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Abstract 38 

 

Much research debates whether properties of ecological networks such as nestedness and 40 

connectance stabilize biological communities while ignoring key behavioral aspects of 

organisms within these networks. Here, we computationally assess how adaptive foraging 42 

(AF) behavior interacts with network architecture to determine the stability of plant-

pollinator networks. We find that AF reverses negative effects of nestedness and positive 44 

effects of connectance on the stability of the networks by partitioning the niches among 

species within guilds.  This behavior enables generalist pollinators to preferentially forage 46 

on the most specialized of their plant partners which increases the pollination services to 

specialist plants and cedes the resources of generalist plants to specialist pollinators.  We 48 

corroborate these behavioral preferences with intensive field observations of bee foraging. 

Our results show that incorporating key organismal behaviors with well-known biological 50 

mechanisms such as consumer-resource interactions into the analysis of ecological 

networks may greatly improve our understanding of complex ecosystems.52 
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Introduction 

Several major discoveries in biology over the last four decades include the 54 

systematic effects of the architecture of biological networks on their dynamics, especially 

their stability in the face of complexity and disturbance (Pascual & Dunne 2005, Barabási 56 

2012). Such discoveries within the field of ecological networks show how the density of 

interactions among species in a community (Dunne et al. 2002, Okuyama & Holland 2008, 58 

James et al. 2012) and specific patterns in the architecture of those interactions (Bascompte 

et al. 2003, Martinez et al. 2006, Bastolla et al. 2009) affect the dynamics of complex 60 

ecological systems. Recent research illuminates how the dynamics of species’ interactions 

resulting from adaptive foraging (AF) affects the stability of ecological networks (Kondoh 62 

et al. 2003, Valdovinos et al. 2010, Kaiser-Bunbury 2010, Ramos-Jiliberto et al. 2012, 

Suweis et al. 2013), where AF is the commonly observed behavior whereby organisms shift 64 

consumption effort from less- to more-available resources (Stephens & Krebs 1986).  

Factors concerning network architecture and AF are typically found to have monotonic 66 

effects on the stability of network dynamics.  However, interactions between these factors 

can alter both the strength and direction of purportedly monotonic effects.  Here, we find 68 

this to be the case whereby adaptive foraging reverses two of the most prominently asserted 

monotonic effects of network architecture on the dynamics of pollination networks. 70 

Finding such interactions between factors within plant-pollinator networks is 

especially important because these systems help generate and maintain large amounts of 72 

terrestrial biodiversity (Thompson 1994).  Unfortunately, these highly diversified 

mutualistic associations and the ecosystem functions they provide are threatened by a range 74 

of anthropogenic environmental changes (Potts et al. 2010), which underscores the 
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importance of understanding the mechanisms that stabilize mutualistic networks.  We focus 76 

here on how the stability of pollination systems is affected by two well-known and well-

studied properties of network architecture, nestedness and connectance. Nestedness is a 78 

nearly ubiquitous property in empirical mutualistic networks (Bascompte et al. 2003) in 

which specialists (species with few partners) tend to interact with subsets of the mutualistic 80 

partners of generalists (species with many partners). Different studies assert that nestedness 

either stabilizes (Bascompte et al. 2003, Okuyama & Holland 2008, Bastolla et al. 2009, 82 

Thèbault & Fontaine 2010, Rohr et al. 2014) or destabilizes (Allesina & Tang 2012, James 

et al. 2012) mutualistic networks. Connectance is the fraction of all possible links that are 84 

topologically realized among mutualistic partners, i.e. the density of interactions in the 

network.  While increasing connectance is widely thought to increase the stability of 86 

mutualistic networks (Okuyama & Holland 2008, James et al. 2012), this property is 

relatively low (e.g., < 0.3) in nearly all documented mutualistic networks. This raises the 88 

question of why mutualistic networks do not have higher connectance in nature. 

Previous studies of the effects of nestedness and connectance on the stability of 90 

mutualistic networks (Bascompte et al. 2006, Bastolla et al. 2009, Allesina & Tang 2012, 

James et al. 2012, Rohr et al. 2014) model individual plant-pollinator interactions as 92 

positive and qualitatively invariant (Vázquez et al. 2015).  These studies have neither 

integrated AF nor used a more recent and much-discussed approach that models population 94 

dynamics among mutualists using consumer-resource interactions whose interspecific 

effects are qualitatively variable (Holland & DeAngelis 2010, Valdovinos et al. 2013). 96 

Using this consumer-resource approach, Valdovinos et al. (2013) found that AF stabilizes 

pollination networks by increasing both the amount of floral resources consumed by 98 

specialist pollinators and the pollination services received by specialist plants. In that work, 
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we proposed that AF enhances those processes through niche partitioning among species of 100 

the same guild. Here, we use Valdovinos et al.’s (2013) approach to evaluate how AF 

interacts with the network architecture to stabilize pollination systems. We hypothesize: i) 102 

in absence of AF (Fig. 1A), increased niche overlap caused by increasing both nestedness 

and connectance destabilizes pollination systems by increasing the number of shared 104 

resources among species of the same guild (Kondoh et al. 2010); and ii) decreased niche 

overlap caused by AF (Fig. 1B) stabilizes pollination systems by allowing generalist 106 

pollinators to prefer less shared resources which cedes floral rewards of generalist plants to 

specialist pollinators and increases pollination services to specialist plants (Valdovinos et 108 

al. 2013). Testing these hypotheses helps illuminate why pollination networks exhibit 

nested and moderately connected architectures, and helps elucidate the relevance of 110 

organismal behavior to the architecture and dynamics of biological networks and 

communities. 112 

 

Material and methods 114 

Simulating the architecture and dynamics of pollination networks 

Following previous studies of ecological networks (e.g. Brose et al. 2006, Ramos-116 

Jiliberto et al. 2009, Valdovinos et al. 2009), we distinguish two fundamental components 

of these networks: the architecture of the networks and the dynamics occurring on those 118 

networks. Here, the architecture of a network broadly describes which links are present or 

absent between all plant and pollinator species in a system irrespective of the strength of 120 

the link.  This architecture is typically thought to be constrained by the match among 

species’ phenological (e.g., temporal co-occurrence) and morphological traits (e.g., 122 
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proboscis length and corolla depth), and restrictions on mobility (e.g., spatial co-

occurrence) though variable observation effort (Martinez et al. 1999) and species’ 124 

abundances (Blüthgen et al. 2008) may confound documentation of such links and observed 

network properties. The dynamics occurring within pollination networks consist of changes 126 

in the abundance of the interacting species and/or the strength of the interactions, that is, 

changes in the values of the nodes and/or links, respectively. We generated the architecture 128 

of networks using the simple and much-used stochastic algorithm proposed by Thèbault & 

Fontaine (2010), which allows us to vary species richness (S), connectance (C) and 130 

nestedness of the generated networks.  

In order to test our hypotheses (Fig. 1), we simulated the dynamics within those 132 

networks using Valdovinos et al.’s (2013) consumer-resource model of population and 

adaptive dynamics both with and without adaptive foraging (AF).  This model describes the 134 

population dynamics of each plant and animal species, the dynamics of the total floral 

rewards of each plant species, and the adaptive dynamics of the per-capita foraging 136 

preferences of each pollinator species for each plant species. Pollinator j's foraging 

preference on plant i (ij) increases whenever its rewards intake from plant i, fij(Ri), is 138 

higher than its average rewards intake from all the plants (subset Pj) constituting its diet, 

 
 jPk

kkjkj Rf , as:  140 

   













 

 jPk

kkjkjiijijj

ij
RfRfG

dt

d



    (1) 

where Gj is the basal adaptation rate of foraging preference and 1
 jPi

ij  for all plants that 142 

each pollinator j visits. See Appendix S1 for further details of the model. While ij is called 
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“foraging effort” in our model’s original description (Valdovinos et al. 2013), we call ij 144 

“preference” here because foraging effort is better understood as an amount of an 

individual’s activity as determined by its preference and abundance of plants that it 146 

pollinates.  Also, foraging effort, as used here, is what is directly measured in the field, 

which facilitates comparing our model and field data (see below).  A pollinator in networks 148 

without AF forages equally on all individuals among all of its plant-species partners, i.e. 

ij=1/dj where dj is the number of plant species that pollinator j visits (Fig. 1A). Pollinators 150 

in networks with AF dynamically allocate foraging effort to different plant species based on 

reward levels (Fig. 1B). Since all plant individuals within a species have identical reward 152 

levels in our model, specialists that visit only one plant species do not adaptively forage.  

We generated 1200 networks using Thèbault & Fontaine’s algorithm with species 154 

richness (S) and connectance (C) similar to those found in empirical systems (Fig. S1, 

Table S1), consisting of 400 networks each distributed around the following parameter 156 

combinations: S=40 and C=0.25, S=90 and C=0.15, S=200 and C=0.06 (hereafter 1200 

realistically connected networks). In each of these three basic S/C combinations, we 158 

generated two sets of 200 networks one of which was significantly more nested than 

expected due to chance and the other of which was not (see Table 1). We used a standard 160 

measure of nestedness, NODFst (Almeida‐Neto et al. 2008, see Appendix S1 for more 

details), which vary from -0.33 to 2.3 in our generated networks.  This range is similar to 162 

that in the empirical networks of Table S1, which vary from -0.37 to 1.3. Our simulations 

explore a range of nestedness values beyond those observed in empirical networks in order 164 

to understand what might happen outside the empirically observed range. We present our 

simulated values of connectance and nestedness both as categories (see Table 1) and as 166 
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continuous variables (see Fig. 2). We use categories to illustrate effects of connectance, 

nestedness and AF on total, plant and animal species persistence (i.e. fraction of initial 168 

species that persisted through to the end of the simulations, Table 1, Fig. 3).  We use 

continuous variables to depict how niche overlap changes with connectance, nestedness and 170 

AF (Fig. 2).  Similar to our approach to nestedness values, we simulated an additional set of 

200 unrealistically over-connected networks of S=200/C=0.3 (100 nested and 100 non-172 

nested, see Table 1) to explore the behaviour of plant-pollinator networks outside 

empirically observed values of connectance. Lower values of connectance often result in 174 

nodes disconnected from the network and are therefore beyond our focus on connected 

networks.  Our over-connected networks together with a subset of 200 of the previously 176 

mentioned S=200/C=0.06 networks (100 nested and 100 non-nested, see Table 1) constitute 

a factorial design of 400 networks (hereafter 400 networks with S=200) with two levels of 178 

nestedness (non-significantly and significantly nested) and two levels of connectance 

(realistically and over-connected networks).  This factorial design allows us to powerfully 180 

analyze interactions between factors and their effect on persistence. 

We ran our model both without and with AF on all the stochastically generated 182 

networks briefly described above and more thoroughly explained in Appendix S1.  To more 

clearly describe the results of our simulations, we used high mortality rates for animals and 184 

low mortality rates for plants to highlight the stability of animal species; and low mortality 

rates of animals and high mortality rates of plants to highlight the stability of plant species 186 

(see Table S2).  We defined specialist and generalist species as the 30% least and 30% most 

connected species, respectively, to reduce ambiguity between specialist and generalist 188 

categories.  The degree heterogeneity in these networks causes the 30% most generalized 

species to always have more than one partner and the 30% most specialized species to 190 
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always have only one partner except in unrealistically over-connected networks.  This 

corresponds to the fact that over half of the 4823 pollinator species in the 49 empirical webs 192 

visualized in Fig. S1 pollinate only one plant species, though this level of extreme 

specialization may be overestimated due to sampling limitations (Blüthgen et al. 2008). 194 

 

Analysis of the model’s results 196 

We evaluated how niche overlap between pollinator species varies with nestedness 

and connectance in both networks without and with AF using Horn’s similarity index 198 

(1966) of foraging preferences ij (Eq. 1) between pollinator species j and k: 

𝐻′(𝑗, 𝑘) =
2∑ (𝛼𝑖𝑗∗𝛼𝑖𝑘)𝑖∈𝑃

∑ (𝛼𝑖𝑗
2 )𝑖∈𝑃 +∑ (𝛼𝑖𝑘

2 )𝑖∈𝑃
     (2) 200 

where the set P refers to all the plant species of the network.  H’(j,k)=1 when j and k exhibit 

exact same preferences for the same plant species. H’(j,k)=0 when the pollinators do not 202 

share any plant species. We analyzed nonparametric Kendall's rank correlations between 

mean H’ without and with AF with the nestedness and connectance of each network. 204 

We studied the effects of AF, connectance, nestedness, and their interactions on 

network stability measured as the fraction of initial species that persisted 3000 time steps 206 

during the simulations hereafter called species persistence.  We statistically analyzed these 

effects in terms of fixed-effects regression coefficients emerging from two types of 208 

Generalized Linear Mixed-Effects Models (GLMMs) on the 400 networks with S=200 (see 

above).  The first type estimates the effect of AF on species persistence alone by modeling 210 

AF presence/absence as the only fixed effect.  The second type estimates the effects of 

nestedness and connectance on species persistence as well as the influence of AF on those 212 

effects by modeling AF and either connectance or nestedness as fixed effects and the 
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statistical interaction between the two fixed effects. A statistically significant interaction 214 

term indicates that the impact of network architecture (connectance or nestedness) on 

persistence differs depending on whether or not AF was considered. We assessed these 216 

models for seven different datasets: all species combined (i.e., plants and animals), for 

plants and animals separately, and for specialist and generalist plants and animals 218 

separately (four datasets). See Appendix S1 for further details of our GLMM analyses. 

 220 

Empirical data and the analysis of foraging efforts 

Since the behavior and removal of generalist pollinators strongly affect the species 222 

diversity and robustness of pollinator networks (Valdovinos et al. 2013), we tested 

predictions of our dynamic model against empirically observed foraging behaviors of 224 

generalist pollinators.  These empirical data describe flower visits by bumble bees (Bombus 

spp) from the unmanipulated or “control” data of a pollinator removal experiment 226 

conducted over three summer field seasons (Brosi & Briggs 2013).  Plant abundance and 

foraging sequences of individual bees including ≥5 flower visits were observed during a 228 

single day at 27 different sites surrounding the Rocky Mountain Biological Laboratory, 

Gunnison County, Colorado, USA.  Overall, the data describe a total of 30,050 individual 230 

visits involving 1012 individual bumble bees among 8 species foraging on 35 plant species.  

Although this plant-bumble bee assemblage is a small subset of the whole plant-pollinator 232 

community, it constitutes an appropriate dataset to test our predictions for the foraging 

behavior of the generalist pollinator species in our simulations.  234 

We analyzed foraging effort of bumble bees within the particular network (site  year) 

that they were located in. We used site, plant and bee species as random effects to account 236 

for the fact that there are likely differences across those groups, and different data points 
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within one of those groups do not represent statistically independent samples. We measured 238 

foraging effort in terms of an abundance-normalized visitation rate calculated as the relative 

foraging effort of pollinator species j on plant species i normalized by i’s abundance 240 

relative to the abundance all plants visited by j:  

 242 

 

(3) 244 

 

 246 

for all individual bees visiting each plant species during the day and within the plot where 

the foraging sequence was observed.  In other words, Eq. 3 calculates the fraction of a 248 

pollinator’s visits to a plant relative to that plant’s abundance among partners of that 

pollinator. We compared field data on the 8 species of bumble bees with the simulated 250 

foraging of the 30% most general species in nested networks with AF, mean S=90, and 

mean C=0.15. These networks include the subset of simulated webs that appear closest to 252 

our field data given that the simulated webs contain an average of 30 plant species and an 

average of 7 highly general pollinator species. 254 

We statistically assessed the relationship between normalized log foraging effort and 

plant connectivity using GLMMs in both our model and field data.  This enabled us to 256 

account for the non-independence of multiple observations of the same animal and plant 

species (in both model and empirical data) within networks (model data) and within sites on 258 

the day of observation (empirical data).  We thus used plant species, animal species, and 

network ID as random effects in the analysis of the modelling data, and plant species, 260 

animal species, and site ID as random effects in the empirical analysis.  We used plant 
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degree (the number of pollinator species a plant species is connected to in a network) as the 262 

fixed effect in analyses of both empirical and modelling data. We log-transformed foraging 

effort (the response variable) to better conform to model assumptions. This analysis was 264 

run using the “lme4” (Bates et al. 2014) and “lmerTest” (Kuznetsova et al. 2013) packages 

for the R Statistical Programming Language (R Core Team 2013). 266 

 

Results 268 

Our hypotheses involving niche overlap as the primary mechanism responsible for 

differences in species persistence among networks are both corroborated and refined by the 270 

variation in species persistence among our simulated networks.  More specifically, our 

hypothesis that asserts AF decreases niche overlap is strongly corroborated by the decrease 272 

in niche overlap from a mean of 0.206 (95% CI +/- 0.007, Figs.2A,B) in networks without 

AF to a mean of 0.109 (95% CI +/- 0.004, Figs.2C,D) in networks with AF.  Our 274 

hypothesized effect of this decrease is also corroborated by the increase in species 

persistence due to AF (P=310
-11

, Table S3: ‘AF Only’, ‘all plants and animals’).  More 276 

surprisingly, AF reverses the effects of nestedness on niche overlap and network stability.  

Without AF, nestedness increases niche overlap (Fig.2B).  With AF, nestedness decreases 278 

niche overlap (Fig.2D).  As we hypothesize from such changes in overlap, AF also reverses 

the destabilizing effect of nestedness on species persistence (P=410
-13

, Fig.3, Table S3 280 

‘AFxN’, ‘all species’).  Regarding connectance, it is positively correlated with niche 

overlap (P<210
-16

; Fig.2A) in networks without AF and even more so in networks with 282 

AF (P<210
-16

; Figs.2C).  This increase in niche overlap is consistent with the change from 

the stabilizing effect of connectance on species persistence to a destabilizing effect (Fig.3, 284 
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Table S3: ‘AFxC’, ‘all species’, P=210
-11

).  We explain these results in more detail below 

and then describe our test of a central result regarding foraging behavior against our 286 

empirical data. 

AF eliminates the strong negative effect of nestedness on animal persistence (Fig.3, 288 

Table S3: ‘AF x N’, ‘all animals’, P<0.05), and reverses the negative effect of nestedness 

on plant persistence (Fig.3, Table S3: ‘AF x N’, ‘all plants’, P=210
-15

).  AF increases 290 

overall persistence in realistically connected networks by increasing the persistence and 

abundance of specialist species of both animals and plants (Table 1: ‘Specialists’ in 292 

‘Realistically connected’, Figs.4A-C). This increase in the persistence of specialist 

pollinators occurs because generalists exhibiting AF reduce foraging effort on generalist 294 

plants (Figs.1B,5A) due to the reduced reward levels in these plants that result from sharing 

their rewards with many other pollinator species (Figs.1B, 4D).  Generalist pollinators 296 

balance this reduction by increasing foraging effort on specialist plants (Figs1A, 5A) whose 

resources are shared by fewer pollinators and therefore are more abundant (Figs.4D). This 298 

shift by generalists from generalized to more specialized plants increases the population 

growth rates of generalist pollinators in the near term (Fig. S2C), but has two subsequent 300 

outcomes that are intensified by nestedness (Fig. S3). First, the shift away from generalist 

plants allows their floral resource levels to increase (Figs. 1B, 4D). This increase in 302 

resources increases the persistence and abundance of pollinators specialized on generalist 

plants (Table 1: ‘Specialists’ ‘Animals’ in ‘Realistically connected’, Figs. 4A, 4B, S3A).  304 

The increased abundance of non-generalist pollinators (Fig. 4B), in turn, decreases the total 

amount of floral rewards in the community (Fig. 4D), which ultimately reduces the long-306 

term abundance of generalist pollinators (Figs. 4B, S3B). Second, this shift increases 
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pollination services to specialist plants, which increases their persistence relative to 308 

networks without AF (Table 1: ‘Specialists’ ‘Plants’ in ‘Realistically connected’, Figs. 4C, 

S3C). 310 

AF eliminates the positive effect of connectance on animals while converting the 

negative effect on plants to a stronger negative effect (Fig. 3, Table S3: ‘AF x C’, ‘all 312 

plants’, P=210
-12

).  Without AF, increasing connectance enhances the diversity and 

therefore abundance of food available to the pollinators which greatly increases the 314 

persistence of these animals (Fig. 3) and ensures that animal species almost always persist 

in over-connected networks.  With AF, animals always persist irrespective of connectance 316 

levels.  This explains the very small effects of AF on animal persistence (Table 1: 

‘Animals’ in ‘Over-connected’).  Plants respond to connectance differently.  Without AF, 318 

increased connectance destabilizes generalist plants due to increased pollinator generality 

degrading pollination services by decreasing deposition of conspecific pollen.   With AF, 320 

such degradation is exacerbated to the point that increased connectance enables specialized 

pollinators, which can visit multiple plant species only in over-connected networks, to 322 

decrease the persistence generalist plants by 19-41% (Table 1: ‘Generalists’ ‘Plants’ in 

‘Unrealistically over-connected’). 324 

We tested our hypothesis (Fig.1B) and model results (Fig.5A) asserting generalist 

pollinators prefer specialist plants against our empirical data on foraging behavior of 326 

bumble bees, which are generalist pollinators within their plant-pollinator community (see 

Methods). Our analysis reveals a striking match between the model results of generalist 328 

pollinators allocating more foraging effort on specialist plants (Fig.5A) and the distribution 

of foraging effort obtained from the field data (Fig.5B). Both data sets suggest that 330 

generalists’ normalized foraging effort (Eq.3) decreases approximately an order of 
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magnitude among plants whose number of partners increases by six as illustrated by 332 

statistically significant negative trends in foraging effort with increased plant generality 

(model: P<2  10
-16

; field data: P=0.0189).  A more precise comparison is prevented 334 

because, in contrast to the simulated data, the complete set of pollinators and therefore the 

actual degree of each plant species is unknown in the field data. However, the relative 336 

generality of plants, and therefore their placement on the x-axis of Fig. 5B, appears to be 

well estimated by the empirically observed number of generalist partners of the plants. 338 

 

Discussion 340 

Our study shows how niche partitioning due to adaptive foraging (AF) stabilizes 

realistically structured plant-pollinator networks but not over-connected networks. This 342 

partitioning consists of generalist pollinators preferring specialist plants (Fig. 5A), while 

ceding floral rewards of generalist plants to specialist pollinators (Fig. 1B, Fig. 4D). This 344 

partitioning also explains how AF reverses the broadly destabilizing effect of nestedness 

and the broadly stabilizing effect of connectance (Fig. 3) and may help explain why 346 

pollination networks exhibit nested and moderately connected architectures. 

The negative impact of nestedness on animal persistence in networks without AF is 348 

caused by the increase in resource sharing between specialist and generalist pollinators that 

results from increasing nestedness (Kondoh et al. 2010).  This lack of niche partitioning 350 

causes specialist pollinators to be outcompeted by generalist pollinators and degrades 

pollination services to specialist plants by increasing specialist plants’ number of generalist 352 

pollinators with heterospecific pollen loads (Fig. 1A, Ashman & Arceo-Gómez 2013, 

Briggs et al. 2015).  AF counteracts these negative effects of nestedness. AF within nested 354 
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networks causes generalist pollinators to prefer specialist plants, which increases the 

quantity and quality of visits to specialist plants while increasing their persistence (Figs. 356 

4C, S3C). This shift in preference also decreases negative effects of competition on 

specialist pollinators by ceding to them floral rewards that ultimately reduces the 358 

abundance of generalist pollinators (Fig. 4B).  Such counterintuitive reductions in 

organismal abundance resulting from their adaptive behavior have been identified 360 

elsewhere as ‘evolutionary deterioration’ (Dieckmann & Ferrière 2004). 

Niche partitioning also explains how AF reverses the stabilizing effect of 362 

connectance.  Without AF, increasing connectance enhances the diversity and therefore 

abundance of food sources available to the pollinators which has the effect of greatly 364 

increasing the persistence of pollinators but has a slight negative effect on plant persistence 

(Fig. 3).  With AF and its attendant partitioning of niches, pollinators escape the negative 366 

consequences of competition which allows all pollinators to persist and eliminates the 

possibility of increased persistence due to increased connectance (Fig.3).   Additionally, AF 368 

amplifies negative effects of increased connectance on plants (Fig.3) because, in over-

connected networks, all pollinators pollinate more than one species of plant which allows 370 

all pollinators to decrease their visits to their most generalized plants and subsequently 

decrease these plants’ persistence (Table 1) due to degradation of pollination services. 372 

These findings on the negative impact of increasing connectance on plant 

persistence suggest that AF may explain why such highly connected pollination networks 374 

are not found in nature and contradict previous work that asserts positive relationships 

between the stability of species abundances and the connectance of the mutualistic 376 

networks (Okuyama & Holland 2008, James et al. 2012). This contradiction appears due to 

the dynamics of floral rewards (Eq. 1) that can create negative effects between pollinators 378 
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and plants in contrast to the qualitatively invariant positive effects in previous models 

which cause species persistence to always increase with the number of interactions, i.e., 380 

connectance.   

Our results regarding the effects of nestedness in the absence of adaptive foraging 382 

also contrast with other model results including those (e.g., Bastolla et al. 2009) that found 

that nestedness stabilizes mutualistic networks by reducing effective interspecific 384 

competition. This stabilizing effect of nestedness occurred because all species of the same 

guild (i.e. plants or pollinators) in their models directly compete through competition 386 

coefficients independent of the degree of resource sharing.  However, in their models 

positive effects on population growth rates among species of the same guild depend on 388 

resource sharing and increase with increasing the abundance of common mutualist partners. 

This causes positive effects among plants (or pollinators) in their model to increasingly 390 

outweigh negative effects as the number of shared pollinators (or plants) increases. 

Nestedness stabilizes these networks because it increases resource sharing which increased 392 

these positive effects.  In contrast, we found that nestedness decreases species persistence 

in the absence of AF by increasing competition for both floral resources shared among 394 

pollinators and also for pollination vectors shared among plants. AF adapts to and 

counteracts these negative effects of nestedness in realistically connected networks by 396 

allowing foraging effort to shift such that adaptive foragers increase niche partitioning, 

which increases visits to specialist plants and resources available for specialist pollinators 398 

(Fig. 1). 

Beyond determining how network structure and dynamics influence stability, 400 

another key role of the theory motivating our model is illuminating previously 

unrecognized behaviors in nature.  Our theory fulfills this role by predicting that foraging 402 
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effort is distributed such that generalist pollinators expend more effort on less-connected 

plants, a result that is strikingly consistent with a large, detailed field dataset on plant 404 

visitation by bumble bees. To our knowledge, this is the first time that predictions of 

variable foraging effort among topologically available resources have been tested against 406 

field observations of mutualistic networks.  Although other factors besides competition 

between bees for the floral rewards of generalist plants may drive this result, our data 408 

(Brosi and Briggs 2013) suggest that when competition is relaxed via pollinator removals, 

the statistically significant negative relationship between foraging effort and plant degree 410 

disappears (unpublished results).  These relationships are consistent with previous 

theoretical work (Valdovinos et al. 2013, Staniczenko et al. 2013) but contradict a previous 412 

meta-analysis of field data (Bascompte et al. 2006). This discrepancy is straightforward to 

explain: while the meta-analysis found that more-connected plants are visited more 414 

frequently than less-connected plants, it did not account for the effects of plant abundance 

on visitation (Blüthgen 2008), which is critical given that more-connected plants tend to be 416 

much more abundant than less-connected ones (Vázquez et al. 2007).  In contrast, our 

analysis of foraging effort normalized to plant abundance allows the predicted signal to be 418 

expressed in the field data.  Further tests of our predictions against additional empirical 

data, especially those that document larger fractions of plant-pollinator communities, are 420 

needed to determine the applicability of our findings to other species and communities. 

Given our study’s overall results and their relation to other findings, we suggest that 422 

the pollination behaviors and network structures found in nature effectively balance a 

conflict between strategies that benefit pollinators and plants.  Pollinator species benefit 424 

from consuming more rewards available from more plant species (MacArthur 1965).  Plant 

species benefit from less diluted conspecific pollen carried by their pollinators that visit 426 
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fewer plant species (Brosi 2016).  Intermediately connected networks that are highly nested 

and contain adaptive foragers appear to resolve this conflict.   Such networks allow many 428 

pollinator species to persist with more than one plant partner while avoiding excessive 

degradation of pollination services critical to plant persistence.  It would be interesting to 430 

explore whether such systems-level solutions to this conflict are optimal or naturally 

emerge during the evolution of species within networks (Allhoff et al. 2015). 432 

Several of our model’s simplifying assumptions would be particularly interesting to 

explore in future work. One is the lack of evolutionary dynamics in our model (e.g. 434 

Bronstein 1994, Guimarães et al. 2011, Melián et al. 2011).  Though beyond our scope, 

such dynamics are especially interesting (Dieckmann & Ferrière 2004) given selective 436 

pressures that may prevent generalists from evolving behaviors such as adaptive foraging 

that lower generalists’ population size over the longer term while increasing it over the 438 

shorter term. Future work should also explore our model’s spatial mean-field assumption 

asserting that pollinators can forage on any plant individual with no travel time or cost, 440 

which can be relaxed by including spatial heterogeneity and temporal heterogeneity in 

phenology. We also assume perfect knowledge by pollinators of the floral resources of all 442 

plants in the landscape, which could be addressed by including limitations in pollinator 

learning and memory (Leonard et al. 2011).  Empirical estimates of model parameters 444 

could relate model time to real time and greatly inform many of these explorations.  

Future work also needs to better control the degree distribution when generating 446 

nested networks (Saavedra & Stouffer 2013). For example, specialists were more general in 

our non-nested than in our nested networks (results not shown). The strong correlations 448 

between fundamental proprieties such as nestedness, connectance and degree distributions 

(James et al. 2012b) highlights the difficulty in determining which of several highly 450 
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correlated properties are driving the stability effects.  Finally, our theory assumes that a 

significant fraction of pollinator species that co-occur in time and space are single-species 452 

specialists.  The heterogeneities discussed above suggest that this assumption at the local 

scale of our model may be none-the-less consistent with suggestions that ‘true’ specialists 454 

on single species are very rare based on observations at larger geographic, spatial, and 

evolutionary scales. 456 

Here, we illuminate the interplay between network architecture and organismal 

behavior by integrating several approaches to mutualistic networks that were previously 458 

kept separate.  First, we incorporated adaptive foraging, which is common in consumers 

utilizing spatially or temporally varying resources (Stephens & Krebs 1986). Second, we 460 

dynamically modeled interaction strengths using empirically tractable mechanisms 

(Vázquez et al. 2015) including visitation, feeding, pollination and reproduction. Third, we 462 

more explicitly modeled direct positive interactions between trophic levels (Holland & 

DeAngelis 2010) and also direct negative interactions between and within trophic levels 464 

involved in plant-animal mutualisms. Our findings on the interplay between network 

architecture and adaptive foraging via niche partitioning may be found in other networks 466 

with adaptive behavior such as food webs, which are also often nested (Kondoh et al. 2010) 

and have limited connectance (Beckerman et al. 2006). 468 
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Figure Legends 

 648 

Fig. 1. Hypothesized effects of adaptive foraging (AF) on pollination networks. 

Without AF (A), each pollinator equally prefers all of its plant partners as indicated by lines 650 

to plants of equal width.  This leads to lower visitation levels to specialist relative to 

generalist plants, and to lower reward levels in generalist plants relative to specialists as 652 

indicated by the fill levels in the bars below the flowers.  These visitation and rewards 

levels typically result in the competitive exclusion of plants and pollinators specializing on 654 

generalist species. With AF (B), generalist pollinators prefer specialist plants, which 

partitions animal and plant niches between generalist and specialist species. This niche 656 

partitioning stabilizes network dynamics by ceding resources of generalist plants to 

specialist pollinators and increasing pollination services to specialist plants.  Bees and 658 

flowers represent an average individual within each species’ population arranged from top 

to bottom by decreasing numbers of interactions. 660 

 

Fig. 2.  Niche overlap as a function of connectance and nestedness in networks without 662 

and with adaptive foraging (AF). Without AF (A, B), Kendal’s rank correlations of 0.26 

(P=0) and 0.49 (P=0), respectively indicate that increasing both connectance and 664 

nestedness increases pollinators’ niche overlap, which corroborates our hypothesis (i).  

Including AF (C, D) decreases this overlap in half from a mean of 0.206 (95%CI +/- 0.007) 666 

without AF to a mean of 0.109 (95%CI +/- 0.004), which supports our hypothesis (ii).  AF 

reverses the correlation of niche overlap with nestedness to -0.29 (P<10
-16

, compare B and 668 

D) and increases the correlation with connectance to 0.64 (P=0, compare A and C). Niche 

overlap corresponds to Horn’s similarity index on foraging preferences for pollinator 670 
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species within the 1200 realistically connected networks (see Methods). Unfilled, grey, and 

black data points correspond to networks with connectance C<0.1, 0.1≤C≤ 0.2, and C>0.2, 672 

respectively. 

 674 

Fig. 3. Effects of nestedness and connectance on species persistence in networks 

without and with adaptive foraging (AF). Results correspond to the 400 networks with 676 

S=200 (see Methods) consisting of four groups of 100 networks factorially divided among 

two categories of two different variables: realistically connected (C=0.06), over-connected 678 

(C=0.3), non-nested, and nested (more than expected at random). For each network, we ran 

the model without (grey bar) and with (black bar) AF. Effects of nestedness and 680 

connectance were estimated as the fixed-effects regression coefficients emerging from 

generalized linear mixed-effects models (GLMMs) including AF and either nestedness or 682 

connectance as fixed effects. Different mortality rates are useful for highlighting different 

results. Results for animal persistence were obtained from simulations with high animal- 684 

and low plant-mortality rates, whereas those for plant persistence used high plant- and low 

animal-mortality rates (Table S2). Error bars show 95% binomial confidence intervals 686 

estimated by our GLMMs. 

 688 

Fig. 4. Effects of adaptive foraging (AF) on animal and plant species with different 

levels of specialization within the 1200 realistically connected networks.  All networks 690 

have realistic levels of species richness S and connectance C (i.e. S/C = 40/0.3, 90/0.25, 

200/0.06). Different mortality rates are useful for highlighting different results (see legend 692 

of Fig. 3). Results for animal persistence (A) and abundance (B), and per-plant species 

resource density (D) are shown for simulations with high animal mortality rates and low 694 
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plant mortality rates (Table S2). Panel C shows plant persistence for high plant mortality 

and low animal mortality rates. Orange-solid, blue-dashed and back-dotted lines represent 696 

all, generalist and specialist animal (or plant) species. Symbols and error bars represent 

mean and 95% confidence intervals.  Note that high persistence of generalists in networks 698 

without AF (A, C) provides little opportunity for AF to increase their persistence. 

 700 

Fig. 5. Effects of plant connectivity on relative foraging effort in model (A) and field 

(B) data.  Points depict the normalized mean log-foraging effort of individuals in a 702 

population of one animal species on individuals in a population of one plant species (y-

axis), as a function of plant degree (the number of animal species that visit that plant 704 

species, x-axis).  Lines depict best-fit estimates from linear mixed-effects models, with the 

95% confidence intervals (CIs) shaded.  Model data consist of 200 nested networks with 706 

average species richness S=90 and average connectance C=0.15. This subset of simulated 

webs appear the closest to our field data given that they contain on average 30 plant species 708 

and on average 7 animal species are the most general pollinators within the networks, 

whereas the empirical data consist of 8 generalized pollinator species foraging on 35 plant 710 

species.



33 

 

Table 1. Effects of adaptive foraging (AF) on species persistence for each architecture type in our simulation design. Effects 712 

were calculated as the difference in the fraction of persistent species between networks with and without AF, for all, generalist and 

specialist animal and plant species. ‘Realistically connected’ refers to 1200 networks with species richness (S) and connectance (C) 714 

around the S/C combinations: S=40/C=0.25, S=90/C=0.15, S=200/C=0.3 (400 networks each, 200 non-significantly and 200 

significantly nested). ‘Unrealistically over-connected’ refers to 200 networks (100 non-significantly and 100 significantly nested) 716 

averaging S=200/C=0.3. First and second numbers in each non-nested/nested column correspond to the mean and the 95% confidence 

intervals of the mean. We only discuss effects higher than 0.15 in the text. Bold numbers indicate effects higher than 0.15. 718 

 

 Realistically connected Over-connected 

 S=40, C=0.25 S=90, C=0.15 S=200, C=0.06 S=200, C=0.3 

  non-nested nested non-nested nested non-nested nested non-nested nested 

Animals                                 

All 0.01 0.00 0.15 0.03 0.01 0.00 0.26 0.03 0.02 0.01 0.36 0.03 0 0 0.00 0.00 

Generalists 0 0 0.03 0.01 0 0 0.07 0.02 0.00 0.00 0.16 0.02 0 0 0 0 

Specialists 0.02 0.01 0.28 0.04 0.03 0.01 0.43 0.04 0.05 0.01 0.50 0.03 0 0 0.02 0.00 

Plants                                 

All 0.00 0.00 0.07 0.01 0.00 0.00 0.10 0.01 0.01 0.00 0.13 0.01 -0.25 0.01 0.04 0.01 

Generalists 0 0 0 0 0 0 0 0 0 0 0.00 0.00 -0.41 0.04 -0.19 0.02 

Specialists 0.01 0.01 0.21 0.04 0.02 0.01 0.26 0.03 0.03 0.01 0.31 0.03 -0.02 0.04 0.43 0.03 
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