Levi, L. Liss, and M. Silberstein. NFV

acceleration: the role of the NIC. In SFMA’18, 2018.

[32] H. Eran, L. Zeno, Z. István, and M. Silberstein. De-

sign patterns for code reuse in HLS packet processing

pipelines. In FCCM ’19. IEEE Computer Society,

2019.

[33] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A.

Dabagh, M. Andrewartha, H. Angepat, V. Bhanu, A.

Caulfield, E. Chung, H. K. Chandrappa, S. Chatur-

mohta, M. Humphrey, J. Lavier, N. Lam, F. Liu, K.

Ovtcharov, J. Padhye, G. Popuri, S. Raindel, T. Sapre,

M. Shaw, G. Silva, M. Sivakumar, N. Srivastava, A.

Verma, Q. Zuhair, D. Bansal, D. Burger, K. Vaid, D. A.

Maltz, and A. Greenberg. Azure accelerated network-

ing: SmartNICs in the public cloud. In NSDI ’18.

USENIX Association, 2018, pp. 51–66.

[34] X. Ge, Y. Liu, D. H. Du, L. Zhang, H. Guan, J. Chen, Y.

Zhao, and X. Hu. OpenANFV: accelerating network

function virtualization with a consolidated framework

in openstack. ACM SIGCOMM Comput. Commun.

Rev., 44(4):353–354, Aug. 2014.

[35] J. Gomez-Luna, I.-J. Sung, L.-W. Chang, J. M.

González-Linares, N. Guil, and W.-M. W. Hwu. In-

place matrix transposition on GPUs. IEEE Trans. Par-

allel Distrib. Syst., 27(3):776–788, 2016.

[36] L. Gong and X. Zeng. Virtio-crypto: a new frame-

work of cryptography virtio device. KVM Forum.

(Accessed: Jan. 2019). 2017. URL: http://events17.

linuxfoundation . org / sites / events / files / slides /

Introduction%20of%20virtio%20crypto%20device.

pdf.

[37] G. Guidi, E. Reggiani, L. D. Tucci, G. Durelli, M.

Blott, and M. D. Santambrogio. On how to improve

FPGA-based systems design productivity via SDAc-

cel. In IPDPS Workshops 2016, May 2016, pp. 247–

252.

[38] T. Hoefler, S. D. Girolamo, K. Taranov, R. E. Grant,

and R. Brightwell. sPIN: High-performance stream-

ing Processing in the Network. In SC 2017, Nov.

2017.

[39] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J.

Fastabend, T. Herbert, D. Ahern, and D. Miller. The

eXpress Data Path: fast programmable packet pro-

cessing in the operating system kernel. In CoNEXT

’18. ACM, 2018, pp. 54–66.

[40] M. Huang, D. Wu, C. H. Yu, Z. Fang, M. Interlandi,

T. Condie, and J. Cong. Programming and runtime

support to blaze fpga accelerator deployment at data-

center scale. In SoCC ’16. ACM, 2016, pp. 456–469.

[41] Huawei Cloud. FPGA-accelerated cloud server. (Ac-

cessed: Jan. 2019). URL: https://www.huaweicloud.

com/en-us/product/fcs.html.

[42] Intel. Accelerator functional unit (AFU) developer’s

guide. (Accessed: Sep. 2018). 2018. URL: https:/ /

www.intel.com/content/dam/www/programmable/

us/en/pdfs/literature/ug/ug-afu-dev-v1-1.pdf.

[43] Intel. Intel FPGA SDK for OpenCL programming

guide. (Accessed: Sep. 2018). 2018. URL: https:/ /

www.intel.com/content/www/us/en/programmable/

documentation/mwh1391807965224.html.

[44] Z. István, G. Alonso, and A. Singla. Providing multi-

tenant services with FPGAs: case study on a key-

value store. In FPL 2018, Aug. 2018, pp. 119–1195.

[45] Z. István, D. Sidler, G. Alonso, and M. Vukolic. Con-

sensus in a box: inexpensive coordination in hardware.

In NSDI ’16. USENIX Association, 2016, pp. 425–

438.

358 2019 USENIX Annual Technical Conference USENIX Association

https://lwn.net/Articles/625224/
https://lwn.net/Articles/625224/
https://lwn.net/Articles/495304/
https://sites.google.com/site/mars2017eurosys/Program/keynotes/MARS%20alekd%20shared.pdf
https://sites.google.com/site/mars2017eurosys/Program/keynotes/MARS%20alekd%20shared.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/Introduction%20of%20virtio%20crypto%20device.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/Introduction%20of%20virtio%20crypto%20device.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/Introduction%20of%20virtio%20crypto%20device.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/Introduction%20of%20virtio%20crypto%20device.pdf
https://www.huaweicloud.com/en-us/product/fcs.html
https://www.huaweicloud.com/en-us/product/fcs.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-afu-dev-v1-1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-afu-dev-v1-1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-afu-dev-v1-1.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807965224.html
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807965224.html
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807965224.html

[46] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster,

C. Kim, and I. Stoica. Netcache: balancing key-value

stores with fast in-network caching. In SOSP ’17.

ACM, 2017, pp. 121–136.

[47] M. Jones, J. Bradley, and N. Sakimura. JSON Web

Token (JWT). RFC 7519. May 2015. URL: https://rfc-

editor.org/rfc/rfc7519.txt.

[48] S. Kanev, J. P. Darago, K. Hazelwood, P. Ran-

ganathan, T. Moseley, G.-Y. Wei, and D. Brooks.

Profiling a warehouse-scale computer. In ISCA ’15.

ACM, 2015, pp. 158–169.

[49] S. Kato, K. Lakshmanan, R. Rajkumar, and Y.

Ishikawa. TimeGraph: GPU scheduling for real-time

multi-tasking environments. In USENIX ATC 2011.

USENIX Association, 2011, pp. 2–2.

[50] A. Kaufmann, S. Peter, N. K. Sharma, T. Anderson,

and A. Krishnamurthy. High performance packet pro-

cessing with FlexNIC. In ASPLOS ’16. ACM, 2016,

pp. 67–81.

[51] A. Khawaja, J. Landgraf, R. Prakash, M. Wei, E.

Schkufza, and C. J. Rossbach. Sharing, protection,

and compatibility for reconfigurable fabric with

AmorphOS. In OSDI 2018. USENIX Association,

Oct. 2018.

[52] J. Kicinski and N. Viljoen. eBPF hardware offload to

SmartNICs: cls_bpf and XDP. In Netdev 1.2, 2016.

[53] D. Kim, A. Memaripour, A. Badam, Y. Zhu, H. H.

Liu, J. Padhye, S. Raindel, S. Swanson, V. Sekar, and

S. Seshan. Hyperloop: group-based NIC-offloading to

accelerate replicated transactions in multi-tenant stor-

age systems. In SIGCOMM ’18. ACM, 2018, pp. 297–

312.

[54] S. Kim, S. Huh, X. Zhang, Y. Hu, A. Wated, E.

Witchel, and M. Silberstein. GPUnet: networking

abstractions for GPU programs. In OSDI 2014.

USENIX Association, Oct. 2014, pp. 201–216.

[55] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.

Kaashoek. The Click modular router. ACM Trans.

Comput. Syst., 18(3):263–297, Aug. 2000.

[56] S. Kumar, A. Gavrilovska, K. Schwan, and S. Sun-

daragopalan. C-CORE: using communication cores

for high performance network services. In NCA 2005,

July 2005, pp. 171–178.

[57] M. Lavasani, H. Angepat, and D. Chiou. An FPGA-

based in-line accelerator for memcached. IEEE Com-

put. Archit. Lett., 13(2):57–60, July 2014.

[58] M. LeBeane, K. Hamidouche, B. Benton, M. Breter-

nitz, S. K. Reinhardt, and L. K. John. GPU triggered

networking for intra-kernel communications. In SC

’17. ACM, 2017, 22:1–22:12.

[59] I. Lesokhin, H. Eran, and O. Gerlitz. Flow-based tun-

neling for SR-IOV using switchdev API. In Netdev

1.1, Feb. 2016.

[60] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam,

E. Chen, and L. Zhang. KV-Direct: high-performance

in-memory key-value store with programmable NIC.

In SOSP ’17. ACM, 2017, pp. 137–152.

[61] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y.

Xiong, P. Cheng, and E. Chen. ClickNP: highly flex-

ible and high performance network processing with

reconfigurable hardware. In SIGCOMM ’16. ACM,

2016, pp. 1–14.

[62] X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and

M. J. Freedman. Be fast, cheap and in control with

SwitchKV. In NSDI ’16. USENIX Association, 2016,

pp. 31–44.

[63] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky.

MICA: a holistic approach to fast in-memory key-

value storage. In NSDI ’14. USENIX Association,

2014, pp. 429–444.

[64] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan,

and T. F. Wenisch. Thin servers with smart pipes:

designing SoC accelerators for memcached. In ISCA

’13. ACM, 2013, pp. 36–47.

[65] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy,

and K. Atreya. IncBricks: toward in-network com-

putation with an in-network cache. In ASPLOS ’17.

ACM, 2017, pp. 795–809.

[66] L. L. Luo. Towards converged SmartNIC architecture

for bare metal & public clouds. APNet 2018 (Ac-

cessed: Jan. 2019). 2018. URL: https://conferences.

sigcomm.org/events/apnet2018/slides/larry.pdf.

[67] G. Martin and G. Smith. High-level synthesis:

past, present, and future. IEEE Des. Test. Comput.,

26(4):18–25, 2009.

[68] Mellanox Technologies. Innova Flex 4 Lx EN adapter

card product brief. (Accessed: Jan. 2019). 2017. URL:

https : / /www.mellanox . com/ related - docs / prod_

adapter_cards/PB_Innova_Flex4_Lx_EN.pdf.

[69] Mellanox Technologies. libvma: Linux user-space

library for network socket acceleration based on

RDMA compatible network adaptors. (Accessed: Jan.

2019). 2018. URL: https : / /github.com/Mellanox/

libvma.

[70] Mellanox Technologies. Mellanox Technologies

ConnectX®-4 Lx single 40/50 Gb/s Ethernet QSFP28

port adapter card user manual. (Accessed: Jan. 2019).

URL: https : / / www . mellanox . com / related - docs /

user_manuals /ConnectX- 4_Lx_Single_40_50_

Gbs_Ethernet_QSFP28_Port_Adapter_Card_User_

Manual.pdf.

USENIX Association 2019 USENIX Annual Technical Conference 359

https://rfc-editor.org/rfc/rfc7519.txt
https://rfc-editor.org/rfc/rfc7519.txt
https://conferences.sigcomm.org/events/apnet2018/slides/larry.pdf
https://conferences.sigcomm.org/events/apnet2018/slides/larry.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova_Flex4_Lx_EN.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova_Flex4_Lx_EN.pdf
https://github.com/Mellanox/libvma
https://github.com/Mellanox/libvma
https://www.mellanox.com/related-docs/user_manuals/ConnectX-4_Lx_Single_40_50_Gbs_Ethernet_QSFP28_Port_Adapter_Card_User_Manual.pdf
https://www.mellanox.com/related-docs/user_manuals/ConnectX-4_Lx_Single_40_50_Gbs_Ethernet_QSFP28_Port_Adapter_Card_User_Manual.pdf
https://www.mellanox.com/related-docs/user_manuals/ConnectX-4_Lx_Single_40_50_Gbs_Ethernet_QSFP28_Port_Adapter_Card_User_Manual.pdf
https://www.mellanox.com/related-docs/user_manuals/ConnectX-4_Lx_Single_40_50_Gbs_Ethernet_QSFP28_Port_Adapter_Card_User_Manual.pdf

[71] Mellanox Technologies. sockperf: network bench-

marking utility. (Accessed: Jan. 2019). 2018. URL:

https://github.com/Mellanox/sockperf.

[72] Mellanox Technologies. Whitepaper: Mellanox In-

nova IPSec: achieve groundbreaking security for

VPN, data privacy & data-in-motion, while reducing

total cost of ownership (TCO). (Accessed: Jan. 2019).

2018. URL: https : / / www .mellanox . com / related -

docs/whitepapers/WP_Innova_IPsec.pdf.

[73] K. Menychtas, K. Shen, and M. L. Scott. Disengaged

scheduling for fair, protected access to fast compu-

tational accelerators. In ASPLOS ’14. ACM, 2014,

pp. 301–316.

[74] C. Min, W. Kang, M. Kumar, S. Kashyap, S. Maass,

H. Jo, and T. Kim. Solros: a data-centric operating

system architecture for heterogeneous computing. In

EuroSys ’18. ACM, 2018, 36:1–36:15.

[75] J. C. Mogul. TCP offload is a dumb idea whose time

has come. In HOTOS’03. USENIX Association, 2003,

pp. 5–5.

[76] R. Müller and K. Eguro. FPGA-accelerated deserial-

ization of object structures. Tech. rep. MSR-TR-2009-

126. Microsoft Research Redmond, 2009.

[77] R. Nakhjavani and J. Zhu. A case for common-case:

on FPGA acceleration of erasure coding. In FCCM

2017, Apr. 2017, pp. 81–81.

[78] Netronome. Agilio OVS firewall software. (Accessed:

Jan. 2019). 2017. URL: https://www.netronome.com/

media/documents/PB_Agilio_OVS_FW_SW.pdf.

[79] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The

log-structured merge-tree (LSM-tree). Acta Informat-

ica, 33(4):351–385, 1996.

[80] A. Pant, K. Siva, and N. Tan. IPSec Acceleration:

securing your data across the data center. Oracle Open

World (Accessed: Jan. 2019). 2017. URL: https://sta

tic.rainfocus.com/oracle/oow17/sess/15023186731

68001SKY0/PF/OOW%20Technical%20Session%

20Final%20100217_1507049724149001WUcf.pdf.

[81] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A.

Krishnamurthy, T. Anderson, and T. Roscoe. Arrakis:

the operating system is the control plane. In OSDI

2014. https://www.usenix.org/system/files/conferen

ce/osdi14/osdi14-paper-peter_simon.pdf, Oct. 2014,

pp. 1–16.

[82] G. F. Pfister. An introduction to the InfiniBand™ ar-

chitecture. In, High Performance Mass Storage and

Parallel I/O: Technologies and Applications, part 42.

John Wiley & Sons, Inc., 1st ed., 2001.

[83] P. M. Phothilimthana, M. Liu, A. Kaufmann, S. Pe-

ter, R. Bodik, and T. Anderson. Floem: a program-

ming system for NIC-accelerated network applica-

tions. In OSDI 2018. USENIX Association, Oct.

2018, pp. 663–679.

[84] B. Pismenny, D. Doherty, and H. Agrawal.

rte_security: enabling hardware acceleration of secu-

rity protocols. DPDK Summit Userspace. (Accessed:

Jan. 2019). 2017. URL: https: / /dpdksummit .com/

Archive/pdf/2017Userspace/DPDK-Userspace2017-

Day1-9-security-presentation.pdf.

[85] B. Pismenny, I. Lesokhin, L. Liss, and H. Eran. TLS

offload to network devices. In Netdev 1.2, 2016.

[86] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou,

K. Constantinides, J. Demme, H. Esmaeilzadeh, J.

Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck,

S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus,

E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao,

and D. Burger. A reconfigurable fabric for accelerat-

ing large-scale datacenter services. Commun. ACM,

59(11):114–122, Oct. 2016.

[87] R. J. Recio, P. R. Culley, D. Garcia, B. Metzler, and J.

Hilland. A Remote Direct Memory Access Protocol

Specification. RFC 5040. Oct. 2007. URL: https://rfc-

editor.org/rfc/rfc5040.txt.

[88] Y. Ren. High performance cloud with hardware accel-

eration. APNet 2018 (Accessed: Sep. 2018). 2018.

URL: https : / / conferences . sigcomm . org / events /

apnet2018/slides/yong.pdf.

[89] D. Riddoch and S. Pope. FPGA augmented ASICs:

the time has come. In HCS, Aug. 2012, pp. 1–44.

[90] T. Rinta-aho, M. Karlstedt, and M. P. Desai. The

Click2NetFPGA toolchain. In USENIX ATC 2012.

USENIX, 2012, pp. 77–88.

[91] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray,

and E. Witchel. PTask: operating system abstractions

to manage GPUs as compute devices. In SOSP ’11.

ACM, 2011, pp. 233–248.

[92] SAMSUNG. Samsung ARTIK cloud developer –

CoAP. (Accessed: Sep. 2018). 2018. URL: https :

/ / developer . artik . cloud / documentation / data -

management/coap.html.

[93] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and

P. Kalnis. In-network computation is a dumb idea

whose time has come. In HotNets-XVI. ACM, 2017,

pp. 150–156.

[94] Selectel. FPGA-accelerators go into the clouds [rus-

sian]. (Accessed: Jan. 2019). 2018. URL: https://blog.

selectel.ru/fpga-uskoriteli-uxodyat-v-oblaka/.

360 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/Mellanox/sockperf
https://www.mellanox.com/related-docs/whitepapers/WP_Innova_IPsec.pdf
https://www.mellanox.com/related-docs/whitepapers/WP_Innova_IPsec.pdf
https://www.netronome.com/media/documents/PB_Agilio_OVS_FW_SW.pdf
https://www.netronome.com/media/documents/PB_Agilio_OVS_FW_SW.pdf
https://static.rainfocus.com/oracle/oow17/sess/1502318673168001SKY0/PF/OOW%20Technical%20Session%20Final%20100217_1507049724149001WUcf.pdf
https://static.rainfocus.com/oracle/oow17/sess/1502318673168001SKY0/PF/OOW%20Technical%20Session%20Final%20100217_1507049724149001WUcf.pdf
https://static.rainfocus.com/oracle/oow17/sess/1502318673168001SKY0/PF/OOW%20Technical%20Session%20Final%20100217_1507049724149001WUcf.pdf
https://static.rainfocus.com/oracle/oow17/sess/1502318673168001SKY0/PF/OOW%20Technical%20Session%20Final%20100217_1507049724149001WUcf.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-peter_simon.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-peter_simon.pdf
https://dpdksummit.com/Archive/pdf/2017Userspace/DPDK-Userspace2017-Day1-9-security-presentation.pdf
https://dpdksummit.com/Archive/pdf/2017Userspace/DPDK-Userspace2017-Day1-9-security-presentation.pdf
https://dpdksummit.com/Archive/pdf/2017Userspace/DPDK-Userspace2017-Day1-9-security-presentation.pdf
https://rfc-editor.org/rfc/rfc5040.txt
https://rfc-editor.org/rfc/rfc5040.txt
https://conferences.sigcomm.org/events/apnet2018/slides/yong.pdf
https://conferences.sigcomm.org/events/apnet2018/slides/yong.pdf
https://developer.artik.cloud/documentation/data-management/coap.html
https://developer.artik.cloud/documentation/data-management/coap.html
https://developer.artik.cloud/documentation/data-management/coap.html
https://blog.selectel.ru/fpga-uskoriteli-uxodyat-v-oblaka/
https://blog.selectel.ru/fpga-uskoriteli-uxodyat-v-oblaka/

[95] M. Shreedhar and G. Varghese. Efficient fair queuing

using deficit round-robin. IEEE/ACM Trans. Netw.,

4(3):375–385, June 1996.

[96] D. Sidler, Z. István, and G. Alonso. Low-latency

TCP/IP stack for data center applications. In FPL

2016, Aug. 2016, pp. 1–4.

[97] Solarflare Communications, Inc. Application

nanosecond TCP send (ANTS): from request to

response in less than 250ns. (Accessed: Jan. 2019).

2015. URL: https : / / www . solarflare . com / Media /

Default/PDFs/SF-114903-CD-LATEST-Solarflare_

Application_Nanosecond_TCP_Send_Paper.pdf.

[98] S. Stanley. Ubiquitous SDN acceleration is coming.

(Accessed: Jan. 2019). 2017. URL: https : / / www .

lightreading.com/carrier-sdn/ubiquitous-sdn-acceler

ation-is-coming/a/d-id/738209.

[99] J. Strömbergson. Secworks/sha256: hardware imple-

mentation of the SHA-256 cryptographic hash func-

tion. (Accessed: Jan. 2019). 2018. URL: https://github.

com/secworks/sha256.

[100] H. Stubbe. P4 compiler & interpreter: a survey. Fu-

ture Internet (FI) and Innovative Internet Technolo-

gies and Mobile Communication (IITM), 47, 2017.

[101] J. Stuecheli, B. Blaner, C. R. Johns, and M. S. Siegel.

CAPI: a coherent accelerator processor interface. IBM

Journal of Research and Development, 59(1):7:1–7:7,

Jan. 2015.

[102] N. Sultana, S. Galea, D. Greaves, M. Wojcik, J. Ship-

ton, R. Clegg, L. Mai, P. Bressana, R. Soulé, R.

Mortier, P. Costa, P. Pietzuch, J. Crowcroft, A. W.

Moore, and N. Zilberman. Emu: rapid prototyping of

networking services. In USENIX ATC 2017. USENIX

Association, 2017, pp. 459–471.

[103] S. Tanaka and C. Kozyrakis. High performance

hardware-accelerated flash key-value store. In NVMW

2014, 2014.

[104] N. Tarafdar, N. Eskandari, V. Sharma, C. Lo, and P.

Chow. Galapagos: a full stack approach to FPGA

integration in the cloud. IEEE Micro, 38(6):18–24,

Nov. 2018.

[105] The RoCE Initiative. RoCE introduction. (Accessed:

Jan. 2019). 2016. URL: http://www.roceinitiative.org/

roce-introduction/.

[106] Y. Tokusashi and H. Matsutani. A multilevel NOSQL

cache design combining in-NIC and in-kernel caches.

In HOTI 2016, Aug. 2016, pp. 60–67.

[107] Y. Tokusashi, H. Matsutani, and N. Zilberman. LaKe:

the power of in-network computing. In ReConFig’18,

Dec. 2018, pp. 1–8.

[108] Y. Tokusashi, H. T. Dang, F. Pedone, R. Soulé, and

N. Zilberman. The case for in-network computing on

demand. In EuroSys ’19. ACM, 2019, 21:1–21:16.

[109] D. Tong and V. Prasanna. High throughput sketch

based online heavy hitter detection on FPGA.

SIGARCH Comput. Archit. News, 43(4):70–75, Apr.

2016.

[110] A. Trivedi. Remote Direct Memory Access (RDMA)

101 – quick history lesson and introduction. (Ac-

cessed: Sep. 2018). 2011. URL: http : / / 0x8086 .

blogspot . com / 2011 / 11 / remote - direct - memory -

access-rdma-101.html.

[111] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shri-

vastav, N. Foster, and H. Weatherspoon. P4FPGA: a

rapid prototyping framework for P4. In SOSR 2017.

ACM, 2017, pp. 122–135.

[112] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang,

and M. Guo. Quality of service support for fine-

grained sharing on GPUs. In ISCA ’17. ACM, 2017,

pp. 269–281.

[113] P. Willmann, H.-y. Kim, S. Rixner, and V. S. Pai. An

efficient programmable 10 gigabit Ethernet network

interface card. In HPCA-11, Feb. 2005, pp. 96–107.

[114] Xilinx Inc. Vivado high-level synthesis. (Accessed:

Jan. 2019). 2018. URL: https : / /www.xilinx.com/

products/design-tools/vivado/integration/esl-design.

html.

[115] W. Xu. Hardware acceleration over NFV in China

Mobile. OPNFV Plugfest. (Accessed: Jan. 2019).

June 2018. URL: https://wiki.opnfv.org/download/

attachments/20745096/opnfv_Acc.pdf.

[116] T. T. Yeh, A. Sabne, P. Sakdhnagool, R. Eigenmann,

and T. G. Rogers. Pagoda: fine-grained GPU resource

virtualization for narrow tasks. In PPoPP ’17. ACM,

2017, pp. 221–234.

[117] K. Zhang, B. He, J. Hu, Z. Wang, B. Hua, J. Meng,

and L. Yang. G-NET: effective GPU sharing in NFV

systems. In NSDI ’18. USENIX Association, 2018,

pp. 187–200.

[118] Q. Zhao, M. Iida, and T. Sueyoshi. A study of

FPGA virtualization and accelerator scheduling. In

ETCD’17. ACM, 2017, 3:1–3:4.

[119] N. Zilberman, Y. Audzevich, G. A. Covington, and

A. W. Moore. NetFPGA SUME: toward 100 Gbps as

research commodity. IEEE Micro, 34(5):32–41, Sept.

2014.

USENIX Association 2019 USENIX Annual Technical Conference 361

https://www.solarflare.com/Media/Default/PDFs/SF-114903-CD-LATEST-Solarflare_Application_Nanosecond_TCP_Send_Paper.pdf
https://www.solarflare.com/Media/Default/PDFs/SF-114903-CD-LATEST-Solarflare_Application_Nanosecond_TCP_Send_Paper.pdf
https://www.solarflare.com/Media/Default/PDFs/SF-114903-CD-LATEST-Solarflare_Application_Nanosecond_TCP_Send_Paper.pdf
https://www.lightreading.com/carrier-sdn/ubiquitous-sdn-acceleration-is-coming/a/d-id/738209
https://www.lightreading.com/carrier-sdn/ubiquitous-sdn-acceleration-is-coming/a/d-id/738209
https://www.lightreading.com/carrier-sdn/ubiquitous-sdn-acceleration-is-coming/a/d-id/738209
https://github.com/secworks/sha256
https://github.com/secworks/sha256
http://www.roceinitiative.org/roce-introduction/
http://www.roceinitiative.org/roce-introduction/
http://0x8086.blogspot.com/2011/11/remote-direct-memory-access-rdma-101.html
http://0x8086.blogspot.com/2011/11/remote-direct-memory-access-rdma-101.html
http://0x8086.blogspot.com/2011/11/remote-direct-memory-access-rdma-101.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://wiki.opnfv.org/download/attachments/20745096/opnfv_Acc.pdf
https://wiki.opnfv.org/download/attachments/20745096/opnfv_Acc.pdf

	Introduction
	Background
	F-NIC architecture
	FPGA concepts

	Motivation
	F-NICs in data centers
	Use cases for F-NIC acceleration
	AFUs in the cloud

	Design
	Abstractions for inline acceleration
	The ikernel abstraction
	Control plane
	Data plane
	Usability

	Virtualization
	State protection
	Performance isolation

	AFU development
	Discussion

	Implementation
	AFU virtualization
	Software
	Hardware runtime
	Limitations

	Evaluation
	Microbenchmarks
	Application benchmarks
	Transparent memcached cache
	IoT authentication

	Related work
	Conclusion and future work

