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Abstract
In a series of papers [Pan0], [Pani], [Pan2|, [Pan3|] we give a detailed and better

structured proof of the Grothendieck—Serre’s conjecture for semi-local regular rings
containing a finite field. The outline of the proof is the same as in [P1],[P2],[P3]. If
the semi-local regular ring contains an infinite field, then the conjecture is proved
in [EP). Thus the conjecture is true for reqular local rings containing a field.

The present paper is the one [Panl] in that new series. Theorem [[T]is one of
the main result of the paper. It is also one of the key steps in the proof of the
Grothendieck—Serre’s conjecture for semi-local rings containing a field (see [Pan3]).
The proof of the main theorem is completely geometric. It is based on an extension
of theory of nice triples from [PSV] and [P]. In turn the theory of nice triples is
inspired by the Voevodsky theory of standart triples [Voe]. Our refinement of that
Voevodsky theory is based on the use of Artin’s elementary fibrations, on geometric
lemma [OP2, Lemma 8.2] and construction [P, Constr. 4.2]. The latter construction
is taken from [OP2, the proof of lemma 8.1]).

1 Main results

Let R be a commutative unital ring. Recall that an R-group scheme G is called reductive,
if it is affine and smooth as an R-scheme and if, moreover, for each algebraically closed
field 2 and for each ring homomorphism R — €2 the scalar extension Gg is a connected
reductive algebraic group over (2. This definition of a reductive R-group scheme coincides
with [SGA3| Exp. XIX, Definition 2.7]. A well-known conjecture due to J.-P. Serre and
A. Grothendieck (see [Sel Remarque, p.31], [Grll, Remarque 3, p.26-27], and [Gr2, Re-
marque 1.11.a]) asserts that given a regular local ring R and its field of fractions K and
given a reductive group scheme G over R, the map

Hélt(R7 G) — Hélt(K7 G)7
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induced by the inclusion of R into K, has a trivial kernel. If R contains an infinite field,
then the conjecture is proved in [FP].

For a scheme U we denote by A}, the affine line over U and by P}, the projective line
over U. Let T be a U-scheme. By a principal G-bundle over 7" we understand a principal
G xy T-bundle. We refer to [SGA3| Exp. XXIV, Sect. 5.3| for the definitions of a simple
simply-connected group scheme over a scheme and a semi-simple simply-connected group
scheme over a scheme.

Theorem 1.1. Let k be a field. Let O be the semi-local ring of finitely many closed
points on a k-smooth irreducible affine k-variety X. Set U = Spec O. Let G be a reductive
group scheme over U. Let G be a principal G-bundle over U trivial over the generic point
of U. Then there exists a principal G-bundle G; over the affine line A}, = Spec Ot] and
a monic polynomial h(t) € O[t] such that

(1) the G-bundle G; is trivial over the open subscheme (A};) in Al given by h(t) # 0;

(ii) the restriction of G; to {0} x U coincides with the original G- bundle g.

(i11) h(1) € O is a unit.

If the field k is infinite a weaker result is proved in [PSV] Thm.1.2]. The proof of
Theorem [LT] is given in Section [0l It is easily derived from Theorem [5.4] and even from
the following result, which is weaker than Theorem [5.4

Theorem 1.2 (Geometric). Let X be an affine k-smooth irreducible k-variety, and let
T1,To,..., T, be closed points in X. Let U = Spec(Ox (z),20,..2,3) and [ € k[X] be a
non-zero function vanishing at each point x;. Let G be a reductive group scheme over

-----

commutative diagram of schemes with the irreducible affine U-smooth Y

(px)|
(A x U), Vi = Yyo(n) ——— X (1)
(A' x U) . Y P X

and a morphism § : U — Y subjecting to the following conditions:

(i) the left hand side square is an elementary distinguished square in the category of
affine U-smooth schemes in the sense of [MV), Defn.3.1.5];

(ii) px 00 =can : U — X, where can is the canonical morphism;

(ili) Tod =14y : U — Al x U is the zero section of the projection pry : Al x U — U;
(iv) h(1) € O[t] is a unit;
)

(v) for py := pry ot there is a Y -group scheme isomorphism ® : p,(Gy) — p%(G)
with 6* () = idg,, .



A sketch of the proof of Theorem[I1l In general, G does not come from X. However
we may assume, that as G, so G are defined over X and G is reductive over X. Say, let
g’ is a principal G on X with |y = G. In this case there two reductive group schemes
on Y. Namelly, pj;(G|y) and p%(G). Clearly, they coincides when restricted to §(U). By
the item (v) of Theorem the scheme Y can be chosen such that two reductive group
schemes p;;(G|y) and p%(G) on Y are isomorphic via an isomorphism ® and & is such
that its restriction to 6(U) is the identity. Take again p% (9’) and regard it as a principal
1 (Gly)-bundle using the isomorphism ®. Denote that principal pj; (G| )-bundle ., p% (9).
It is trivial on Yy, since p% (§') is trivial on Y},. Take the trivial pri;(G|y)-bundle on A x U
and glue it with ,p%(9) via an isomorphism over Y;. This way we get a principal G|y-
bundle G; over A! x U. Clearly, it is the desired one. The polinomial & one should take
as in Theorem Details are given in Section

The article is organized as follows. In Section 2] we recall definition of nice triples from
[PSV] and inspired by Voevodsky notion of perfect triples.

In Section Bl Theorem B.I] on equating group schemes is proved. In Section [ Theorem
is proved. In Section [l a first application of the above machinery is given. Namely,
Theorems (.1l and [5.4] are proved. Theorem [5.1] is a one more geometric presentation
theorem. Theorem [5.4lis a stronger version of Theorem [L2l Finally, in Sectionld Theorem
(L1l is proved. In Section[llthe main result of [PSV] is extended to the case of an arbitrary
base field k. Namelly, the following Theorem is proved there

Theorem 1.3. Let k be a field. Let O be the semi-local ring of finitely many closed points
on a k-smooth irreducible affine k-variety X and let K be its field of fractions. Let G
be an isotropic simple simply connected group scheme over O. Then for any Noetherian
k-algebra A the map

H, (0@, AG) — H (K@ A G),

induced by the inclusion O into K, has trivial kernel.

Stress the following. If the field £ is finite, and A = k and the group scheme G
comes from the field k and it is simple simply connected, then the latter theorem is an
unpublished result due to Gabber (see also [Pan(]).

The author thanks A. Suslin for his interest in the topic of the present article. He also
thanks to A.Stavrova for paying his attention to Poonen’s works on Bertini type theorems
for varieties over finite fields. He thanks D.Orlov for useful comments concerning the
weighted projective spaces tacitely involved in the construction of elementary fibrations.
He thanks M.Ojanguren for many inspiring ideas arising from our joint works with him.

2 Nice triples

In the present section we recall and study certain collections of geometric data and their
morphisms. The concept of a nice triple was introduced in [PSV], Defn. 3.1] and is very
similar to that of a standard triple introduced by Voevodsky [Voe, Defn. 4.1], and was
in fact inspired by the latter notion. Let k£ be a field, let X be a k-smooth irreducible



affine k-variety, and let zq,xs,...,2, € X be a family of closed points. Further, let

O = Ox f21,20,....0n} e the corresponding geometric semi-local ring.

After substituting k& by its algebraic closure k in k[X], we can assume that X is a
k-smooth geometrically irreducible affine k-scheme. The geometric irreducibility of
X is required in the proposition ?? to construct an open neighborhood X° of
the family {z,,z,,...,7,} and an elementary fibration p : X° — S, where S is
an open sub-scheme of the projective space PgimX*l. The proposition 7?7 is
used in turn to prove the proposition To simplify the notation, we will

continue to denote this new k by k.

Definition 2.1. Let U := Spec(Ox (2, 2,
following data:

zn}). A mice triple over U consists of the

.....

(i) a smooth morphism quy : X — U, where X is an irreducible scheme,
(ii) an element f € I'(X, Ox),
(iii) a section A of the morphism qy,
subject to the following conditions:
(a) each irreducible component of each fibre of the morphism qu has dimension one,
(b) the module I'(X, Ox)/f - I'(X, Ox) is finite as a I'(U, Oy) = O-module,
(c) there emists a finite surjective U-morphism I1: X — Al x U;
(d) A*(f) £ 0 € (U, 0p).

There are many choices of the morphism I1. Any of them is regarded as assigned to the
nice triple.

Remark 2.2. Since II is a finite morphism, the scheme X is affine. We will write often
below k[X] for I'(X, Ox). The only requirement on the morphism A is this: A is a section
of gqu. Hence A is a closed embedding. We write A(U) for the image of this closed
embedding. The composite map A* o gf; : k[X] — O is the identity. If Ker = Ker(A*),
then Ker is the ideal defining the closed subscheme A(U) in X.

Definition 2.3. A morphism between two nice triples over U
(¢ X' —=UfA)=(qg:X—UfA)
is an étale morphism of U-schemes 0 : X' — X such that
(1) qu =quo¥,
(2) ff=0(f) -1 for an element h' € T(X', Ox),
(3) A=0oA



Two observations are in order here.
e Item (2) implies in particular that ['(X',Oy)/0*(f) - T'(X',Ox) is a finite
O-module.

e It should be emphasized that no conditions are imposed on the interre-
lation of II" and II.

Let U be as in Definition 2.1l and can : U — X be the canonical inclusion of schemes.

Definition 2.4. A nice triple (qu : X — U, A, f) over U is called special if the set of
closed points of A(U) is contained in the set of closed points of {f = 0}.

Remark 2.5. Clearly the following holds: let (X, f, A) be a special nice triple over U
and let 0 : (X, f', A") — (X, f, A) be a morphism between nice triples over U. Then the
triple (X', f’, A’) is a special nice triple over U.

Proposition 2.6. One can shrink X such that x1,xs, ..., x, are still in X and X is affine,
and then construct a special nice triple (qu : X — U, A, f) over U and an essentially
smooth morphism qx : X — X such that qx o A = can, f = ¢%(f).

Proof of Proposition[24. If the field k is infinite, then this proposition is proved in [PSV],
Prop. 6.1]. So, we may and will assume that k is finite. To prove the proposition
repeat literally the proof of [PSV] Prop. 6.1]. One has to replace the references to [PSV]
Prop. 2.3] and [PSV] Prop.2.4] with the reference to [Pl Prop. 2.3] and [P, Prop. 2.4]

respectively.
O

Recall the definition [P, Defn. 3.7]. If U as in Definition 21l then for any U-scheme V
and any closed point u € U set V,, = u Xy V. For a finite set A denote §A the cardinality
of A.

Definition 2.7. Let (X, f,A) be a special nice triple over U. We say that the triple
(X, f, A) satisfies conditions 1* and 2* if either the field k is infinite or (if k is finite) the
following holds

(1*) for Z={f =0} C X and for any closed point u € U, any integer d > 1 one has
{2 € Zuldeglk(2) : k(u)] = d} < #{x € Ay|deglk(z) : k(u)] = d}
(2%) for the vanishing locus Z of f and for any closed point u € U the point A(u) € Z,
is the only k(u)-rational point of Z, = u Xy Z.
3 Equating group schemes

The main result of the present section is Theorem Bl It is stated and proved at the
very end the present section. We begin with the following result which extends [PSV]
Prop.5.1].



Theorem 3.1. Let S be a reqular semi-local irreducible scheme. Assume that G and G,
are reductive S-group schemes which are forms of each other. Let T' C S be a connected
non-empty closed sub-scheme of S, and ¢ : G1|r — Ga|r be T-group scheme isomorphism.
Then there exists a finite étale morphism S = S together with a section 6 : T — S of 7
over T and S-group scheme isomorphisms ® : m*Gy — 7 Gy such that

(i) 0°(®) = o,
(i) the scheme S is irreducible.

Proposition 3.2. Theorem[31 holds in the case when the group schemes Gy and Gy are
semi-simple.

Proof of Proposition[3.2 Let s € S be a closed point and let V be an S-scheme.
In this section we will write V(s) for the scheme s xg V.  The proof of the
proposition literally repeats the proof of [PSV] Prop.5.1] except exactly one reference,
which is the reference to [OP2, Lemma 7.2]. That reference one has to replace with the
reference to the following

Lemma 3.3. Let S = Spec(R) be a regular semi-local scheme such that the residue
field at any of its closed point is finite. Let T' be a closed subscheme of S. Let
W be a closed subscheme of P4 = Proj(S[Xo, ..., X4)) and W = W N A%, where A% is
the affine space defined by Xo # 0. Let Woo = W \ W be the intersection of W with the
hyperplane at infinity Xo = 0. Assume that over T there exists a section 6 : T — W of
the canonical projection W — S. Assume further that

(1) W is smooth and equidimensional over S, of relative dimension r;

(2) For every closed point s € S the closed fibres of Wy, and W satisfy
dim(We(s)) < dim(W(s)) =r .

Then there exists a closed subscheme S of W which is finite étale over S and contains

5(T).

Proof of Lemmal33 To avoid technicalities we will give the proof in the case of r = 1
and left the general case to the reader. If » = 1, then for every closed point s € S the
closed fibres of W, and W satisfy

dim(Wx(s)) < dim(W(s)) = 1.

Since S is semi-local, after a linear change of coordinates we may assume that § maps
T into the closed subscheme of P% defined by X; = --- = X4 = 0. For each closed fibre
P?(s) of P¢ using [Pod, Thm.1.2], we can choose a homogeneous polynomial H (s) such
that the subscheme Y (s) of P4(s) defined by the equation

H(s)=0

intersects W (s) transversally and avoids Wy(s).



Let s € S be a closed point of S. Let s € T' be a closed point of 7. Let
P?(s) be closed fibre of P% over the point s. Let A%(s) C P%(s) be the affine
subspace defined by the unequality X, # 0. Let ¢, := X;/X, (i € {1,2,...,d}) be
the coordinate function on A%(s). The origin zy, = (0,0,...,0) € A%(s) has the
homogeneous coordinates [1:0:---: 0] in P?(s). Let W(s) C P4(s) be the fibre
of W over the point s. If zq, is in W(s), then let 7(s) C A%(s) be the tangent
space to W(s) at the point zy, € A%(s). In this case let I, = [,(t;,t,...,14) be a
linear form in k(s)[ty,ty,-- ,tq) such that [,|,) # 0. If 29, is not in W (s), then
set [, = ¢;. In all the cases

Lo = Xo-1, € k(s)[X1, X, , X4

is a homogeneous polinomial of degree 1.

Let s € S be a closed point. Suppose 7y, € W(s). Then by [Poo, Thm. 1.2]
there is an integer N;(s) > 1 such that for any positive integer N > N;(s) there
is a homogeneous polinomial

Hl,N(S) = XéV~F07N(S)—|—XéN_1'FLN(S)—F' . '+X0'FN,17N(S)+FN7N(S) c k(S)[XO, Xl, s ,Xd]

of degree N with homogeneous polinomials F; y(s) € k(s)[X1,...,X,] of degree
1 such that the following holds
(l) F()’N(S) = 0, Fl,N(S) = LS,
(ii) the subscheme V(s) C P(s) defined by the equation H; y(s) = 0 intersects
W (s) transversally;
(iii) V(s) N W(s) = 0.

Let s € S be a closed point. Suppose z; is not in W(s). Then by [Poo,
Thm. 1.2] there is an integer N;(s) > 1 such that for any positive integer
N > N;(s) there is a homogeneous polinomial

Hl,N(S) = XéV'Fo,N(S)+XéV_1'F1,N(S)+- . '+X0'FN—1,N(S)+FN,N(S) S k(S)[Xo, X, ,Xd]

of degree N with homogeneous polinomials F; y(s) € k(s)[Xi,...,X,] of degree
1 such that the following holds

(1) FO’N(S) = 0, Fl,N(S) = LS = Xl,

(ii) the subscheme V(s) C P4(s) defined by the equation H; y(s) = 0 intersects
W (s) transversally;

(iii) V(s) N W (s) = 0.

Let N; = max {N;(s)}, where s runs over all the closed points of S. For any
closed point s € S set H;(s) := Hyn,(s). Then for any closed point s € S the
polinomial Hi(s) € k(s)[Xo, X1, -+, X4] is homogeneous of the degree N;. By
the chinese remainders’ theorem for any : = 0,1,..., N there exists a common
lift F; n, € A[X1,..., X ] of all polynomials F; y,(s), s is a closed point of S, such
that Fyn, = 0 and for any 7 = 0,1,..., N the polinomial F;y, is homogeneous
of degree i. By the chinese remainders’ theorem there exists a common lift



L € A[X,,---,X,] of all polynomials L,, s is a closed point of S, such that L is
homogeneous of the degree one. Set

Hin, =X L+ X2 Fony oo+ Xo- Favyoann + Fvn, € AlXo, X, Xl

Note that for any closed point s in S the evaluation of H; 5, at the point s
coincides with the polinomial H; y,(s) in k(s)[Xo, X1, -+, X4. Note also that

Hyn1:0:---:0]=0. Hence Hy n,|51) = 0.
Note that for any closed point s in S the evaluation of H; y, at the point s
coincides with the polinomial H; y,(s) in k(s)[Xo, X1,---, X4]. Since S is semi-

local and W, is projective quasi-finite over S it is finite over S. Let V C P¢
be the subscheme defined by {H; 5, = 0}. Since for any closed point s € S one
has V(s) N W(s) = 0, hence VN W, = (). Note also that H; n,[1:0:---:0] =0.
Hence H; n,|scr) = 0.

We claim that the subscheme S =V N'W has the required properties . Note first that
V N W is finite over S. In fact, VN W = V N W, which is projective over S and such
that every closed fibre (hence every fibre) is finite. Since the closed fibres of V N W are
finite étale over the closed points of S, to show that V N W is finite étale over S it only
remains to show that it is flat over S. Noting that V NW C W is defined in every closed
fibre by a length one regular sequence of equations and localizing at each closed point of
S, we see that flatness follows from [OP2, Lemma 7.3]. Whence the lemma. O

Return to the proof of the proposition Its proof literally repeats now the proof of
[PSV], Prop.5.1]. Apriory the regular scheme S is not necessary irreducible. In that case
replace S with its irreducible component containing the scheme §(7'). The proof of the
proposition is completed. O

Proposition 3.4. Theorem [31 holds in the case when the groups G1 and Go are tori
and, more generally, in the case when the groups Gy and Go are of multiplicative type.

We left a proof of this latter proposition to the reader. The following proposition
follows easily from [SGA3, Exp. 9, Cor. 2.9.].

Proposition 3.5. Let T and S be the same as in Theorem [3.1. Let My and My be two
S-group schemes of multiplicative type. Let aq,a @ My == My be two S-group scheme
morphisms such that aq|r = as|p. Then aq = as.

Proof of Theorem[31. Let Rad(G,) C G, be the radical of G, and let der(G,) C G, be
the derived subgroup of G, (r = 1,2) (see [D-Gl, Exp.XXII, 4.3]). By the very definition
the radical is a torus. The S-group scheme der(G,) is semi-simple (r = 1,2). Set Z, :=
Rad(G,) Nder(G,). The above embeddings induce natural S-group morphisms

I, : Rad(G,) Xg der(G,) — G,

with Z, as the kernel (r = 1,2). By [D-Gl Exp.XXII,Prop.6.2.4] II, is a central isogeny.
Particularly, TI, is a faithfully flat finite morphism by [D-Gl, Exp.XXII,Defn.4.2.9]. Let
ir: Zp = Rad(G,) xg der(G,) be the closed embedding.



The T-group scheme isomorphism ¢ : Gi|r — G5|T induces certain T-group scheme
isomorphisms @ger : der(Gilr) — der(Galr), ©rad @ Tad(Gi|lr) — rad(Gs|r) and ¢y :
Zi|lr — Zs|r such that

(ILo) |7 © (@der X Yraa) = ¢ o (II1)|7 and i1 0 vz = (Prad X Pder) © i1,7.

By Propositions [3.2] and [3.4] there exist a finite étale morphism 7 : S — S (with an
irreducible scheme S) and its section ¢ : T — S over T and S-group scheme isomorphisms

Doy der (G 5) — der(Gy5) , Praa : Rad(Gg) — Rad(Gy5) and @z : 7, 5 — Z, 5

such that 6*(Pger) = @aer, 0 (Prad) = Praa and 6*(Pz) = ¢z.
Since Z, is contained in the center of der(G,) and is of multiplicative type Proposition
yields the equality

’L'QS od, = ((I)Rad X (I)der) o il,S’ : ZLS‘ — Rad(GZ,S’) Xg der(Glg).
Thus (Prag X Pger) induces an g—group scheme isomorphism
o : GI,S — G2,§

such that H2,§ 0 (Prag X Pger) = Do Hl,é- The latter equality yields the following one
(Iy) |7 0 0* (P Rag X Pger) = 0*(P) o (I1;)|7, which in turn yields the equality

(I2) |7 © (¢rad X Paer) = 67 (®) o (Iy)]7.

Comparing it with the equality (IT2)|7 © (praa X Paer) = @ o (II1)|7 and using the fact that
(ITy)| 7 is faithfully flat we conclude the equality 6*(®) = .
]

4 Nice triples and group schemes

We need in an extension of the [P, Thm. 3.9]. For that it is convenient to give a
definition under the following set up. Let U be as in Definition 211 Let (X, f,A) be a
special nice triple over U and let Gy be a reductive X-group scheme and Gy := A*(Gy)
and Geonst == ¢ (Gy). Let 0 : (¢ - X' = U, f',A") = (¢ : X — U, f,A) be a morphism

between nice triples over U.

Definition 4.1 (Equating group schemes). We say that the morphism 6 equates the
reductive X-group schemes Gy and Geopngt, if there is an X'-group scheme isomorphism
D 0" (Geonst) — 0" (Gx) with (A")*(P) = idg,, .

Remark 4.2. Let p : (X", f",A") — (X', f,A’) and 0 : (X', f',A") — (X, f,A) be
morphisms of nice triples over U. If 6 equates Gy and Geongst, then 6 o p also equates Gy
and Gconst-



Theorem 4.3. Let U be as in Definition[2Z1. Let (X, f, A) be a special nice triple over U.
Let Gy be a reductive X-group scheme and Gy = A*(Gx) and G eonst := ¢i;(Gy). Then
there exist a morphism 0" : (¢" : X" = U, ", A") = (¢ : X — U, f, A) between nice triples
over U such that

(i) the morphism 0" equates the reductive X-group schemes Geons; and Gy

(i) the triple (X", ", A") is a special nice triple over U subjecting to the conditions (1%)
and (2*) from Definition[2.7

Proof of Theorem[{.3. Let U be as in the theorem. Let (X, f, A) be a special nice triple
over U as in the theorem. By the definition of a nice triple there exists a finite surjective
morphism IT: X — A' x U of U-schemes. The first part of the construction [P, Constr.
4.2] gives us now the data (Z,Y,S5,T), where (Z,Y,T) are closed subsets of X finite over
U. If {y1,...,yn} are all the closed points of Y, then S = Spec(Ox 4, y.)-

Further, let Gy = A*(Gy) be as in the hypotheses of Theorem and let Geonst be
the pull-back of Gy to X. Finally, let ¢ : Geonst|r — Gx|r be the canonical isomorphism.
Recall that by assumption X is U-smooth and irreducible, and thus S is regular and
irreducible. By Theorems B.1] there exists a finite étale morphism 6, : S’ — S, a section
d: T — 5 of 6y over T and an isomorphism Py : 05(Geonst.s) — 05(Gx|s) such that
*(Py) = ¢, and where the scheme S’ is irreducible.

Consider now the diagram (4) from the construction [P, Constr.4.2].

SV (2)

T« Sc¢ V¢ X

Recall that here 6 : V' — 'V is finite étale (and the square is cartesian). We may and
will now suppose that the neighborhood V of the points {1, ..., y,} from that diagram is
chosen such that there is V'-group schemes isomorphism @ : 0*(Geonst,v) — 0*(Gy|v) with
Q|g = Dy. Clearly, §*(P) = ¢.

Applying the second part of the construction [Pl Constr.4.2] and also the proposition
[Pl Prop. 4.3] to the finite étale morphism 6 : V' — 'V and to the section § : " — V' of 0
over T we get
0) firstly, an open subset W C 'V containing Y (and hence containing S) and endowed
with a finite surjective U-morphism IT* : W — Al x U;
1) secondly, a triple (X', f', A');
2) thirdly, the étale morphism of U-schemes 0 : X' — X
3) forthly, inclusions of U-schemes S C W and S’ C X'.
Further we get
(i) the special nice triple (g o6 : X' — U, ', A’) over U,
(ii) the morphism @ is a morphism (X', f', A’) — (X, f, A) between the nice triples, which
equates the X-group schemes Gonst and Gy
(iii) the equality f" = 6*(f).

To complete the proof of the theorem just apply the theorem [Pl Thm. 3.9] to the the
special nice triple (X', f’, A’) and use the remark O
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5 First application of the theory of nice triples

Theorem 5.1. Let X be an affine k-smooth irreducible k-variety, and let xq, xs, ..., z, be
closed points in X. Let U = Spec(Ox (4, 20,....20})- Let G be a reductive X -group scheme
and let Gy = can*(G) be the pull-back of G to U. Given a non-zero function f € k[X]
vanishing at each point x;, there is a diagram of the form

Al x U <2 X—2 X (3)
pPry quBA can
U

with an irreducible affine scheme X, a smooth morphism qy, a finite surjective U-morphism
o and an essentially smooth morphism qx, and a function f" € q%(f )k[X], which enjoys
the following properties:

(a) if Z' 1s the closed subscheme of X defined by the principal ideal (f'), the morphism
oly : 2 — A x U is a closed embedding and the morphism quly : Z' — U is finite;

(@) quo A =1idy and gx o A = can and o o A =iy
(the first equality shows that A(U) is a closed subscheme in X);

(b) o is étale in a neighborhood of Z'' U A(U);

(c) o7 Yo(Z) =2 ][ 2" scheme theoretically for some closed subscheme Z"
and Z"NAU) = 0;

(d) Do :=0c1({0} x U) = A(U) [ D}y scheme theoretically for some closed subscheme
Dy and DyNZ = 0;

(e) for Dy =0 ({1} x U) one has D1 NZ =0.

(f) there is a monic polinomial h € O[t] such that (h) = Ker[O[t] 7z, k[X] — K[X]/(f)],
where O := k[U] and the map bar takes any g € k[X] to g € k[X]/(f");

(g) there is an X-group scheme isomorphism ® : pi(Gy) — pk(G) with A*(P) = idg,, .

Proof of Theorem[521. By Proposition one can shrink X such that xy,z9,..., 2, are
still in X and X is affine, and then to construct a special nice triple (¢qy : X — U, A, f)
over U and an essentially smooth morphism gy : X — X such that gxoA = can, f = ¢ (f)
and the set of closed points of A(U) is contained in the set of closed points of {f = 0}.
Set Gy = ¢%(G), then A*(Gy) = can*(G). Thus the U-group scheme Gy from
Theorem and the U-group scheme Gy from Theorem [B.] are the same. By Theo-
rem there exists a morphism 6 : (X, ew, frnews Dnew) — (X, f, A) such that the triple
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(Xnew, frews Dnew) 1 a special nice triple over U subject to the conditions (1*) and (2*)
from Definition 2.7 And, additionally, there is an isomorphism

D (qu o) (Gy) =0"(Geonst) = 0" (Gx) = (gx 0 0)"(G) with (Ayew)™(P) = idg,,

The triple (Xyew, frew, Anew) i a special nice triple over U subject to the conditions
(1*) and (2*) from Definition 271 Thus by [P, Thm. 3.8] there is a finite surjective
morphism A! x U <" X, of the U-schemes satisfying the conditions (a) to (f) from
Theorem 5.1l Hence one has a diagram of the form

Al x U2 o, — 20 x (4)
pry qUOGl >A/ can
U

with the irreducible scheme X, the smooth morphism qp e, = qu © 0, the finite sur-
jective morphism 0,,,, and the essentially smooth morphism ¢x ne, := g¢x © 6 and with
the function frew € (¢xnew)(£)k[Xnew], which after identifying notation enjoy the prop-
erties (a) to (f) from Theorem [B.1l The isomorphism @ is the desired ones. Whence the
Theorem 5.1 O

We keep notation of the theorems (.1l To formulate a consequence of the theorem [G.1]
(see Corollary below), note that using the items (b) and (c) of Theorem [B.1] one can
find an element g € 1(Z") such that

(1) () + (9) = T(X, Ox),
(2) KGT(A*) + (g) = P(xnewa Oxnew),
(3) 04 = 0lx, : Xy — A}, is étale.

Corollary 5.2 (Corollary of Theorem [B.1l). The function f’ from Theorem[21, the poli-
nomial h from the item (f) of that Theorem, the morphism o : X — A}, and the function
g € (X, Ox) defined just above enjoy the following properties:

(i) the morphism o4 = oly, : Xy — Al x U is étale,

(ii) data (O[t], 0} : Oft] — I'(X, Ox)y, h) satisfies the hypotheses of Prop.2.6],
i.e. T(X,0x), is a finitely generated O[t]-algebra, the element (o4)*(h) is not a
zero-diwisor in I'(X, Ox), and O[t]/(h) = (X, Ox),/hI(X, Ox),

(ii)) (A(HYUZ)C X, andogoA=1iy:U — Al x U,

(iv) Xgn € Xgpr © Xpr € Xy

(v) O[f]/(h) = T(X, 02)/ (") and hD(X, Ox) = (F)NI(Z") and (f')+1(2) = T(X, Ox).

Proof. Just repeat literally the proof of [P, Cor. 7.2]. O

12



Remark 5.3. The item (ii) of this corollary shows that the cartesian square

xgh e xg (5)
(Al x U), —2 = A x U

can be used to glue principal G-bundles for a reductive U-group scheme G.

Set Y =Xy, px=qx Y = X, pv=qu:Y =2 U, 7T=04, =04, 0 =A:U =Y
and note that pry o7 = py. Take the monic polinomial A € O[t] from the item (f) of
Theorem Bl With this replacement of notation and with the element h we arrive to the
following

Theorem 5.4. Let the field k, the variety X, its closed points x1,xs, ..., x,, the semi-local
same as in Theorem . Let G be a reductive X-group scheme and let Gy = can*(G)
be the pull-back of G to U. Then one has a well-defined commutative diagram of affine
schemes with the irreducible affine U-smooth Y, a section § : U — Y of the structure
morphism py : Y — U, and the monic polinomial h € O[t]

(rx)ly;,

(Al X U)h Yh = YT*(h) Xf (6)
(A' x U) T Y 2 X

subject to the following conditions:

(i) the left hand side square is an elementary distinguished square in the category of
affine U-smooth schemes in the sense of [MV, Defn.3.1.3];

(ii) px o6 = can : U — X, where can is the canonical morphism,

)
(iii) 700 =dg: U — Al x U is the zero section of the projection pry : A x U — U;
(iv) h(1) € O[t] is a unit;

(v) there is a Y -group scheme isomorphism @ : pf;(Gy) — pik(G) with 6*(®) = idg,, -

Proof. The items (i) and (iv) of the Corollary 5.2l show that the morphisms §(U) : U — Y
and (px)|y, : Y» — Xy are well defined. The items (i), (ii) of that Corollary show that the
left hand side square in the diagram ([f) is an elementary distinguished square in the
category of smooth U-schemes in the sense of [MV] Defn.3.1.3]. The equalities pxod = can
and 7 o0 0 = ig are obvious. The property (iv) of the polinomial A follows from the items
(e),(f) and (a) of Theorem 5.1l The property (v) of the isomorphism @ follows from the
item (g) of Theorem [B.11 O
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6 Second application of the theory of nice triples

Proof of Theorem[L1. The k-algebra O is of the form Ox {a1,29,...00}, Where X is a k-
smooth irreducible affine variety. We may and will assume in this proof that the reductive
group scheme G and the principal G-bundle G are both defined over the variety X.
Futhermore we may and will assume that there is given a non-zero function f € k[X]
such that the G-bundle G is trivial on X; and the function f vanishes at each point
x; in {xy,29,...,2,}. By Theorem 5.4 there is a diagram of the form (I]) enjoying the
properties (i) to (iv) from Theorem 5.4l Moreover there is a Y-group scheme isomorphism
O : pi(Gy) — pix(G) such that 0*(P) = idg,, .

Consider the commutative diagram ([@). Given a G-bundle G over X, which is trivial
on X; take its pull-back p%(9) to Y. Using the isomorphism ® we may and will regard
the p% (G)-bundle p%(9) as a p;;(Gy)-bundle, t.e. as a Gy-bundle. We will denote that
Gy-bundle by ,p%(9).

The G-bundle is trivial on X;. Hence the p%(G)-bundle p(§) is trivial on Yj: (5.
Thus the Gy-bundle ,p%(9) is trivial on Y 5. Hence it is trivial also on Y},.

Take a trivial Gy-bundle over (A}}), and glue it with the Gy-bundle , ¢%(G)|y patch-
ing over Y}, (it can be done due to Theorem F4(i) ). We get a Gy-bundle G; over A}
which has particularly the following properties:

(a) the restriction of G; to (A[;), is trivial (by the construction);

(b) there is an isomorphism v : yq%(9)ly — 0;(G:) of the Gy-bundles;

It remains to check that the restriction of the Gy-bundle G; to 0 x U is isomorphic to the
Gy-bundle can*(9). To do that note that Theorem B.4)(ii) and Theorem [(.4)(iii) yield the
equalities

Gy = 0"(¢x(G)) and can™(§) = 0"(qx(9)).

There are two interesting Gy-bundles over U. Namely, the Gy-bundle can*(9) = 6*(¢%(9))
and the Gy-bundle 6*(,¢%(G)). They coincide since 6*(P) = idg,,. Thus

can*(9) = 6"(,4x(9)) = 6"(03(S:)) = Seloxv,

where the middle G-bundle isomorphism is the isomorphism §*(¢)). The latter equality
holds by Theorem [.4](iii). Whence the Theorem [TT]
O

Remark 6.1. Here is the motivic view point on the above arguments (in the constant
case). The distinguished elementary square () defines a motivic space isomorphism
Xy/Xgn < AL/(AL)n (just a Nisnevich sheaf isomorphism), hence there is a composite
morphism of motivic spaces of the form

0.71
© - Allj/(A%J)h E— xy/xgh - xg/xq}(f) = X/ X;.

Let i : 0 x U — A};/(A},)n be the natural morphism. By the properties (a’) and (d)
from Theorem [B.I] the morphism ¢ o ig equals to the one

can,

U< X5 X/X,
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where p : X — X/ X is the canonical morphisms.

Now assume that Gy is a reductive group scheme over the field k. A Gy-bundle over
X, trivialized on X, is ”classified” by a morphism p : X/X; — (BGy)e in an appropriate
category. Thus the morphism p o ¢ "classifies” a Gg-bundle G; over A}, trivialized on
(A})n. The equality ¢ oig = p o can shows that the Go-bundles G;|oxyr and can*(§) are
isomorphic. This ”proves” Theorem [LI]in the constant case.

7 An extension of Theorem [PSV| Thm 1.1]

Theorem 7.1. Let k be a field. Let O be the semi-local ring of finitely many closed points
on a k-smooth irreducible affine k-variety X and let K be its field of fractions. Let G
be an isotropic simple simply connected group scheme over O. Then for any Noetherian
k-algebra A the map

Hit(o @i A, G) — Hit(K @ A, G),

induced by the inclusion O into K, has trivial kernel.

Proof. 1f the field k is infinite, this theorem is exactly Theorem [PSV] Thm 1.1]. So,
there is nothing to prove in this case. If the field k is finite, then repeat literally the
proof of [PSVL Thm 1.1] and replace the reference to [PSV] Thm 1.2] with the reference
to Theorem O

Theorem 7.2. Let k, O, K, A be the same as in Theorem[7.1. Let G be a not necessarily
1sotropic simple simply connected group scheme over O. Let G be a principal G-bundle
over O ®; A which is trivial over K ®;, A. Then there exists a principal G-bundle G; over
O[t] ®, A and a monic polynomial f(t) € O[t] such that

(1) the G-bundle G, is trivial over (O[t]s) ®i A,

(i) the evaluation of Gy at t = 0 coincides with the original G-bundle G,

(iii) f(1) € O is invertible in O.

Proof of Theorem[7.3 If A =k, then Theorem coincides with Theorem [[LT] and there
is nothing to prove. The general case we left to the reader (follow literally the arguments
from the proof of Theorem [[T] given in Section [ ).

]
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