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Abstract. Recently, a novel public-key cryptosystem constructed on
number fields is presented. The prominent theoretical property of the
public-key cryptosystem is a quadratic decryption bit complexity of the
public key, which consists of only simple fast arithmetical operations. We
call the cryptosystem NICE (New Ideal Coset Encryption). In this paper,
we consider practical aspects of the NICE cryptosystem. Our implemen-
tation in software shows that the decryption time of NICE is comparably
as fast as the encryption time of the RSA cryptosystem with e = 216+1.
To show if existing smart cards can be used, we implemented the NICE
cryptosystem using a smart card designed for the RSA cryptosystem.
Our result shows that the decryption time of NICE is comparably as
fast as the decryption time of RSA cryptosystem but not so fast as in
software implementation. We discuss the reasons for this and indicate
requirements for smartcard designers to achieve fast implementation on
smartcards.
Key words: public-key cryptosystem, fast decryption, quadratic order,
smart card implementation.

1 Why NICE?

Plenty of public-key cryptosystem not relying only on the RSA cryptosystem
have been proposed. They are stemming from deep number theory (hyper- and
superelliptic curves) to geometry and combinatorics (LLL-based systems). One
major advantage of RSA is its simplicity: it can be easily implemented, one only
needs a moderate background in mathematics to understand it. Moreover, RSA
is quite fast - there exist public key cryptosystems which are much faster, but the
combination of simplicity, speed and confidence in its security makes it the most
practical cryptosystem. Until now, only one other system may be considered as
equally interesting: ElGamal type systems on elliptic curves. Elliptic curves are
somewhat more complicated, and the best known algorithms to break elliptic
curve cryptosystems are much slower, in the order of exponential complexity.
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So, both speed and security are worth being paid by the higher mathematical
complexity.

But: both systems have one drawback in common: the decryption/signing
time is of cubic complexity in the bit length of the public key for both systems
because these steps consist of modular multiplication(s). This becomes even more
important when thinking of smart cards. The smart card is considered to be the
personal security computing device of tomorrow. It contains all personal secret
information, especially the private keys for public key systems like decryption
and signing. The complexity of PC operating systems is too high to be reliably
secure; every relevant security operation should be effected by the smart card.
Non-relevant operations like public key encryption and signature verification
could be done by the PC. Operations which cannot be transferred to the PC
at all due to security reasons are decryption and signing. Considering RSA, the
task which has to be effected by a low power computing device is precisely the
most complex task. Moreover, we can expect that the key length of the public
key will increase with the progress of hardware technology. In addition, there are
no guarantees that new sub-exponential attacks for the basic number theoretic
problem will not be suddenly proposed. Therefore it would be better to have a
more efficient public key cryptosystem.

As an alternative, we might use a new public-key cryptosystem constructed
over number fields [18]. The cryptosystem has a theoretically fast decryption
process such as a quadratic decryption complexity of bit-length of a public-key,
which consists of only simple fast arithmetical operations. So even if the key
length gets bigger in the future, there will be no great increase of the computa-
tional complexity. This becomes even more important when thinking of smart
cards. In this paper, we call the new cryptosystem NICE, (New Ideal Coset
Encryption). We focus on the practical aspects of NICE cryptosystem. We im-
plement the NICE cryptosystem over different architectures, namely software
on a standard PC and on a smartcard designed for the RSA cryptosystem. Our
implementation in software shows NICE is as fast as the encryption time of the
RSA cryptosystem with e = 216 + 1. Implementation on a smartcard designed
for the RSA cryptosystem is comparably as fast as the decryption time of the
RSA cryptosystem but not so fast as in software implementation. We discuss
the reasons for this and indicate requirements to achieve fast implementation on
smartcards.

This paper is organized as follows: In section 2, we give several applicati-
ons based on NICE cryptosystem. In section 3, we explain the details of the
algorithms of the NICE cryptosystem. In section 4, we show timings of the im-
plementation in software. In section 5, we discuss a smart card implementation
and its problems.

2 Applications

In section 3, we will present NICE in the formulation of an encryption scheme. An
immediate application is therefore session key distribution from a powerful server
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to a device which has a limited computing power or where time is important.
An example for such a device is e.g. a mobile phone.

Another application of NICE is the use as an authentication scheme. The
usual protocols (2-way and 3-way) can be adapted to use NICE as encryption
component. Of course, it could be combined with RSA, where the modulus is
the absolute value of the discriminant of the non-maximal order, i.e. ∆q. In that
case, the 3-way protocol can be realized in such a way that the client (= the low
computing power device) only effects the fast components of both algorithms.

As a last application, we propose an undeniable signature scheme. NICE its-
elf cannot be used as a classical signature scheme; undeniable signature schemes
have their own use e.g. in online transactions. A signature of this kind cannot be
verified without the interaction of the signer. The standard example for its appli-
cation is its use by a software development company: the distributed software is
signed by means of an undeniable signature of the company to allow legal users
to ensure themselves that they use unmodified software. Since interaction with
the seller is needed to check the signature, illegal users either cannot check and
risk to use some virus-infected software or will be traced by the software-seller as
soon as they ask for interactive verification. Details can be found in [4]. Again,
the low computing power device only effectuates the NICE decryption steps, so
smart cards can be used for assuring the security of online transactions.

3 The NICE Cryptosystem

In this section, we present an overview of the NICE cryptosystem. Details can be
found in [18]. The idea of NICE is roughly as follows: consider two finite abelian
groups G and H which are related by a surjective map π : G → H. Moreover,
there exists a well-defined bijective mapping of sets φ : H → U of H onto a
subset of U of G such that π(φ(M))) = M for all M ∈ H. The representation
of elements of G and the group operation algorithm of G are publicly known,
as well as an element h of the kernel of π. U is chosen such that a consecutive
set of representations of elements of G are representations of elements of U .
This information is publicly known. Assume that you know the group H (i.e.
representation of group elements and group operation) and how to compute π,
but no one else does. The message space consists of the publicly known elements
of U . Now, a message m is probabilistically encrypted by randomly multiplying
an element hr of Kerπ onto it: the ciphertext is c = m ∗ hr. Decryption simply
works as follows: compute φ(π(m ∗ hr)).

This is a secure cryptosystem if the computation of the map π cannot be
deduced from the given information, namely the group G, the kernel element h
and the test for U . There exist some constructions of this scheme using number
theoretic problems, e.g. [17]. An overview can be found in [19].

The following implementation of this scheme is especially interesting: Gene-
rate two random primes p, q > 4 such that p ≡ 3 (mod 4) and let ∆1 = −p. Let
H = Cl(∆1) be the ideal class group of the maximal order with discriminant
∆1 and G = Cl(∆q) be the ideal class group of the non-maximal order with
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conductor q. ∆q will be public, whilst its factorization into ∆1 and q will be
kept private.

Any element of G is given by a pair of numbers (a, b) such that 0 < a ≤√|∆q|/3, −a < b ≤ a and b2 ≡ ∆qmod4a (and some other minor requirements).
Elements of H are represented in the same way with ∆1 instead of ∆q. The
group operation works as follows:

Composition in Cl(∆q)
Input: (a1, b1), (a2, b2) ∈ Cl(∆q), the discriminant ∆q

Output: (a, b) = (a1, b1) ∗ (a2, b2).

1. /* Multiplication step */
1.1. Solve d = ua1 + va2 + w(b1 + b2)/2 for d, u, v, w ∈ ZZ using the extended

Euclidean algorithm
1.2. a← a1a2/d

2

1.3. b← b2 + (va2(b1 − b2) + w(∆q − b22)/2)/dmod2a
2 /* Reduction step */
2.1. c← (∆q − b2)/4a
2.2. WHILE {−a < b ≤ a < c} or {0 ≤ b ≤ a = c} DO
2.2.1. Find λ, µ ∈ ZZ s.t. −a ≤ µ = b+2λa < a using division with remainder
2.2.2. (a, b, c)← (c− λ b+µ

2 ,−µ, a)
2.3. IF a = c AND b < 0 THEN b← −b
2.4. RETURN (a, b)

This algorithm has quadratic bit complexity O((log2∆q)2) and is only needed
for the encryption step. For the decryption step, we need only to compute π.
The computation of the map π works as follows:

Computation of π
Input: (a, b) ∈ Cl∆q

, the fundamental discriminant ∆1, the discriminant ∆q

and the conductor q
Output: (A,B) = π((a, b)).

1. bO ← ∆q mod 2
2. Solve 1 = uq + va for u, v ∈ ZZ using the extended Euclidean algorithm
3. B ← bu+ abOv mod 2a
4. C ← (∆1 −B2)/4A
5. WHILE NOT ({−A < B ≤ A < C} or {0 ≤ B ≤ A = C}) DO

5.1 Find λ, µ ∈ ZZ s.t. −A ≤ µ = B + 2λA < A using division with remainder
5.2 (A,B,C)← (C − λB+µ

2 ,−µ,A)
6. IF A = C AND B < 0 THEN B ← −B
7. RETURN (A,B)

This algorithm π has quadratic bit complexity O((log2∆q)2) ([18]). Moreo-
ver, only simple well-known operations are needed, thus this algorithm can easily
be implemented on an existing smart card.
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Finally, the test belonging to U is simply whether for an element (a, b) a is
smaller than [

√|∆1|/4] (or a lower bound thereof of the form 2k). The compu-
tation of the map φ will not be needed in that implementation.

We explain how the NICE encrytion scheme works: In the key generation,
we choose an element (h, bh) from the kernel Kerπ and make (h, bh) public.
The message m is embedded in an element (m, bm) of Cl(∆q) with m smaller
than [

√|∆1|/4]. Encryption is done in the class group Cl(∆q) by computing
(c, bc) = ((m, bm)∗(h, bh)r), where r is a random integer smaller than 2l with l =
log2

(
q −

(
∆1
q

))
. Then, having the secret information, namely the knowledge of

the conductor q, one can go to the maximal order and the image of the message
(m, bm) in the maximal order is revealed, since π(c, bc) = π(m, bm) and m can
be recovered without computing φ.

The NICE encryption protocol

1. Key generation: Generate two random primes p, q > 4 with p ≡ 3 (mod 4)
and

√
p/4 < q. Let ∆1 = −p and ∆q = ∆1q

2. Let k and l be the bit lengths

of [
√|∆1|/4] and q−

(
∆1
q

)
respectively. Choose an element (h, bh) in Cl(∆q),

where
π((h, bh)) = (1, 0) (1)

Then ((h, bh), ∆q, k, l) are the system parameters, and q is the secret key.
2. Encryption: Let (m, bm) be the plaintext, in Cl(∆q) with log2m < k. Pick up

a random l − 1 bit integer and we encrypt the plaintext as follows using binary
exponentiation and precomputation techniques:

(c, bc) = (m, bm) ∗ (h, bh)r (2)

Then (c, bc) is the ciphertext.
3. Decryption: Using the secret key q, we compute (d, bd) = π((c, bc)). The plain-

text is then m = d.

A message embedding technique and security aspects of this cryptosystem, we
refer to [18]. Again, please note that this cryptosystem can easily be implemented
using well-known techniques and existing smart cards. This will be shown in the
next section.

4 NICE Running Times in Software

The prominent property of the proposed cryptosystem is the running time of the
decryption. Most prominent cryptosystems require decryption time O((log2 n)3),
where n is the size of the public key. The total running time of the decryption
process of our cryptosystem is O((log2∆q)2) bit operations. In order to demon-
strate the improved efficiency of our decryption, we implemented our scheme
using the LiDIA library [2]. It should be emphasized here that our implemen-
tation was not optimized for cryptographic purposes — it is only intended to
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provide a comparison between RSA and NICE. The results are shown in table
1. In these tests, we did choose p ≈ q ≈ n1/3, so that breaking RSA and NICE
by factoring is approximately equally hard. Other variations and a discussion of
the variants can be found in [18].

Table 1. Average timings for the new cryptosystem with 80-bit encryption exponent
r compared to RSA with encryption exponent 216 + 1 over 100 randomly chosen pairs
of primes of the specified size on a Pentium 266 Mhz using the LiDIA library

log2(∆q) 1024 1536 2048 3072
RSA encryption 2.2 ms 4.8 ms 7.5 ms 15.2 ms
RSA classical decryption 259.2 ms 751.3 ms 1643.9 ms 4975.6 ms
RSA decryption with CRT 110.5 ms 291.7 ms 629.7 ms 1855.5 ms
NICE encryption 602.9 ms 1180.1 ms 1902.0 ms 3933.5 ms
NICE decryption 3.8 ms 6.2 ms 10.0 ms 19.3 ms

Observe that one can separate the fast exponentiation step of the encryption
as a “precomputation” stage. Indeed, if we can securely store the values (p, bp)r,
then the actual encryption can be effected very rapidly, since it requires only
one ideal multiplication and one ideal reduction. Moreover, using well-known
techniques for randomized encryption, we can even reduce the encryption time
much more. Note that no square root technique like the Pollard-rho method or
Shanks’ algorithm are directly applicable to the ciphertext (c, bc), because the
encryption consists of (c, bc) = (m, bm)(p, bp)r where r is a random exponent and
(m, bm) is the secret plaintext. This means that we can use a very short random
exponent r having e.g. about 80 bits.

It should be mentioned that the size of a message for our cryptosystem is
significantly smaller than the size of a message for the RSA encryption (e.g.
256 bit vs. 768 bit, or 341 bit vs. 1024 bit). In connection with the very fast
decryption time, an excellent purpose for our cryptosystem could be (symmetric)
key distribution. In that setting, the short message length is not a real drawback.
On the other hand, the message length is longer than for ElGamal encryption
on “comparably” secure elliptic curves (e.g. 341 bit vs. 180 bit).

Table 2. Rate of the speed increasing when the bit-length of a public-key becomes
larger

log2(n) 1024 1536 2048 3072
RSA encryption 1 2.18 3.41 6.91
RSA classical decryption 1 2.90 6.34 19.20
RSA decryption with CRT 1 2.64 5.70 16.79
NICE encryption 1 1.96 3.15 6.52
NICE decryption 1 1.63 2.63 5.08
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Note that even if a public-key becomes large, the rate at which the speed of
decryption of NICE increases is not so large as that of the RSA cryptosystem.
This shows the effectiveness of a quadratic decryption time of NICE cryptosy-
stem. The ratio is given in table 2.

5 A Smart Card Implementation and Its Problems

Moreover, we implemented the NICE decryption on a smart card. More precisely,
we implemented the NICE decryption algorithm using the Siemens development
kit for chip card controller ICs based on Keil PK51 for Windows. As assembler
we used A51, as linker L51 to generate code for the 8051 microcontroller family.
The software simulation were made using dScope-51 for Windows and the drivers
for SLE 66CX160S. Thus, we realized a software emulation of an assembler
implementation of the NICE decryption algorithm to be run on the existing
Siemens SLE 66CX160S. Unfortunately, the timings of this software simulation
were unrealistic. So, we did run some timings on a hardware simulator for SLE
66CX160S. Thanks to Deutsche Telekom AG, Produktzentrum Telesec in Siegen
and Infineon/Siemens in Munich for letting us use their hardware simulator. See
the timings for decryption in table 3 for a smart card running at 4.915 MHz.

Table 3. Timings for the decryption of the new cryptosystem compared to RSA using
the hardware simulator of Siemens 66CX160S at 4.915 MHz

log2(n) 1024
RSA decryption with CRT 490 ms
New CS decryption for p ≈ q ≈ ∆

1/3
q 1242 ms

Improved version 1035 ms

The very first implementation was very inefficient; the straightforward algo-
rithms used in the software comparison proved to be much slower on the smart
card than the existing RSA on the card. This was surprising, but after a while
this could be easily explained: the cryptographic coprocessor has been optimized
for modular exponentiation. On the other side, NICE uses mostly divisions with
remainder and comparisons. These operations are slow on the coprocessor, so we
had to modify the decryption algorithm to speed it up in hardware. We describe
here two significant changes:

The computation of the inverse of a modulo q (step 3 in the computation of
π) using the extended Euclidean algorithm took (with q ≈ p ≈ 341 bit) about
9 seconds (!), whereas computing the inverse using Fermat’s little theorem -
by using fast exponentiation mod q - took less than 1 second. Note that the
decryption time using this method is no longer of quadratic complexity.

In the reduction process the quotient in the division with remainder step is
most of the time very small (say ≤ 10, see Appendix A); to effect a division is
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this case is much more time consuming than subsequent subtractions. We did
replace reduction step 5

5.1 Find λ, µ ∈ ZZ s.t. −A ≤ µ = B + 2λA < A using division with remainder
5.2 (A,B,C)← (C − λB+µ

2 ,−µ,A)

by the following algorithm.

5.1 WHILE B ≤ −A OR B > A DO
5.1.1 IF B < 0 THEN B ← B + 2A; C ← C − (B +A);
5.1.2 ELSE B ← B − 2A; C ← C − (B −A);

Every time that the bitlength of B was exceeding the bitlength of variant
B by at least 3. Using this improvement, we could decrease the running time
from about 1.8 s to 1.2 s. This is already faster than a 1024 bit RSA decryption
without Chinese remainder theorem (approx. 1.6 ms).

The timings in table 3 were made including these two improvements. Moreo-
ver, a detailed timing analysis in Siegen showed that both our static memory
management and as well as the cryptographic coprocessor are not optimal for
this algorithm. We discuss this in the sequel. An average overview of the most
time consuming parts is given in table 4.

Table 4. Detailed timings for different functions in the decryption of the new crypto-
system

Function Average time over the whole computation
mul, multiplications on the coprocessor 170 ms
div, divisions on the coprocessor 231 ms
left adjust, length correction of the variables 376 ms
C2XL, moving numbers into the coprocessor 118 ms
XL2C, moving numbers out of the coprocessor 223 ms
others (comparisons, small operations) 114 ms
Overall time 1242 ms

One major difference between RSA and NICE is the number of variables
needed during the computation of the decryption algorithm. In our implemen-
tation, we need to store 11 variables of length at most 2048 bit. Computations
of the cryptographic coprocessor are shortening these variables. Thus, we had
to adjust the length of the variables after each important operation. This was
done by moving the top nonzero bytes of the number to the fixed address of the
number and so ”erasing” leading zero bytes. To do this, we used the cryptogra-
phic coprocessor. Now the exact timings showed that about 33 % of the running
time is spent by the function left adjust, which effects this correction.

Now changing the memory management from static to dynamic (i.e. in the
XL2C and C2XL functions making the appropriate changes and having additio-
nally some registers holding the starting address of the numbers), we got an
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improvement to 637 ms using the software simulator. Both Infineon/Siemens
and Deutsche Telekom reported the overall time of the hardware simulator now
to be 1035 ms. Note that the amount of memory required is 965 Bytes and
thus fits into a real SLE 66CX160S.

As one can see from table 4, another important time consuming operation
is to move numbers into and out of the coprocessor. At this point, we would
get a speedup of about 350 ms if we could leave the numbers in registers inside
the coprocessor. It is clear that the currently used processor is not prepared for
such operations, since it is optimized for RSA, thus operations with very few
variables. At this point we ask the hardware community to present solutions to
this problem.

6 Conclusion and Acknowledgements

The NICE cryptosystem is fast and well suited for software implementation. To
get an equally fast speedup compared to RSA on a smart card, we think that the
underlying hardware must be developed adequately. Nevertheless, if this is done,
the think that NICE can be a competitor to RSA whenever fast decryption is
needed.

We thank Deutsche Telekom AG, Produktzentrum Telesec for letting us
testing NICE on the hardware simulator and Siemens AG/Infineon GmbH for
their valuable help concerning the use of the development kit as well as running
our code on their hardware simulator.
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(5, -872140247558161527297502021585254450313036153689333922978271792128743615045351839413078660868168505225167354418491
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91048830504132818556443763927)
(5, -658925615422042834876348480484029082058507054052681386209011509962105060677563908394232616059830404811010727301359

3512069684208466784180774933)
(3, -353725409650362059341413405754405045233330716598185927166581938071831594678230116338852933339930067189465564000769

287233896579646995020989815)
(7, -247222284294593727142489621540238650242932541449160633234337068881461071113337993384784406154327323546383475378203

76474826892936909497877111)
(2, 211238960823671342461903216289647740521689040736096428971091833115479874530277048960194279957267650917082000952992

7566081981468920686945135)
(-5, -138828499610837630682998254650680087729785399344104356860281267036927461979957572311938410081908330045415812611779

611796816538719307405505)
(3, -765811450988547423144046883303894668462310641251449515590759557414197782566477229459016888940284991233814769828608

3138580548663993732859)
(6, 451715975973337636239923655622704513018369560900086413869204962835152615559671858853242965579677357251079839392053

844630453417984392931)
(-3, 579493992911536599517350321866083438435686742562973463372479826459392480226779856939226160460117478967847924671753

92968596489710481213)
(-3, 135067752525885105483994559664721938559177175680541689433450130455304919692737374065720006258404545809371465593318

9049738778828983289)
(-15, 337193319312295431745969016664643151387915479765592068235657385273215560443110982269888116148705401309431343138225

96913769977980851)
(-3, 323878473831343845968960745512074363754506782760808676681774080723182382322942699332100336805150642284551592326904

4296100266373941)
(-4, 167144197381464431967528225738718542314051660172099527690831373123590316239808571782330789831021939891807455958096

732542876200243)
(-5, -309390011597559593159761073745581970668200194635499292322116436596067679796830203942404937063400931822640702431265

3906939082883)
(11, -115310685805821673604505436475263765545172934158683202462769686123589664701441798228728715241781657550421817808920

121862424193)
(3, -214164778849294341813886319240237413612645988098168730763311338303186025963320880697339330474638842906957278383121

52170109453)
(2, 128885235911603341061379124399416424159190535507373563424716539280561837794601490501570150868125552599247818531014

6905542061)
(-8, 316335781594392130649537991526978632041159226767264341022335809622254943347009615572076976512856499763471626857986

37456771)
(-5, -132100188970518808134989273741019953395958169925083468958496091548029282207578810138129189350877886346393515471619

9449891)
(5, -118207678855173060273461976677047511666107495356238233325850746777448433952887041962223444468735121774461329878842

257829)
(2, 211192794617132775962070178935022665383131433119630308575044151078117101318282538223456317584240935159085658194389

75697)
(-2, -274328530511417242554111054080256110572002014193891842660039774575578405921937962321580147605536058202955477454722

6713)
(3, 286074815889198540147442971313659278227472798937810428709777362705663473916998086767681817465542781829132249359517

975)
(-3, 136753299791205246544364486899154151347754882077985198546727042251978367689138220757139643994263442612011028174033

09)
(-7, -573392565819784089015761647765609265475213202129944067089638531361517839793128894759675411629999386769288097157573)
(3, 46420141247202899632758735492428308491655665018737859648769488246653936727190431310329578844089903814145126014811)
(-4, 2648752977947845396817832353867014934646503864836612394943244361752704526516616394918528493321394574264607485573)
(-5, 210855924586385522702291996875375564432834909148788263313616464995823236571191045770185801157558886696640500937)
(-3, 22358943854775137747028532971526452088757418214703795026514539955938354527714495940754319443379591091154854811)
(-3, -3066428918730050632325097660734163737851572230223614656315369265785635066318979992409078183621174963776878039)
(2, 142086598987407275566528223029847683110629990793367193207487961621845231249474450762716878333452768170371307)
(-10, -4013833186275051054261529002448266001854462865736283000730209262386311300176819714480584897953649188768987)
(3, 513318782779814540099933414852657264974713493469374585453379543647835185456621560862523908562876553217709)
(-2, -61677436882563203815369113178313444194666063177138061203361907960930109397743003273918060562207208817421)
(4, -5705343812063530411004779368065864956629980006638652578479437486915684727604688458627505624819542303243)
(3, -91558187817393163469667420478915357008167385723230297957370355268833319053370140794607127532476127053)
(21, 453868533685069718784249965367088878135788567086616180536047830052899711042568402989974727201843537)
(-10, 20964009631208954520918551253653792022251672637669648478775352234648622483831508661058580485766883)
(-2, -2452654164796263512959165565377597147123165793392501354290866811059027722610119847271723828796771)
(4, -147052793673461538086506530668357561094222647824631587108653738299104036416816746499164729738165)
(4, 13963798812911120130279709463801187300299288356253613055092055278693493066888731286397000735637)
(-2, -2243059469029860341733582498093820347780557194768743665298129222007849423064256685446565258585)
(3, -332536984737070293356781633953414109182889100380596552532026039092003149663826893067835527979)
(3, -53869672449708954071201037343980172216194792353383517263934399693845855469016876949250112145)
(2, 8809243662589899724441862302427489374063110417101583652380728682887905485821254651162082773)
(-3, 1523916850396224929683411116520822483473365693967880645688939842558533917993725763450387843)
(-2, -175448936439219351474943190408140984880152096488165074286001873576813341763276791632528051)
(4, -7172119525392604758586912757900411673673727956088230007355764602327785267343320520772285)
(6, 411983586217791325733798025629672849513780286785778486048473044819412478399711749331293)
(-3, 39952378254046331640985245359853148480439674672046852693477940886873371190791503779555)
(-4, 2430418964222694480671212916136321892771426164807894584775183594905868264571397226917)
(-4, -200481638950679212651370696237549969836787003530772668084652658004782296755431254661)
(3, -15809036670606058719969662268090458772980604046280756287155668401840558844802721257)
(5, -1523585718315717333817603063481778938222355282742962613553158680390832265726743003)
(2, 184311493695616947777956105808291545959771200085283101706038290472860989663874931)
(-4, 18608721351129642487382805128934749545584400507726296787447608402705855634753005)
(-3, 1869347445173273085208023229014781878050128548111311960144791632389450110085991)
(-4, 178380730096884354033504909171901616894208529518268605707305999380528892537777)
(-3, 8087485289366444463103610663066672869280303202819888635266439607722241722651)
(-8, 330989870518604330321501498261660421116420485572033339979389384876143961861)
(-3, -18664536615969020483601618613669413560772978432066084296155744931355960393)
(6, -1412504875497260093376398626643530047287435788085760178403662982434702419)
(2, 219996492734844884145785372293460505348942755871479135939553072964463795)
(-3, 23516043605665539210119254241067982862993090461007215280854551535870327)
(-3, -3077511624656829785194435187496372328800530833832937512976380187853603)
(2, 297152112917428186473487402530178004938361047882953462356887529974435)
(-5, 20430479687841138388651786490336214660319513581933064107387538439725)
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(-3, -715710522544461579764349638671583037687849172262961920648424641623)
(9, 14179513470875975149484884956525606261632898759917041924304692531)
(-5, -1282525333271264792977028780361879602218745339300046465268399291)
(2, 7133580613529858737331990335086812687125553016512866750439935)
(-89, -31402743133518053709238680774128360213498381554795257802491)
(3, -5670014347280097827799124543796297689457759679846318408801)
(2, 466884359172087417048784300784530655902510368684415610549)
(-6, 35846124997992718851920200094845005686531518229928579835)
(-2, -5174946979118686463949165359305774723028412521870150151)
(3, -63863243252949591186892355477373614132946424509565125)
(27, 742593578199047322036735798245427373773251928151497)
(0, -742593578199047322036735798245427373773251928151497)

Output: the reduced ideal (A1, B1) equivalent to A

A1 = 956239841432722652133553576334329186177525820778149
B1 = -742593578199047322036735798245427373773251928151497
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