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Abstract

In adult mammals, hematopoietic stem cells (HSCs) are defined by their abilities to self-renew and 

to differentiate to form all blood cell lineages. These rare multipotent cells occupy specific 

locations in the bone marrow microenvironment. The specific microenvironment regulating HSCs, 

commonly referred to as the niche, comprises multiple cell types whose exact contributions are 

under active investigation. Understanding cellular cross talk involving HSCs in the bone marrow 

microenvironment is of fundamental importance for harnessing therapies against benign and 

malignant blood diseases. In this review, we summarize and evaluate recent advances in our 

understanding of niche heterogeneity and its influence on HSC function.
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 Introduction

Hematopoietic stem cells (HSCs) represent a rare subpopulation of hematopoietic cells, 

mostly residing in the bone marrow (BM),1,2 that reign at the top of the hematopoietic 

hierarchy. These cells are endowed with regulated quiescence3,4 and a capacity for long-

lived self-renewal that preserves the multipotency of mother cells and sustains the generation 

of all blood cell types throughout life.5–10 Their capacity to rebuild the entire adult 

hematopoietic system makes HSCs invaluable for the treatment of multiple hematopoietic 

disorders. For several decades, the therapeutic potential of HSCs has been applied to 

regenerate the hematopoietic system via BM transplantation procedures.11 Understanding 

the signaling mechanisms that determine HSC fate will be crucial for the success of clinical 

applications. Recent investigations using genetically modified mouse models suggest that 

decisions of HSC self-renewal and multilineage differentiation are dependent on the 

interaction with the surrounding microenvironment, also termed niche.12–14 Thus, 

proquiescence, prodifferentiation or pro-self-renewal microenvironments define HSC 

fate.15,16 Experimental evidence has shown that deregulation of those microenvironmental 

regulatory mechanisms plays a key pathogenic role in a variety of hematopoietic diseases.5 
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In recent years, several cell types have been identified as potential niche-supporting cells for 

HSCs, regulating HSC activity by supplying various cytokines and retention factors. Here, 

we present an overview of the current knowledge on the variety of BM cell types and their 

effects on HSCs.

 Heterogeneity of HSCs and niches

HSCs represent a functionally heterogeneous cell population in their degree of self-

renewal,17,18 life span,19–21 and differentiation capabilities.22 Self-renewal heterogeneity is 

manifested by distinct capacities of long-term (LT-HSC), intermediate-term (IT-HSC), and 

short-term repopulating HSCs (ST-HSC),23 which have been distinguished by differential 

abilities to engraft in vivo into irradiated hosts and to maintain multilineage hematopoiesis 

for extended time periods and/or by serial transplantation.24 A separate challenge for 

isolating HSC subpopulations is that they may represent a continuum of states of the same 

cell, which may be challenging to isolate, although a few markers have been shown to define 

distinct properties, such as CD150 for LT-HSCs,25,26 integrin α2 (CD49b) for IT-HSCs,27 or 

platelet integrin CD41 (also known as Itga2b) for myeloid-biased adult HSCs.28

Single purified HSCs exhibit large fluctuations in their contributions to myeloid and 

lymphoid lineages.19 Subsequent studies demonstrated distinct biases of HSCs, with 

consistent preponderance to generate lymphoid or myeloid cells.29–31 Interestingly, on the 

basis of Hoechst dye–efflux capability, myeloid- and lymphoid-biased HSC subsets differ in 

their responsiveness to TGF-ß1. This cytokine induces proliferation of myeloid-biased HSCs 

while inhibiting proliferation of lymphoid-biased HSCs.32 More recently, a platelet-biased 

HSC subset was identified through the use of a von Willebrand factor (vWF)–EGFP mouse 

system.33 High expression of vWF, a blood glycoprotein mediating platelet aggregation, was 

reported in HSC-enriched BM cells.26 Transplantation of vWF–EGFP+ and vWF–EGFP− 

cells from the CD150+CD48−CD34− KSL fraction of adult BM achieved long-term 

hematopoietic reconstitution in recipient mice. This study also suggested that vWF+ HSCs 

are primed toward the megakaryocytic lineage.33

Very little is known about the extrinsic regulation of HSC subpopulations. For instance, it is 

unclear whether the niches for lymphoid-, myeloid-, or megakaryocyte-biased HSCs differ. 

The functional heterogeneity of HSCs points to the potential for matching heterogeneity in 

the microenvironmental influences that support the function and behavior of these HSC 

subsets. The reader is referred to excellent reviews that discuss these HSC subsets in 

detail.34–36 The remainder of the review will focus on niche heterogeneity.

The anatomy of the BM may shed light on the specific microenvironments where HSCs may 

reside and are regulated. BM is found within the central cavities of long and axial bones. 

The trabecular regions of the metaphysis have been shown to be the preferred site of HSC 

homing compared to the epiphysis or diaphysis.37 The inner surface of the bone cavities is 

covered by an endosteal lining consisting of osteoblasts, osteoclasts, and a single layer of 

flat bone-lining cells supported by a thin layer of reticular connective tissue. The endosteal 

region may present a greater concentration of free calcium ions from continuous bone 

remodeling.38,39 Several studies have noted that HSCs tend to localize peripherally near the 
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bone surface rather than in the central medullary regions.38,40,41 Moreover, it has been 

suggested that HSCs at the endosteal location have greater self-renewal capacity than those 

in the central marrow cavity,42 suggesting the presence of a distinct microenvironment in 

this region. However, other recent analyses have suggested that HSCs may be randomly 

distributed in the BM.43 Interestingly, aged HSCs localize to sites further away from the 

endosteum compared with young HSCs,44 suggesting that HSC location is affected by 

aging.

The BM is served by numerous blood vessels of various sizes entering it through the cortical 

bone via nutrient canals.45 Lymphatic drainage is absent in the BM.46 The blood supplies of 

the bone and BM are interconnected through an endosteal network of vessels. Arteries give 

rise to a multitude of small, thin-walled arterioles that extend outwardly toward the cortical 

bone and sinusoids that pervade the central and endosteal marrow. Arterioles are small 

resistance vessels that, unlike other vessels in the BM, are wrapped circumferentially by one 

or more layers of smooth muscle cells.47,48 They are preferentially located close to the 

endosteal region of the BM.41 Nerve bundles follow the arterioles, with branches serving 

smooth muscle cells or terminating in the hematopoietic tissue among hematopoietic cells.49 

The sinusoids form a permeable barrier for the passage of mature blood cells into the 

circulation. In contrast to arterioles, sinusoids are evenly distributed through the whole BM 

cavity and are not innervated. Both BM arteriolar and sinusoidal endothelial cells are 

surrounded by perivascular cells.50

Besides blood vessels and nerves, the BM tissue consists of a variety of cellular subtypes 

among hematopoietic and non-hematopoietic cells. Hematopoietic cells are most likely not 

randomly arranged but demonstrate a specific organization within the tissue.51 For instance, 

erythropoiesis takes place in distinct anatomical units (erythroblastic islands),52–54 and a 

subset of HSCs is located near megakaryocytes.55,56

A niche supporting HSCs identified in close proximity to blood vessels in the adult BM has 

been called the perivascular niche.25,41 The perivascular niche itself is heterogeneous and 

contains distinct cell types. A recent study showed that dormant (quiescent) HSCs reside 

specifically in the proximity of arterioles rather than sinusoids, proposing that there are 

separate, spatially distinct perivascular niches for quiescent and proliferating HSCs in the 

BM.41

During development, perivascular hematopoietic niches have been also described to be 

present in other organs, like the placenta57 and spleen.25 Additionally, a recent report 

showed that HSCs expand around fetal liver portal vessels, suggesting that blood vessels 

provide an adaptive niche, serving hematopoiesis at multiple developmental stages of 

mammalian life.58

 Heterogeneity of cells of the niche

 Non-hematopoietic types

 Osteoblasts—Cells of the osteoblastic lineage have been proposed to function as 

critical modulators of HSCs in the BM.59 In vitro culture experiments have suggested that 
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osteoblastic cell lines can expand the number of HSCs two- to fourfold.60 In addition, when 

co-transplanted with HSCs, osteoblasts can increase the engraftment rate.61 Osteoblasts 

produce a wide array of growth factors and cytokines, important for HSCs maturation.60,62 

Osteopontin, an osteoblast-secreted protein, participates in HSC location and is a negative 

regulator of their proliferation.63,64 Furthermore, angiopoietin-1 expressed by osteoblasts 

has been suggested to regulate HSC numbers through the activation of Tie-2 signaling 

pathway,65 while Jagged 1, a Notch receptor ligand, supports an increase in HSC numbers.66 

Mutant mice with conditional deletion of BMP receptor type IA or genetic alteration to 

produce osteolineage-specific activated PTH led to abnormal bone formation with increased 

osteoblast numbers that correlated with increased HSC numbers in the BM.66 Genetic 

depletion of osteolineage cells by the use of GCV in transgenic mice expressing herpesvirus 

thymidine kinase gene under the control of a constitutive 2.3-kb fragment of the rat α(1) 

type I collagen promoter leads to BM hypocellularity and extramedullary hematopoiesis 

within the spleen and liver.67 After GCV is withdrawn, osteoblasts reappear in the bone 

compartment, together with a decrease in extramedullary and a recovery of medullary 

hematopoiesis.67

Since constitutive promoter expression may not be specific to mature osteoblasts but could 

be expressed up to the MSC stage,68 specificities with careful lineage tracing to assess 

transgenic expression and recombination are needed to define osteolineage cells. Indeed, 

adipo-osteogenic progenitors69 and Nestin+ cells70 express the osteogenic proteins Runx2 

and Osterix. In keeping with this idea, osteoblastic expansion does not always promote HSC 

expansion in the BM.71 Strontium, which inhibits both osteoclast resorbing activity and 

osteoblast bone-forming activity,72 did not increase the number or frequency of HSCs when 

administered in doses higher than normally detected in the body.71 Osteocytes, derived from 

osteoblasts that became embedded within the bone matrix, appear to have an inhibitory 

effect on HSC support.73 More recent studies have shown that cells of the osteoblastic 

lineage may support lymphopoiesis. Elimination of osteoblasts in Col2.3-TK transgenic 

mice depleted pre-pro-B and pro-B cells from the BM74 without affecting the HSCs.75 

Depleting CXCL12 from osteoblasts in Col2.3-cre mice leads to loss of lymphoid 

progenitors in the BM without affecting the number of HSCs.76 Thus, the exact function of 

osteoblasts in hematopoiesis remains unclear; most recent studies indicate that they are 

dispensable for HSC maintenance and more important to lymphoid progenitors.

 Endothelial cells—The endothelium forms the inner cellular lining of blood vessels.77 

Because most HSCs were found to be associated with blood vessels, endothelial cells were 

suggested to play important roles in HSC maintenance in sinusoids.78 An intact vasculature 

is necessary for HSC recovery and hematopoietic reconstitution following total body 

irradiation and BM transplantation.79–81 Several studies described the expansion of HSCs on 

an endothelial cell feeder system in vitro.82–86 In addition, BM endothelial cells have been 

proposed to produce soluble factors that have the ability to promote HSCs self-renewal and 

regeneration in vivo.80,81,87–90

HSCs are found in close contact with endothelial cells at all developmental stages. 

Endothelial cells harvested from embryonic tissues have been shown to support the 

expansion of adult HSC cells in vitro.91,92 On the contrary, endothelial cells isolated from 
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adult non-hematopoietic organs do not display an HSC-supportive activity in vitro.93 These 

observations indicate tissue-specific functional characteristics of endothelial cells.

Deletion of glycoprotein 130 from endothelial and hematopoietic cells with Tie2-cre mice 

resulted in BM dysfunction and severe anemia by adulthood. Hematopoietic defects 

remained after transplantation of wild-type BM into irradiated glycoprotein 130–deficient 

mice, while normal hematopoiesis was reconstituted after transplantation of glycoprotein 

130–deficient BM into irradiated wild-type mice, indicating that glycoprotein 130 

expression on endothelial cells rather than hematopoietic cells influenced hematopoiesis.94 

Deletion of Scf in the same Tie2-cre mice led to reduced HSC frequencies with diminished 

repopulation capacities after BM transplantation, suggesting that SCF derived from 

endothelial cells contributes to HSC maintenance.95 Additionally, despite the fact that 

depletion of CXCL12 from endothelial cells using the same mouse model had no effect on 

the number of HSCs, it resulted in a slight decrease of long-term repopulating activity.96

Endothelial cells are heterogeneous in their morphology, gene expression, antigen 

composition, distribution, and function. Endothelial cell phenotypes vary between different 

tissues, as well as between different segments of the vasculature within the same tissue.97,98 

It remains unknown, for instance, whether arteriolar and sinusoidal endothelial cells differ. 

Elucidating their molecular differences in the BM may reveal novel concepts about these 

cells’ role in the HSC niche.98

 Pericytes—Pericytes have long projections that encircle the blood vessel wall in almost 

all tissues.99–106 They are defined by their anatomical locations in combination with several 

molecular markers, such as platelet-derived growth factor receptor β (PDGFRβ), CD146, 

neuron-glial 2 (NG2), αSMA, desmin, and Nestin. However, marker expression is highly 

dependent on the tissue type, and could often be affected by the pathologic state of the 

organ.99

Pericytes have been suggested to influence HSCs in both mice and humans.70,95,107 Using 

Nestin–GFP transgenic mice, Nestin+ perivascular cells have been defined as central 

components of the HSC niche, regulating HSCs via the expression of C-X-C motif 

chemokine 12 (CXCL12) and stem cell factor (SCF)70, 108. In vivo ablation of those cells in 

the BM significantly reduces the number of HSCs.70 Cells located in a pericytic position 

close to the vasculature enriched in CXCL12 have been described and named CXCL-12 

abundant reticular (CAR) cells.50 The transcription factor forkhead box C1 (FoxC1) in CAR 

cells has recently been identified as essential for maintenance of HSCs in vivo.109 Selective 

ablation of CAR cells in the BM leads to reduction of HSCs.69 Additionally, 

PDGFRα+Sca-1+ (PαS) cells,110 located in the arterial perivascular space,111 and leptin 

receptor–expressing pericytes have been suggested to regulate HSC maintenance in the 

BM.95,96 These cells exhibit common characteristics in that leptin receptor+ stromal cells 

overlap with CAR cells76 and represent a large subset (nearly 90%) of Nestin–GFP+ cells in 

the BM. Nestin–GFP+ cells also overlap with PαS cells, although most PαS cells are 

associated with the bone itself (most marrow Nestin–GFP+ cells do not express Sca-1).108
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There are at least two varieties of BM pericytes according to their location in the blood 

vessels: arteriolar and sinusoidal.41 Sinusoids are structurally different from arterioles in that 

they are lined by a single layer of endothelium, while arterioles are thicker-walled blood 

vessels.112 Arteriolar and sinusoidal pericytes can be separated in Nestin–GFP transgenic 

mice according to Nestin-GFP transgene expression level.41 Sinusoidal pericytes are more 

numerous and reticular in shape. They express lower levels of the Nestin–GFP transgene, 

whereas rare arteriolar Nestin–GFPbright pericytes exhibit a classic pericyte morphology. 

Additionally, arteriolar pericytes express the pericytic marker NG2 proteoglycan, but do not 

express leptin receptor; while sinusoidal pericytes express leptin receptor, but lack NG2 

expression.41 The embryonic origin and the developmental relationships of BM pericyte 

subpopulations have yet to be elucidated. Interestingly, an evaluation of the cell cycle status 

demonstrated that arteriolar pericytes are largely quiescent.41 Tridimensional imaging of the 

adult mouse BM has revealed that the majority of dormant HSCs are situated close to 

arterioles; and genetic depletion of arteriolar pericytes resulted in migration of HSCs away 

from the arterioles, switching them into non-quiescent status.41 This suggests that arteriolar 

pericytes promote HSC dormancy, essential for HSC maintenance in the BM.41 

Nevertheless, the molecular mechanisms by which arteriolar pericytes regulate HSC 

quiescence remain to be clearly defined.

 Adipocytes—It has been suggested that BM fat is unlike white and brown fat of other 

tissues.113–115 Adipocytes appear dispersed within the BM, instead of being grouped into 

lobules, and are smaller than visceral and subcutaneous adipocytes.116,117 Although older 

studies suggested that adipocytes were passive occupants of the BM,118 simply filling the 

spaces after trabecular bone loss, a regulatory role in the BM has emerged with recent 

studies.113,118,119 A specific marker for BM adipocytes has not yet been determined, but 

there are several differentially expressed genes in BM adipocytes compared to subcutaneous 

and epididymal adipocytes.120,121 A reduction of adipocyte numbers with increased size has 

been noted with disease and aging in the BM.113,119,122–125 This also has been associated 

with a decrease in cellularity126 and induction of myeloid-biased differentiation in HSCs.1 

Nevertheless, no direct link between an increase in adipose tissue and HSC myeloid bias 

during aging has been established.

Similar to adipocytes from other tissues, BM adipocytes are able to secrete cytokines, fatty 

acids, and hormones, and have a potential to influence the function of other neighboring 

cells in the BM microenvironment via paracrine mechanisms.119,124,127–130 The details of 

those mechanisms are still being unraveled. For instance, in vitro, BM adipocytes secrete 

more leptin than subcutaneous adipocytes.131 Some investigators have suggested that this is 

attributable to an important role of leptin in myelopoiesis,132 where, in the diet-induced 

obesity mouse model, hematopoiesis is enhanced due the high leptin levels in the BM.130 

However, in vitro studies differ on their conclusions about the effect of adipocytes on HSCs. 

While some studies show that adipocyte negative regulation can balance the positive effects 

of other cellular components of the BM niche on HSCs,133 others suggest that adipocytes 

can support HSC growth and differentiation in vitro.134,135 However, alterations of 

adipocyte number and volume in vivo have been reported to have no effect on HSCs.134,135
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A great number of studies indicate that adipocytes inhibit HSCs function as well as 

hematopoietic reconstitution.136–138 Lipid-filled BM adipocytes have been connected to the 

repression of growth and differentiation of HSCs136,139 and considered negative regulators 

of the hematopoietic niche.69,140 Hematopoietic recovery is improved following 

chemotherapy in mice with chemically inhibited adipogenesis.141 In mouse tail vertebrae, 

where BM cavities are densely filled with adipocytes, the few HSCs detected are largely 

quiescent.136 The adipocyte suppressive function has been attributed to the reduced 

production of granulocyte colony-stimulating factors (GM-CSF and G-CSF) and to the 

increased secretion of lipocalin-2 and neuropilin.136,142,143 Interestingly, at the same time 

that adipocytes prevent HSC expansion, they seem to positively affect HSCs via secretion of 

adiponectin and TNFα,144,145 playing a role in preserving the hematopoietic stem cell 

pool.136 Whether the role of BM adipocytes in the HSC niche differs under various 

physiological conditions, including aging or obesity, remains unclear.

 Schwann cells—Schwann cells are the principal glial cells of the peripheral nervous 

system. In the BM, they are present in their unmyelinated form associated with sympathetic 

and sensory nerve fibers.70,146,147 Until recently, unmyelinated Schwann cells received 

relatively little scientific attention, with only a poor understanding having developed of their 

function outside the nervous system. Schwann cells maintain the ability to revert to an 

immature phenotype in response to injury and disease and, by doing so, they can then re-

enter the cell cycle, proliferate, and affect the microenvironment in which they are 

located.148,149 Schwann cells were shown to produce several cytokines,150 and to express 

cytokine receptors as well.151

Recent studies have suggested that BM Schwann cells regulate the hibernation and 

activation of HSCs.152 In that study, using immunohistochemistry, the expression of active 

TGFβ was proposed to be restricted to BM Schwann cells.152 BM denervation reduced the 

number of cells producing active TGFβ, leading to a loss of HSCs from the BM.152 

However, denervation not only affects Schwann cells; for instance, β-adrenergic signals from 

the sympathetic nervous system have been shown to regulate enforced49 and circadian HSC 

egress.153 Moreover, in addition to Schwann cells, other cells, including megakaryocytes, 

produce TGFβ in the BM.154 TGFβ1 derived from megakaryocytes has been shown to 

maintain HSC quiescence.56 Most of BM innervation—and Schwann cell ensheathing of 

those nerve fibers—runs along arterioles in the BM.155 As arterioles contain multiple cell 

types, the identity of the cell promoting HSC quiescence remains unknown. Interestingly, 

both pericytes and Schwann cells express NG2 proteoglycan and may contribute to the 

arteriolar HSC niche.41,156 It will be interesting to ascertain whether BM Schwann cells 

differ from Schwann cells from other tissues. Successful isolation of BM Schwann cells may 

enable the discovery of novel niche factors possibly expressed by those cells.

 Nerves—Signals from the sympathetic nervous system have been identified as regulatory 

components of the HSC niche.13,157,158 Sympathetic nerves produce catecholamines, which 

are delivered to the BM microenvironment by the blood circulation or by secretion from the 

nerve endings acting in paracrine signaling.159 Sympathectomy achieved by treating mice 

with the neurotoxin 6-hydroxydopamine does not affect HSCs number,49,153,160,161 but it 
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impairs mobilization in response to G-CSF.49 Under steady-state conditions, HSCs egress 

from the BM to enter the blood circulation predominantly in the morning in rodents (night in 

humans),153 and migrate to the tissues during the night in rodents (day in humans).162–165 

Adrenergic signaling reduces CXCL12 expression in the BM.153,166 Moreover, recent 

evidence shows that chemotherapy-induced injury of sympathetic nerves in the BM prevents 

hematopoietic recovery, suggesting that treatment with neuroprotective drugs during 

chemotherapy would preserve HSC function in the BM niche.161 Induction of sympathetic 

neuropathy by malignant cells has recently been demonstrated.167,168

HSCs express catecholaminergic receptors, suggesting that they are able to directly respond 

to signals from the sympathetic nervous system.169 Treatment of HSCs with dopamine 

agonists enhances colony formation in vitro, albeit only in the presence of G-CSF.169 

Pretreatment of HSCs with dopamine agonists enhances their ability to engraft.169 

Additionally, norepinephrine treatment of HSCs also enhances both colony-formation 

capabilities in vitro and engraftment in vivo.159,169 Additionally, the sympathetic nervous 

system adjacent to the dorsal aorta plays an important role in HSC specification during 

development.170 Overall, these studies suggest a contribution of the sympathetic nervous 

system in regulating the HSC niche.

 Hematopoietic types

 Macrophages—Macrophages play diverse roles in the bone and marrow. At the sites of 

bone remodeling, they are anatomically juxtaposed with endosteal osteoblasts and 

participate in bone mineralization.171–173 Radio-resistant macrophages protect the HSC pool 

from exhaustion by producing prostaglandin E2 after irradiation.174 BM resident 

macrophages are defined based on differential expression of several molecular markers, such 

as Gr-1, F4/80, CD115, and CD169.175 Their numbers are reduced during G-CSF–induced 

HSC mobilization, and, following their loss, HSCs egress to the peripheral circulation.174176

Macrophages promote HSC retention in the BM by regulating the expression of CXCL12 by 

Nestin–GFP+ MSCs via a soluble factor secreted by CD169+ macrophages.54 Recent studies 

have suggested that this factor was oncostatin M.177 Thus, macrophages and sympathetic 

nerves exert the opposite action to the niche, forming a regulatory loop.54 HSC retention in 

the BM and the spleen relies at least partially on a ligand for VCAM-1, integrin 

VLA-4,178–180 which is expressed by macrophages. A recent study described that 

macrophages are important players in splenic HSC retention, as depleting macrophages 

using inducible diphtheria toxin receptor expression at the CD169 locus mice or silencing 

VCAM-1 in macrophages caused release of HSCs from the spleen.181 Additionally, a 

separate subpopulation of macrophages expressing high levels of α-smooth muscle actin and 

cyclooxygenase 2 was recently identified. This rare macrophage population synthesizes 

prostaglandin E2, which increases CXCL12 expression in Nestin-GFP+ MSCs182 and 

CXCR4 expression on HSCs,183 thus improving the survival and maintenance of HSCs in 

the BM. Moreover, macrophages have been suggested to regulate HSC egress from the BM 

after phagocytosis of aged neutrophils.184

Interestingly, macrophages are also key mediators of the neuroprotective effect of 

neuropeptide Y, and thus contribute to HSC survival in the BM. Neuropeptide Y regulates 
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homeostasis in several tissues through Y receptors.185–187 A recent study shows that 

neuropeptide Y deficiency impairs HSC survival and BM regeneration. Furthermore, 

pharmacological elevation of neuropeptide Y prevented the deficits, while neuropeptide Y 

injection into mice lacking the Y1 receptor specifically in macrophages did not rescue BM 

dysfunction.188

Macrophages are also involved in both steady-state and stress-induced erythropoiesis. In 

vivo macrophage depletion leads to a decreased number of erythroblasts in the BM and 

induces anemia with characteristics of iron-deficiency anemia, which is not corrected by 

iron supplementation. Macrophage depletion also delays erythropoietic recovery following 

acute blood loss, myeloablation, or challenge with hemoglobin-oxidizing phenylhydrazine 

(PHZ).53,54 Interestingly, polycythemia vera, which is characterized by elevated 

erythropoiesis, can be improved via macrophage ablation. Macrophage depletion reduces 

hematocrit and red blood cell counts in a mouse model of polycythemia vera driven by the 

JAK2V617F mutation.54 These studies suggest that macrophages are critical components of 

erythroid maturation in the steady state, as well as during erythropoietic rescue after stress 

and disease. It remains unknown how erythroblastic island macrophages differ functionally 

from other BM resident macrophages. Erythroblastic island macrophages thought to be very 

large (with diameter exceeding 15 μm) express F4/80 and do not express Mac1;189 however, 

a unique molecular marker for erythroblastic island macrophages remains to be discovered. 

Overall, these findings suggest that macrophages are key components of the BM niche 

promoting the maintenance and retention of HSCs.

 Osteoclasts—Osteoclasts originate from hematopoietic progenitors via mononuclear 

phagocytes.190 They are the only cell type capable of bone resorption in the human body, 

allowing the renewal of the skeleton but also opening space in the BM for hematopoietic 

cells. Osteoclasts have been suggested to contribute to HSC release via enzyme secretion, 

enhancing mobilization.191 On the other hand, it has been hypothesized that osteoclastic 

bone resorption releases calcium, increasing its concentration at the endosteal region, which 

attracts and retains HSCs that express calcium-sensing receptors in the BM.39 Bone 

resorption also produces active TGFβ, which can act on HSCs.192 Osteoclast inhibition by 

bisphosphonates causes a reduction in the number of HSCs and delays hematopoietic 

recovery.193 Using a mouse model with loss of osteoclast activity, osteoclasts have been 

shown to regulate mesenchymal cell differentiation and HSC maintenance.194

 Megakaryocytes—A subset of HSCs is located in close proximity to megakaryocytes 

in the BM.55,195,196 Several mouse models with increased number of megakaryocytes have 

also demonstrated increased bone mass.197 Thus, some studies have suggested a complex 

interaction between megakaryocytes, HSCs, and the osteolineage within the BM. 

Accordingly, after BM radioablation, host megakaryocytes are recruited to the endosteum, 

where osteoblasts undergo rapid expansion in response to the secretion of megakaryocyte-

derived mesenchymal growth factors, such as platelet-derived growth factor-β (PDGF-β), to 

promote HSC engraftment and hematopoietic reconstitution after BM transplantation.198 

The migration of megakaryocytes to the endosteum is thought to depend on thrombopoietin 
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signaling, since the inhibition of c-Mpl reduces megakaryocyte migration after radioablative 

conditioning.198

More recent findings have identified a direct HSC regulation by megakaryocytes in steady-

state hematopoiesis.55,56,195 Ablation of megakaryocytes reduces HSC engraftment and 

proliferation.195,198 Thrombopoietin administration to megakaryocyte-depleted mice 

restores the number of quiescent HSCs,195 suggesting that thrombopoietin may contribute to 

regulation of HSCs by megakaryocytes. Megakaryocytes produce high levels of TGFβ, 

which regulate HSCs.199 Conditional deletion of Tgfb1 in megakaryocytes increases HSC 

activation and proliferation in young mice.56 In addition, TGFβ injection into 

megakaryocyte-depleted mice restores HSC quiescence.56 Under homeostatic conditions, 

megakaryocytes maintain HSC quiescence through TGFβ signaling; while under stress 

megakaryocytes promote HSC expansion via FGF-1 production.56 CXCL4, which is 

produced by megakaryocytes, negatively regulates HSC proliferation, reduces HSC 

numbers, and decreases engraftment.55 An increase in HSC number, proliferation, and 

repopulating activity was observed in CXCL4 knockout mice.55 As megakaryocytes produce 

multiple cytokines (e.g., thrombopoietin, TGFβ, and CXCL4), it is possible that their effect 

on HSCs results from the balance of all those and probably more molecules. Interestingly, 

megakaryocytes physically associate with approximately 20% of HSCs in the BM.55 It 

remains to be studied whether the function of those HSCs differs from that of the rest of the 

HSCs in the BM. Overall, these observations confirm that megakaryocytes serve as HSC-

derived niche cells directly regulating HSC function.

 Lymphocytes—Lymphocytes, essential for both cell-mediated and antibody-mediated 

immunity, are widely distributed throughout the BM parenchyma and make up a major 

fraction of total BM mononuclear cells.200 Lymphocytes have been suggested to influence 

hematopoiesis, potentially through direct cellular interactions with the HSCs.201 Natural 

killer cells have been suggested to play a negative role in HSC differentiation.202 

Experiments in adult mice harboring a null mutation in the common γ chain indicated that 

cytokines secreted by activated T cells in the BM modulate normal hematopoiesis.203 Even 

though, in the absence of activated BM, CD4+ T cell HSCs can give rise to committed 

myeloid progenitors, these progenitors exhibit impaired ability to complete their 

differentiation program and give rise to mature cells.204 After adoptive transfer of CD4+ T 

cells, this defective myeloid differentiation is restored in T cell–deficient mice, suggesting 

that CD4+ T cells are essential to the maintenance of basal hematopoiesis in the BM.204

Regulatory T cells make up one third of all CD4+ T cells in the BM.205,206 Depletion 

experiments and co-transfer of BM with regulatory T cells indicated that these cells suppress 

colony formation and myeloid differentiation of HSCs.207 Moreover, FoxP3+ regulatory T 

cells colocalize with HSCs in the endosteal surface in the calvarial and trabecular BM, and 

this colocalization is lost after depletion of regulatory T cells.208 However, whether this 

interaction is biologically relevant to the homeostatic HSC maintenance is still unclear. 

Furthermore, regulatory T cells have been suggested to provide an immune-privileged niche 

in the BM, protecting HSCs from immune attacks.208

Birbrair and Frenette Page 10

Ann N Y Acad Sci. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 Neutrophils—Neutrophils are the most abundant subpopulation of leukocytes, with a 

BM reserve estimated to be 6 × 1011 in humans and 12 × 107 in mice.209,210 Neutrophils 

have short circulating half-life (6–8 h), after which they quickly migrate to tissues where 

they perform their functions.209 Serine proteases derived from neutrophils are capable of 

cleaving several cytokines and receptors essential for HSC retention in vitro, including 

CXCL12,211 CXCR4,212 VCAM-1,213 c-Kit,214 and SCF,215 suggesting that activated 

neutrophils create a proteolytic microenvironment that may contribute to HSC release from 

the BM. However, it was shown that, in mice lacking these proteases, G-CSF–induced HSC 

mobilization proceeds normally,216 suggesting that serine proteases are not essential for BM 

egress.

G-CSF induces neutrophil expansion in the BM, which may lead to MSC and osteoblast 

apoptosis and reductions in the expression of factors that are responsible for HSC retention 

in the BM.217 However, neutrophil number in the BM does not necessarily correlate with 

HSC mobilization.176 Another study showed that depleting circulating neutrophils increased 

CXCL12-expressing stromal cells number and CXCL12 protein levels, which resulted in 

enhanced retention of HSCs in the BM.184 Those effects are lost in mice in which 

neutrophils do not express CXCR4 and lack tropism to the BM, indicating that these effects 

may be exerted locally in the BM.184,218 Ablation of BM macrophages reverses the niche-

modulating functions of neutrophils, indicating that the effect of neutrophils on the 

hematopoietic niche is dependent on macrophages. Together, these data explains how the 

daily clearance of aged neutrophils in the BM generates signals that affect HSCs in the BM 

niches.184

 Conclusions and perspectives

The studies discussed in this review illustrate the contributions of multiple cell populations 

within the BM microenvironment to the complex regulation of HSC function. The use of 

sophisticated genetic tools has demonstrated that changes to the niche composition can have 

profound effects on HSC behavior. Recombination-based technology provides powerful 

means to interrogate the cellular and molecular components of niches. However, it is 

completely dependent on the promoter specificity and activity driving Cre, which must be 

characterized extensively before reaching conclusions about cell specificity or origins. 

Future clarification of the interactions between HSCs and their microenvironments during 

embryonic development may lead to improved methods to exploit the clinical potential of 

HSCs. Procedures to induce HSC self-renewal will benefit from this knowledge. Our 

increased understanding of healthy HSC niches should foster studies on the altered HSC 

niches in BM disorders. Targeting the niche itself is an attractive potential possibility for the 

treatment of hematologic disorders. The balance of extrinsic influences from the supportive 

niche may also vary under different physiological conditions. Newborn, adult, and aged 

HSCs have different physiological demands. The exploration of how the BM 

microenvironment ages will reveal essential information for the treatment of age-related BM 

illnesses. Likewise, understanding how the niche controls HSC function during stress 

situations, such as infections, radiotherapy, and chemotherapy, is needed. Recent studies 

suggest that BM endothelial cells play crucial roles in HSC recovery following radiation 

injury.89,219 A big challenge for the future will be to translate animal research into humans. 
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Improving the availability of human tissue samples will be essential to reach this goal. 

Enormous advancement has been accomplished in our understanding of the importance and 

the complexity of the BM microenvironment to HSC function and to the health of the 

organism as a whole. The best is yet to come.
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Figure 1. 
Diagram illustrating the quiescent arteriolar and the active sinusoidal HSC niches during 

BM homeostasis. The BM microenvironment hosts various hematopoietic and non-

hematopoietic cell types, including macrophages, megakaryocytes, lymphocytes, 

neutrophils, pericytes, and endothelial and Schwann cells. These cells contribute to the BM 

microenvironment and regulate HSCs directly by secretion of cytokines such as CXCL12 

and SCF and/or indirectly through signaling via other cells, for example, by prostaglandin 

E2, which increases the expression of CXCL12 in perivascular cells. Deeply quiescent 

(dormant) HSCs are found around arterioles, while activated HSCs, which are significantly 

more abundant than dormant HSCs, are located near sinusoids. TGFβ, transforming growth 

factor β; THPO, thrombopoietin; PTN, pleiotrophin; PGE2, prostaglandin E2; EGF, 

epidermal growth factor; Treg, CD4+CD25+FOXP3+ regulatory T cell.
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