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Tissue-resident memory T cells (TRM cells) are a population of immune cells that reside in 

the lymphoid and non-lymphoid organs without recirculation through the blood. These 

important cells occupy and utilize unique anatomical and physiological niches that are 

distinct from those for other memory T cell populations, such as central memory T cells 

in the secondary lymphoid organs and effector memory T cells that circulate through the 

tissues. CD8+ TRM cells typically localize in the epithelial layers of barrier tissues where 

they are optimally positioned to act as sentinels to trigger antigen-specific protection 

against reinfection. CD4+ TRM cells typically localize below the epithelial layers, such 

as below the basement membrane, and cluster in lymphoid structures designed to 

optimize interactions with antigen-presenting cells upon reinfection. A key feature of 

TRM populations is their ability to be maintained in barrier tissues for prolonged periods 

of time. For example, skin CD8+ TRM cells displace epidermal niches originally occupied 

by γδ T cells, thereby enabling their stable persistence for years. It is also clear that the 

long-term maintenance of TRM cells in different microenvironments is dependent on mul-

tiple tissue-specific survival cues, although the specific details are poorly understood. 

However, not all TRM persist over the long term. Recently, we identified a new spatial 

niche for the maintenance of CD8+ TRM cells in the lung, which is created at the site 

of tissue regeneration after injury [termed repair-associated memory depots (RAMD)]. 

The short-lived nature of RAMD potentially explains the short lifespans of CD8+ TRM 

cells in this particular tissue. Clearly, a better understanding of the niche-dependent 

maintenance of TRM cells will be important for the development of vaccines designed 

to promote barrier immunity. In this review, we discuss recent advances in our under-

standing of the properties and nature of tissue-specific niches that maintain TRM cells in 

different tissues.

Keywords: distribution of memory T cells, maintenance of memory T cells, mucosal immunity, infectious immunity, 

vaccine

iNTRODUCTiON

When naïve T  cells encounter cognate antigen in the draining lymph node (LN), the cells are 
activated, initiate a proliferative program, and di�erentiate into a heterogeneous population 
of e�ector T cells. �ese e�ector T cells then home back to the site of infection and eliminate 
pathogen-infected cells. While most e�ector cells die a�er clearance of the pathogens, some cells 
subsequently di�erentiate into memory T cells. During the course of a T cell response, each T cell 
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receives spatially and temporally distinct instructive signals 
that impact their ultimate fate; either death or di�erentiation 
into di�erent types of memory cells with distinct functional 
and migratory properties (1, 2). For example, T cells primed by 
antigen-presenting cells (APC) with weak stimulatory potential 
preferentially remain in the LN and di�erentiate into central 
memory T cells (TCM cells) where they survey lymph and blood 
(3, 4). On the other hand, T  cells primed by APC with high 
stimulatory potential (e.g., strong costimulation) di�erentiate 
into potent e�ector cells that migrate to in�amed tissues and 
subsequently die (3). E�ector cells that additionally receive 
tissue-speci�c instructive signaling di�erentiate into tissue-
resident memory T  cells (TRM cells) and establish permanent 
residency within the tissues (1, 5). E�ector T cells that fail to 
receive optimal tissue-instructive signals may di�erentiate into 
e�ector memory T cells (TEM cells) that circulate between blood 
and certain peripheral tissues.

It is now appreciated that TRM cells comprise the majority of 
memory T cells in the non-lymphoid tissues (NLT) and confer 
immediate protection against infection of barrier tissues (6). 
�ese cells are part of a comprehensive memory response that 
also include the TCM and TEM populations. TCM cells exhibit high 
proliferative potential upon reactivation in the LN, thereby pro-
viding a major source of secondary e�ector cells that ultimately 
facilitate pathogen clearance (7). TEM cells play a supportive 
role to TRM by virtue of their immediate e�ector functions and 
their ability to rapidly tra�c sites of infection (8). While the 
maintenance of circulatory memory T cell populations (TCM and 
TEM) has been shown to depend on the homeostatic cytokines 
IL-7 and IL-15, the factors that regulate the maintenance of TRM 
cells are ill de�ned. Furthermore, since TRM cells in each tissue  
are maintained in distinct microenvironments, these cells must 
adapt to local cues for their long-term survival.

�e external or internal surfaces of the body such as the skin 
and the mucosal linings of the gastrointestinal, respiratory, and 
urogenital tracts are a major gateway for infectious pathogens 
to access to the body. �e surfaces of these barrier tissues are 
covered by di�erent types of epithelial layers: from single lay-
ers of �attened or columnar cells to multiple layers of di�erent 
types of epithelial cells. Each of these epithelial layers, along 
with the connective tissues that underlie the epithelium in each 
tissue, provide distinct microenvironments depending on their 
particular physiological and functional needs. �e di�erent types 
of immune cells that reside in these distinct microenvironments, 
such as macrophages, dendritic cells (DC), γδ T cells, and innate 
lymphoid cells (ILC), each adapt to these unique environments 
and play important roles in maintaining the integrity of these 
epithelial barriers (9–12). Accumulating evidence has revealed 
that the relationship between TRM cells in these tissues and the 
original resident cell populations is dynamic and complex. For 
example, some tissue-resident immune cells interact with TRM 
cells and provide niche factors for their maintenance (13–15).  
In other cases, tissue-resident immune cells and TRM cells share 
local signals necessary for their long-term survival or compete 
with one another for access to niches that enable them to persist 
in the tissue (16). Furthermore, it is becoming clear that TRM cells 
are also established in non-barrier tissues (such as the brain, 

liver, and kidney) as well as the primary lymphoid organs and 
secondary lymphoid organs (SLOs) and protect tissues from 
infectious pathogens disseminated by hematogenous or cellular 
(e.g., neural) pathways (17). �e niches and factors that enable 
the maintenance of TRM cells in these tissues di�er signi�cantly 
from those in the epithelial tissues. In this review, we discuss the 
distribution of TRM cells in each tissue and the factors that in�u-
ence the establishment and maintenance of TRM cells.

NON-LYMPHOiD ORGANS

Barrier Tissues
Skin
�e skin is comprised of three main layers: the epidermis, der-
mis, and subcutaneous fatty region. �e epidermis and dermis 
are separated by a basement membrane and harbor numerous 
unique populations of innate and adaptive immune cells. Many 
of these cells are resident populations and form a sophisticated 
immune network that provides a biological barrier against invad-
ing pathogens (18).

�e epidermis is an avascular tissue composed primarily of 
keratinocytes (19). Dead keratinocytes comprise the outmost 
layer of the epidermis, known as the stratum corneum, and 
serve as a physiological barrier (20). Keratinocytes in the deeper 
layers, such as the stratum granulosum and stratum spinosum, 
provide integrity to the skin and play multiple roles in the 
initiation of local immunity by recognizing pathogens through 
pattern recognition receptors and by secreting a wide variety 
of cytokines and chemokines (21). �ese cells also secrete vari-
ous factors necessary for the development and homeostasis of 
immune cells residing in the epidermis (21). �e bottom layer, 
the stratum basale, consists primarily of a single layer of basal 
cells—precursors of the keratinocytes that comprise the upper 
layers of the skin (22). �e hair follicles also consist of keratino-
cytes and provide unique niches for immune cells including  
TRM cells (23).

At least three immune cell types are maintained in the epider-
mis: Langerhans cells (LC), dendritic epidermal T cells (DETC) 
expressing γδ T cell receptors (TCR), and memory T cells express-
ing αβ TCR. �ese cells do not recirculate under steady-state 
conditions, exhibit a dendritic morphology, and inhabit several 
anatomical as well as physiological niches for their development 
and maintenance (20).

Langerhans cells are present in all layers of the epidermis, 
especially in the stratum spinosum, and are the only APC in the 
epidermis under steady-state conditions (24). �e development 
and maturation of LC depends on transforming growth factor-β 
(TGF-β), which is secreted by keratinocytes, DETC (paracrine), 
and the LC themselves (autocrine) (24). Although TGF-β1 is 
secreted as a latent (inactive) form, it is trans-activated by integrin 
αvβ6 and αvβ8 expressed on keratinocytes in the interfollicular 
regions and near the hair follicles (25, 26). TGF-β has also been 
shown to be required for the retention of LC within the epider-
mis since the loss of TGF-β1 signaling leads to the spontaneous 
migration of LC to the regional LN (25). In addition to initiating 
adaptive immune responses, LC are also involved in the induction 
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FiGURe 1 | TRM niches in the skin. Langerhans cells (LC), dendritic epidermal T cells (DETC) expressing γδ T cell receptors, and CD8+ TRM cells are maintained in  

the epidermis. CD8+ TRM cells displace epidermal niches originally occupied by DETC at the site of infection. Transforming growth factor (TGF)-β secreted from LC 

and DETC, IL-15, and aryl hydrocarbon receptor (AhR) ligands play a role in the generation and maintenance of epidermal CD8+ TRM cells. Memory CD4+ T cells in 

the dermis form clusters with CD11b+ APC around the hair follicles. CCL5 secreted from peri-collicular CD8+ T cells promotes formation of clusters. Although most 

memory CD4+ T cells in the cluster exhibit canonical TRM phenotypes, long-period parabiosis experiments revealed that this population is slowly replenished by cells 

from the circulation. IL-7 and IL-15 secreted from keratinocytes in the hair follicles promote T cell persistence in the cluster. TEM cells are passing through the dermis. 

Orange and blue cells indicate CD8+ and CD4+ TRM cells, respectively, unless otherwise stated. Red lines indicate the representative niche factors that influence  

the maintenance of TRM cells. Blue lines indicate the migratory routes. Dashed lines indicate potential impact of niche factors (red) or migratory routes (blue). 

Abbreviations: Ly, lymph vessel; Bl, blood vessel; Ag, antigen; APC, antigen-presenting cell; TRM, tissue-resident memory T cells; TEM, effector memory T cells.
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of tolerance by promoting the proliferation of regulatory T (Treg) 
cells in the epidermis under steady-state conditions (27).

In mice, DETC comprise a large proportion of immune 
cells in the epidermis (20). DETC are distributed throughout 
the epidermis, secrete a variety of cytokines, chemokines, and 
growth factors, and play key roles in the wound repair, tumor 
surveillance, and in�ammation (28). �ey persist in the epi-
dermis for life and are maintained by homeostatic turnover. 
Common γ-chain signaling through IL-7 and IL-15, as well as 
signaling via the aryl hydrocarbon receptor (AhR) are known 
to be required for the development and maintenance of DETC 
(29–32). �is is consistent with the fact that AhR ligands are 
abundant in the skin since they are formed from tryptophan via 
ultraviolet radiation (33). In contrast to LC, the maintenance of 
DETC is independent of TGF-β (34).

�e majority of αβ T  cells that reside in the epidermis are 
CD8+ TRM cells (35) (Figure 1). �ese cells express canonical TRM 
makers such as the activation marker CD69, the E-cadherin-
binding integrin CD103, and the collagen-binding integrin 
CD49a, in the absence of cognate antigen signaling (36, 37). 
Although CD8+ TRM cells are widely found throughout the 
body (38), their numbers are generally elevated at sites of 
infection and/or in�ammation (37, 39, 40). Several chemokines 
are known to be involved in the recruitment of CD8+ TRM 

precursors (KLRG1lo) into the epidermis, including cutaneous 
T  cell-attracting chemokine (CTACK), CXCL9 and CXCL10. 
CTACK is constitutively expressed by epidermal keratinocytes 
and attracts CCR10 expressing T  cells (41). Since memory 
T cells do not express CCR10, it is likely that CTACK primar-
ily drives the recruitment of e�ector T  cells to the epidermis, 
but not the retention of memory T cells at that site (42). Other 
in�ammatory chemokines, such as CXCL9 and CXCL10, are 
highly expressed by keratinocytes in response to infection, 
and facilitate the recruitment of CXCR3+ memory precursor 
e�ector CD8+ T cells to the epidermis (43). Like LC, these cells 
subsequently receive TGF-β signals upon arrival, which is a 
critical factor for the upregulation of the E-cadherin binding 
integrin, CD103 (43) (Figure 1). Since E-cadherin is expressed 
on epithelial cells, including keratinocytes, it is likely that the 
upregulation of CD103 facilitates the retention of T cells in the 
epidermis (44). TGF-β signaling also downregulates the T-box 
family protein T-bet and eomesodermin, a process of which 
facilitates TRM cell development (45). CCR8 expression is also 
upregulated following the migration of T  cells into the epi-
dermis by yet unidenti�ed factors derived from keratinocytes.  
It appears likely that this chemokine receptor also facilitates  
the maintenance of cells within the epidermis (46, 47). Finally, 
there may also be a role for CXCR6 in the maintenance of TRM 
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in the epidermis since its absence results in a marked reduction 
in the number of skin CD8+ TRM (42).

CD8+ TRM cells in the epidermis display a unique dendritic 
morphology (16, 35, 48), which is distinct from that of LC 
and DETC (20, 48). Epidermal CD8+ TRM cells are located in 
the basal layers of the epidermis and slowly but continuously 
migrate between keratinocytes, while LC and DETC are mostly 
immotile (16, 48). Importantly, Zaid et al. have demonstrated a 
substantial decrease in the numbers of DETC and a concomitant 
increase in the numbers of CD8+ TRM cells at the site of infection, 
indicating the strict competition between DETC and CD8+ TRM 
cells for the epidermal niches (16) (Figure  1). Furthermore, 
both of these populations also depend on locally produced 
homeostatic signals, such as IL-15 and AhR ligands, for their 
long-term maintenance (16, 30, 32, 43). �ese common features 
may explain the stable persistence of CD8+ TRM cells within the 
epidermal niches for many years without repopulation by DETC 
(16). Furthermore, the relatively higher numbers of αβ T cells, 
as compared to γδ T cells, in the human epidermis might be a 
consequence of the persistent occupation of epidermal niches 
by CD8+ TRM cells generated by prior infection and/or in�am-
mation (20). It is important to note here that the capacity of 
epidermal TRM niches are extremely large (approximately 7 × 103 
T cells/cm2) (49). �e high capacity of epidermal niches allows 
the de novo establishment of TRM cells with di�erent speci�cities 
without displacement of pre-existing TRM cells a�er rechallenge. 
Importantly, this allows TRM cells with multiple speci�cities to 
be stably maintained in the epidermis (49). By contrast, γδ 
T cells are displaced by CD8+ TRM cells even when the number 
of TRM cells relatively low, suggesting an occupational advantage 
for CD8+ TRM cells over γδ T  cells in the epidermal niches. 
Finally, since the environment in which epidermal CD8+ TRM 
cells persist has limited access to blood-derived signals as well 
as nutrients, these cells uniquely express fatty acid transporters, 
Fabp4 and Fabp5, and rely on extracellular fatty acid for their 
survival (50).

�e dermis that underlies the basement membrane is com-
posed mainly of �broblasts and the extracellular matrix (a net-
work of collagen and elastin �bers). Heterogeneous populations  
of immune cells, including αβ T cells, γδ T cells, subsets of DC, 
macrophages, mast cells, and ILC are all found in the dermis (21). 
�e dermis also contains both lymphatic and blood vessels, pro-
viding a source of TEM cells that are transiting through the tissues.

In contrast to the situation in the epidermis, most αβ T cells 
located in the dermis are CD4+ T cells, including both conven-
tional T cells and Treg (14, 35, 51, 52). �ese cells display an 
amoeboid morphology and tra�c rapidly through the dermis 
(35). Long-period parabiosis experiments (12–16 weeks) using 
naïve animals has revealed that a large fraction of CD4+ T cells 
recruited from the circulation acquire the expression of CD69 
and CD103 following entry into the skin (14). Of note, TRM-
phenotype CD4+ T cells in the dermis are tissue-circulating TEM 
cells despite their relatively slow turnover rate, as the ratio of 
host and partner CD4+ T cells was equilibrated in these para-
biosis experiments (14). �ese CD4+ T cells form clusters with 
CD11b+ APC around hair follicles (14) (Figure 1). �e numbers 
of hair follicle-associated clusters, as well as the numbers of 

CD4+ T cells within each cluster, are increased following local 
infection and/or in�ammation, indicating that tissue condition-
ing creates new dermal CD4+ T cell niches (14). CCL5 secreted 
from peri-follicular CD8+ T  cells promotes the formation of 
the CD4+ T cell clusters (14). In addition, IL-7 and IL-15 are 
predominantly secreted by unique population of keratinocytes 
in the hair follicles, helping to sustain T cell persistence within 
the cluster (23). Such unique structures are potentially identical 
to the classical inducible skin-associated lymphoid tissues that 
provide both spatial and physiological niches for the mainte-
nance of memory T cells (53).

Although local tissue instructions promote the formation 
of TRM in the absence of local antigen (37), recent studies 
have revealed that encounters with cognate antigen at the site 
of infection signi�cantly enhance the establishment of CD8+ 
TRM cells in the skin, presumably in the epidermis (54). While 
several cell-intrinsic mechanisms of TRM formation induced by 
an antigen-driven “second hit” are suggested (5), one certain 
outcome is the upregulation of CD69 (54). It has been estab-
lished that T  cells recruited to peripheral tissues upregulate 
sphingoshin-1-phosphate receptor 1 (S1P1), and sense the 
gradient of sphingoshin-1-phosphate (S1P) (55), which guides 
T cells to the draining lymphatics of the tissue. Surface expres-
sion of CD69 antagonizes the expression of S1P1 (56), thereby 
inhibiting the egress of T cells from the skin (57). Since lym-
phatic vessels are not found in the epidermis, it is likely that 
the second antigen hit and the resultant retention induced by 
CD69-mediated inhibition of S1P1 occurs in the dermis, and 
subsequently promotes the establishment of CD8+ TRM in the 
epidermis. In support of this concept, APC in the skin function 
as a gatekeeper for the development of CD8+ TRM cells, such that 
CD8+ T cells with distinct antigen speci�cities compete for APC 
as a source of second hit signaling, leading to the selection of 
dominant epitope-speci�c CD8+ T cells (58). �is leads to the 
reduced formation of CD8+ TRM cells speci�c for subdominant 
epitopes since these T  cells presumably fail to receive second 
antigen hit signaling and rapidly egress from the dermis. Such 
antigenic selection may be the underlying mechanism driving 
the accumulation of highly functional, melanocyte antigen-
speci�c CD8+ TRM cells in the vitiligo-a�ected skin (59, 60). It is 
important to note that transcriptional downregulation of Klf2, 
as well as its downstream target S1pr1 (which encodes S1P1), 
is also induced by several cytokines such as TGF-β, IL-33, and 
tumor necrosis factor (TNF), even in the absence of local anti-
gen (61). However, certain factors that enable the acquisition 
of a unique transcription pro�le de�ning TRM cells, including 
the upregulation of Hobit and Blimp1, have not been not fully 
elucidated (62, 63).

Gut, Intestine
�e intestinal mucosa consists of a single layer of intestinal epi-
thelial cells that overlies the lamina propria (LP), a thin layer of 
loose connective tissue. �e epithelium and LP are separated by a 
basement membrane and each provides a distinct immunological 
niche for the maintenance of TRM cells.

�e diverse populations of immune cells embedded within the 
intestinal epithelium are referred to as intestinal intraepithelial 
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FiGURe 2 | TRM niches in the in the intestine. Large numbers of CD8+ TRM cells and few numbers of CD4+ TRM cells are present in the intestinal intraepithelial 

lymphocyte (IEL) compartment. TGF-β is constitutively available in the intestinal epithelium and promotes the generation of TRM cells in this compartment by 

upregulating CD103 as well as Runx3. Either cognate antigen or inflammatory cytokines is required for upregulation of CD69 on epithelial TRM cells. Both  

TGF-β-dependent (CD103+) and independent (CD103−) populations of CD8+ TRM cells present in the lamina propria (LP). The latter form cluster with CX3CR1+ 

macrophages. Interferon (IFN)-α/β and IL-12 secreted by macrophages control the size of the cluster. TEM cells are passing through the LP. Orange and blue  

cells indicate CD8+ and CD4+ TRM cells, respectively, unless otherwise stated. Red lines indicate the representative niche factors that influence the maintenance  

of TRM cells. A blue line indicates the migratory route. A dashed line indicates potential impact of niche factors. Abbreviations: Ly, lymph vessel; Bl, blood vessel;  

Ag, antigen; neg, negative; TRM, tissue-resident memory T cells; TEM, effector memory T cells.
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lymphocytes (IELs). �e greatest concentration of IEL is located 
in the small intestine (SI) where there are approximately 10–15 
IEL per 100 epithelial cells. �is ratio of IEL to epithelial cells 
gradually decreases along the intestines, such that the colon 
hosts relatively few IEL (64). �e di�erences in the relative 
numbers of IEL in each intestinal compartment likely re�ects 
regional di�erences in the anatomy of the villi, the intestinal 
microenvironment (including microbiota), and the composi-
tion of epithelial cells (e.g., enterocytes, goblet cells, Paneth 
cells, enteroendocrine cells, and stem cells). Epithelial cells are 
a dynamic population and cells situated at the top of the villi 
typically die within 3–5 days and are continually replaced by new 
cells generated from the progenitor cells located in the crypt. 
Despite the short lifespan of epithelial cells, IEL are resident and 
do not recirculate (65).

Intraepithelial lymphocytes in the intestines are primarily 
T cells, although there is also a small population of cells that are 
negative for TCR, such as ILC-like cells (66). IEL T cells can be 

divided into two subsets, referred to as peripheral and thymic. 
Peripheral IEL (type a, induced or conventional) are derived from 
antigen-experienced CD8+ or CD4+ T cells that have homed to 
the epithelium. �ymic IEL (type b, natural or unconventional) 
express CD8α homodimers with either TCRαβ or TCRγδ, and 
migrate from the thymus to the epithelium shortly a�er birth 
(67). In mice, thymic IEL dominate in the SI while peripheral 
IEL dominate in the colon (64). �e overall ratio of thymic to 
peripheral IEL declines with age, although the total number 
of IEL remains relatively constant (67, 68), suggesting that the 
two types of IEL share the same spatial niche in the epithelium. 
However, there is a severe reduction in the numbers of peripheral 
but not thymic IEL in germ-free animals (69), suggesting that 
the physiological niches that maintain peripheral and thymic IEL 
must di�er in some way. �is review will focus on peripheral IEL.

Signi�cant numbers of antigen-speci�c TRM cells are established 
in the intraepithelial compartment following intestinal infections 
(70–72) (Figure 2). �e majority of these cells are CD8+ T cells, 
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although smaller numbers of CD4+ T cells are also observed (73). 
Interestingly, a large number of memory-like γδ T  cells is also 
generated following intestinal infection. However, these cells are 
rarely found in the IEL compartment, suggesting that CD8+ TRM 
cells but not γδ T cells are preferentially lodged in the intraepi-
thelial niches (74). Nearly all CD8+ TRM cells in this compartment 
express CD69 and CD103 (70, 71) and are scattered within the 
epithelium. Recruitment of e�ector cells to this site, including 
TRM precursors, is governed by the α4β7 and CCR9 integrins, 
both of which are upregulated on T cells, mainly in response to 
retinoic acid (a vitamin A metabolite) which is present during 
priming in the intestinal inductive sites (75). �e α4β7 integrin 
facilitates the extravasation of the cells from the venules in the LP 
(76, 77). CCR9 is required for T cell migration to the SI (78, 79), 
since its ligand, CCL25, is constitutively expressed by epithelial 
cells in the SI but not the colon (80).

As with thymic IEL, a process of tissue adaptation takes 
place following recruitment of peripheral CD8+ T cells into the 
epithelium. Speci�cally, the local environment promotes the 
di�erentiation of e�ector T  cells into TRM and facilitates their 
subsequent retention at that site. In this regard, TGF-β, which 
is constitutively available at the intestinal epithelium (81, 82) 
(Figure 2), induces the upregulation of CD103 on recent immi-
grants. Consistent with this, the lack of CD103 or the TGF-β 
receptor on T cells is correlated with a signi�cant defect in the 
accumulation of both peripheral and thymic IEL within the 
intestinal epithelium (71, 83–85). By contrast, overexpression of 
TGF-β results in increased proportion of thymic IEL in the SI 
(86), highlighting the non-redundant, regulatory role of TGF-β 
in the number of TRM cells retained in the intestinal epithelium. 
TGF-β signaling also induces the expression of Runx3 (87–89), 
which has been identi�ed as a master regulator of tissue resi-
dency (90). Although the precise role of Runx3 in retaining cells 
in the SI is not yet clear, it is known to promote the expression 
of CD8αα (88), which binds to the thymus leukemia antigen 
that is constitutively expressed on the intestinal epithelium (91). 
Interestingly, TGF-β-independent populations of TRM cells also 
accumulate in the IEL compartment during chronic infection 
with lymphocytic choriomeningitis virus (LCMV) (85). �ese 
cells do not express CD103 and are thought to represent recent 
arrivals that are recruited continually from the circulation upon 
activation with persistent viral antigens (85).

While CD8+ TRM IEL are associated with gut infection, they 
are also established following systemic infections (6, 83, 85, 90,  
92, 93), and their numbers are especially robust under lympho-
penic conditions (e.g., Rag−/−) (83, 93, 94). IEL generated through 
systemic immune responses exhibit canonical TRM phenotypes 
(CD69+ CD103+) despite the absence of TCR signaling (as deter-
mined by the lack of Nur77 expression) (83), indicating that cog-
nate antigen is not required for the upregulation of CD69 in the 
gut. In fact, some cytokines that can be secreted in the epithelium, 
such as IL-33, interferon-α/β (IFN-α/β), and TNF-α, are known 
to contribute to the antigen-independent upregulation of CD69 
(83). Nevertheless, the number of CD8+ TRM cells established in  
the intestinal epithelium following systemic priming is signi�-
cantly less than that generated by gut infection (71). �is is largely 
due to the relatively poor accumulation of memory precursor cells 

into the intestinal epithelium following non-intestinal infection 
(71). While signi�cant progress has been made in understanding 
gut T cell memory, the impact of infection-driven tissue condi-
tioning on the spatial as well as the physiological niches (local 
antigen and cytokine milieu) on the maintenance of TRM cells in 
the intestinal epithelium is largely unknown.

�e homeostatic cytokine IL-15 is constitutively produced by 
intestinal epithelial cells in response to signaling through MyD88, 
suggesting that there is a background level of stimulation by 
intestinal micro�ora (95). As with DETC in the skin epidermis, 
the development and maintenance of thymic IEL depends on 
local signaling via IL-15, as lack of this signaling results in the 
loss of more than 90% of thymic IEL (96–98). Although it has 
been proposed that IL-15 produced by in�amed mucosal tissues 
accelerates the accumulation of circulating e�ector CD8+ T cells 
in the SI through the upregulation of the mammalian target of 
rapamycin and T-bet (93), survival of CD8+ TRM cells in most 
peripheral tissues, including the SI (both in the epithelial com-
partment and LP), is independent of IL-15 (99). �is suggests that 
the physiological niches inhabited by peripheral and thymic IEL 
exhibit di�erent characteristics.

�e LP harbors the vast majority of immune cells in the body. 
�ese cells are located in organized lymphoid structures, termed 
gut-associated lymphoid tissues, such as Peyer’s patches (PP), 
cecal patches, colonic patches, cryptopatches, and solitary iso-
lated lymphoid tissues (100). Large numbers of T cells are present 
throughout the LP. T-cell homing to small intestinal LP is medi-
ated by integrin α4β7 and CCR9, whereas the orphan G-protein-
coupled receptor 15 is required for migration of T cells to the large 
intestinal LP (101). Once in the relevant gut site, T cells receive 
instructive signals for their full di�erentiation into TRM cells. Note 
that a stable population of memory-like γδ T cells is established 
in the LP, suggesting limited competition of anatomical niches 
between TRM cells and γδ T cells in this compartment (74).

In contrast to memory T  cells in the IEL compartment, 
memory cells located in the LP include both TEM and TRM 
(Figure 2). �is is because the LP contains both lymphatic drain-
age and blood supplies (65) and suggests that TRM cells in this 
tissue need to continually resist tissue egress signals for their 
long-term maintenance. CD69 is expressed on a large proportion 
of T cells in the LP (13, 65, 70, 71, 73, 83, 85), and plays a key 
role in antagonizing S1P1-mediated tissue egress. As with the IEL 
compartment, T cells in the LP express CD69 despite the absence 
of cognate antigen (83). In support of this, parabiosis experi-
ments have revealed that although partner-derived cells include 
sizable proportion of CD69− cells (which represent transients in 
the LP), nearly 80% of CD8+ T cells recruited from the partner 
become CD69+ following arrival (65), indicating the in�uence of 
constitutively secreted in�ammatory cytokines in this tissue (83). 
However, the ratios of host and partner CD8+ T cells in the LP as 
well as the epithelium never become fully equilibrated following 
parabiosis, indicating the limitation of local instructive signaling 
for the formation of TRM cells in those tissues under steady-state 
conditions (65).

Following recruitment to the LP, T cells downregulate integ-
rin α4β7, indicating that integrin α4β7 is not required for their 
retention (83). Instead, a proportion of CD8+ T cells upregulate 
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CD103 in a TGF-β-dependent manner (70, 71, 83, 85). �ese 
cells form a resident population and are scattered throughout the 
LP (70) (Figure 2, shown as CD103+ CD8+ TRM). Interestingly, 
CD103− cells are also found to be resident in the LP (these cells 
are refractory to depletion by a systemically introduced antibody) 
(70), suggesting the presence of CD103-independent retention 
signals. �ese cells form clusters with CX3CR1+ macrophages 
primarily located under the crypts and the size of this popula-
tion is independent of TGF-β, but is controlled by type I IFN 
and IL-12 (13) (Figure  2). Since these cytokines are provided 
mainly by monocyte-derived CCR2+ macrophages that have 
been recruited in response to local infection, and Cxcr3-de�cient  
CD8+ T cells fail to form clusters (13), it is reasonable to con-
clude that infection-induced tissue conditioning facilitates the 
development of CD103− CD8+ TRM population. However, the 
accumulation of CD103− CD8+ TRM cells is also evident even in 
the absence of intestinal infection (83, 85), suggesting the pres-
ence of additional niches that sustain CD103− CD8+ TRM cells in 
the infection/in�ammation-inexperienced LP.

Female Reproductive Tract (FRT)
�e mucosal surfaces of FRT can be divided into two types, 
referred to as type I and type II. �e upper FRT, such as endome-
trium and endocervix, expresses type I mucosal surfaces, which 
are covered by a single layer of columnar epithelial cells linked by 
tight junctions. �e lower FRT, such as the vagina and ectocervix, 
expresses type II mucosal surfaces, which are covered by multiple 

layers of non-keratinized strati�ed squamous epithelium binding 
to a basement membrane (102). Mucosa-associated lymphoid 
tissues (MALT) are found in the stromal layer (lamina propria) 
and the submucosa of the upper but not the lower FRT (103) 
(Figure 3). Migration of e�ector, as well as memory, T cells into 
the mucosa of the FRT is signi�cantly restricted in the absence 
of local infection and/or in�ammation (104). Once recruited, 
however, TRM cells are formed and maintained in both compart-
ments under the control of local environmental cues.

�e endometrium is a highly dynamic tissue in women.  
It undergoes remarkable cyclical changes of growth, di�erentia-
tion, and degeneration under the control of the hormones estro-
gen and progesterone. �e spontaneous decidualisation of the 
endometrial epithelium and stroma, which causes menstruation, 
and subsequent re-epithelization of endometrium periodically 
occurs (105), suggesting that limited, if any, anatomical niches 
are available for the long-term maintenance of TRM cells. Yet, 
numerous immune cells, including memory T cells, are found 
along the stroma/submucosa of the upper FRT (106, 107). 
During the proliferative phase of the menstrual cycle, uterine 
immune cells become condensed, leading to a formation of 
lymphoid aggregates (107). �ese lymphoid aggregates, which 
are presumably identical to the MALT described above, mainly 
consist of a B cell core surrounded by memory CD8+ T cells and 
macrophages (107, 108) (Figure 3). �e size of the MALT var-
ies with the phase of the menstrual cycle, rising to 3,000–4,000 
cells during the secretory phase and declining to 300–400 cells 
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during the proliferative phase (109). �is implies that there must 
be endocrine regulation of the TRM niches. It is also known that 
CD8+ cytotoxic T lymphocyte (CTL) activity is suppressed dur-
ing the secretory stage, presumably to minimize the recognition 
and rejection of allogenic sperm and the semi-allogenic fetus 
(107). �us, the deployment of memory CD8+ T cells within the 
MALT in the uterine stroma/submucosa but not epithelial layer 
is organized to maintain reproductive function.

Recently, intravital imaging of the perimetrium and myome-
trium of the fallopian tubes has demonstrated the establishment 
of antigen-speci�c CD8+ TRM cells in the upper FRT following 
resolution of virus infection at the uterus (110). �e velocity of 
CD8+ TRM cells in the uterine stroma (~10 μm min−1) is similar 
to that of CD8+ TCM cells in the LN and is signi�cantly higher 
than that of CD8+ TRM in the skin epidermis (~2  μm min−1)  
(35, 110, 111). Since uterine CD8+ TRM cells display poor den-
dritic morphology, as compared to skin CD8+ TRM cells, and are 
found in a site where immune cells are present at relatively high 
density (35, 110, 112), it is likely that the CD8+ TRM cell niches 
in the upper FRT exist within the MALT in the uterine stroma/
submucosa. Furthermore, an experimental Chlamydia vaccine 
that promotes antigen presentation by immunogenic CD11b+ 
CD103−, but not tolerogenic CD11b− CD103+ DC, elicits stable 
CD4+ TRM cell populations in the upper FRT. �ese cells provide 
signi�cant protection against subsequent Chlamydia infection 
(113). �e integrins α4β1 and α4β7 are involved in the migration 
of e�ector CD4+ T  cells to this site as blockade of integrin α4 
blocks uterine T cell homing during the early phase of infection 
(113–115). Large numbers of CD4+ T cells are recruited to the 
uterine stroma/submucosa a�er local infection with Chlamydia  
(116) and form clusters that also include small numbers of 
B cells and CD8+ T cells (117, 118). �is indicates that CD4+ TRM 
cells in the upper FRT are also maintained in MALT structures 
(Figure 3). B cells in the cluster also act as APC to CD4+ T cells, 
leading to the selection and maintenance of highly protective 
CD4+ TRM cells (108, 119).

�e immune cell composition of the lower FRT (type II epi-
thelia) is basically similar to that of the skin: LC and γδ T cells 
survey the epithelium, while heterogeneous subsets of DC and 
macrophages survey the LP (103). Although the lower FRT does 
not contain MALT in the steady state, both CD8+ and CD4+ TRM 
cells can be established in the lower FRT following intravaginal 
infections, such as those mediated by herpes simplex virus type 
2 (HSV-2). Notably, a�er the clearance of the infection, memory 
CD4+ T cells, B cells, DC, and macrophages form clusters beneath 
the epithelial layer of the vagina (120) (Figure 3). CD4+ TRM cells 
are predominantly distributed within the clusters, and their 
structures are sustained by a constitutively produced cytokine/
chemokine network. IFN-γ secreted by CD4+ TRM cells drive 
CCL5 production by macrophages which attracts and retains 
CD4+ TRM cells within the cluster (15). Residual antigen may 
be involved in driving CD4+ TRM cell production of IFN-γ (15). 
Although CD4+ TRM cells are crucial for full protection against 
HSV-2 infection (15), establishment of CD4+ TRM cells in the 
vaginal mucosa increases susceptibility to subsequent human 
immunode�ciency virus infection due an increase in the number 
of susceptible target cells (121, 122).

As with the skin epidermis, antigen-speci�c CD8+ TRM cells 
reside within the epithelium and LP of the vaginal mucosa 
(123–125). TRM cells in the vaginal LP are predominantly found 
in clusters (15). Migration of e�ector CD8+ T cells to the vaginal 
epithelium largely depends on CXCR3, a receptor for in�amma-
tory chemokines CXCL9 and CXCL10 (126). IFN-γ secreted by 
arriving CD4+ T cells triggers production of those chemokines 
at the site of infection, demonstrating the importance of CD4+ 
T  cells in promoting anti-viral CD8+ T  cell responses in the 
FRT (126). Topical administration of these chemokines can 
e�ectively recruit circulating e�ector, but not memory, CD8+ 
T  cells primed at a remote site to the genital mucosa even in 
the absence of cognate antigen, a strategy known as “prime and 
pull.” �is leads to the establishment of long-term populations 
of CD8+ TRM cells in the vagina (127). Interestingly, although 
e�ector CD4+ T cells are also recruited to the genital mucosa fol-
lowing prime and pull strategies, memory CD4+ T cells are not 
retained for the long term within the vagina (127), implying that 
the maintenance of CD4+ TRM niches (the clusters in the vaginal 
LP) relies on local antigen. By contrast, and similar to the skin 
CD8+ TRM cells that populate epidermal niches for DETC (16), 
CD8+ T cells recruited to the vaginal mucosa may occupy unique 
niches that were originally occupied by other resident cell types, 
such as γδ T cells in the epidermal layer of the vagina. Distinct 
from the skin CD8+ TRM cells, however, the development and 
maintenance of CD8+ TRM cells in the FRT is IL-15-independent 
(99). Currently, the factors that regulate the maintenance of  
TRM cells in the FRT are largely unknown.

Upper Respiratory Tract (URT) and Lower 

Respiratory Tract (LRT)
�e respiratory tract is divided into two compartments; the 
URT, comprised of the nasal cavities, pharynx, and larynx, and 
the LRT, comprised of the trachea, primary bronchi, and lungs. 
Although most studies have largely focused on TRM cells in the 
LRT, most common airborne pathogens in the human primar-
ily infect the URT. �us, understanding the TRM niches in both 
compartments is key for the development of vaccines that confer 
protection against respiratory pathogens.

�e mucosal surface of the URT is comprised of pseudostrati-
�ed ciliated columnar epithelial cells and an underlying LP.  
In mice, nasal-associated lymphoid tissues (NALT), the murine 
equivalent of the tonsils in human, are embedded directly in the 
submucosa at the base of the nasal cavities (128). NALT is con-
sidered to be a mucosal inductive site for humoral and cellular 
immune responses in the URT since it hosts B cell follicles sur-
rounded by T cell areas (128, 129). In contrast to the LN, where 
naïve CD4+ T cells predominate over memory T cells, the NALT 
is surveyed primarily by memory CD4+ T  cells, presumably 
resident type, suggesting that it is optimized to initiate memory 
recall responses, rather than initiate primary T  cell responses 
(130). In contrast to memory CD4+ T cells in the NALT, CD8 
TRM cells tend to be distributed throughout the nasal turbinate 
and septum, although some antigen-speci�c CD8+ TRM cells 
are also established in the NALT following recovery from a 
respiratory virus infection (131). In this regard, the distribution 
of T cells in the URT is similar to that in the skin and the FRT, 
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where CD8+ TRM cells are widely distributed in the epithelial 
tissues and CD4+ TRM cells form clusters in the LP.

While the majority of CD8+ TRM cells in the nasal tissues 
express CD103, a small fraction of the cells are CD103 nega-
tive (131). �is di�erential expression of CD103 may re�ect the 
localization of CD8+ TRM cells within the epithelium and LP 
(132). Despite the high proportion of CD103+ cells in the URT, 
the di�erentiation of CD8+ TRM cells in the nasal tissues does 
not appear to be dependent on local signaling through TGF-β 
and cognate antigen (43, 131, 133). �is is in stark contrast to 
the LRT where both of these factors are absolutely required 
for the establishment of CD8+ TRM cells (134, 135). �us, the 
local instructions required for the di�erentiation of CD8+ TRM 
cells in the nasal mucosa are distinct from those in the LRT. 
Furthermore, the number of CD8+ TRM cells in the nasal tissues 
is relatively stable (there was no visible decline in number of 
these cells at least 3 months post-infection), whereas there is a 
signi�cant decline in number of these cells in the LRT (lung) 
(131). �is suggests that the nature of the anatomical niches that 
maintain CD8+ TRM cells di�er between URT and LRT. Given the 
structural similarity between nasal mucosa and other mucosal 
tissues and the fact that the nasal tissues retain γδ T cells in the 
epithelium (136), it is tempting to speculate that CD8+ TRM cells 
in the nasal tissues may displace γδ T  cells from their niches, 
potentially enabling their long-term survival.

�e mucosal surfaces of the trachea and primary bronchus 
are basically similar to that of the nasal mucosa except for the 
presence of hyaline cartilage and a poorly developed venous 
plexus (the latter presumably helps avoid accidental su�oca-
tion caused by tracheal hemorrhage). Tracheal epithelial cells 
are a major target for several viral infections, such as seasonal 
in�uenza virus, and a recent study has demonstrated that large 
numbers of antigen-speci�c e�ector CD8+ T cells are recruited 
to the tracheal mucosa during the acute phase of the infection 
(137). By contrast, relatively few CD4+ T cells are recruited to 
the tracheal mucosa (as compared to the LRT) during the acute 
phase of infection. �is suggests that there are distinct sets of 
homing signals in the mucosa of the trachea and LRT (137). 
Although establishment of CD8+ TRM cells in the trachea was not 
determined in this study, CD8+ T cells were still detectable in the 
trachea following the resolution of an in�uenza virus infection 
(day 14), suggesting that some of these cells may reside in the 
tracheal epithelium as TRM.

�e mucosa of the LRT is covered by pseudostrati�ed ciliated 
epithelium (bronchiole) and columnar epithelium (terminal 
bronchiole to alveoli). A relatively thin interstitium underlies 
the epithelium and hosts both blood and lymphatic vessels. 
T cells in the LRT reside in at least two distinct compartments: 
the lung interstitium and the lung airways. T  cells resident in 
the lung interstitium can be identi�ed, and distinguished from 
circulating T  cells, by intravenous labeling with an anti-T  cell 
antibody (138). T  cells in the lung airway are those that are 
collected by bronchoalevolar lavage taken via the trachea (139). 
Most of these cells are derived from the LRT (localized in the 
epithelial layer), although a few cells are also derived from the 
URT (trachea). CD8+ T  cells exhibiting memory phenotypes 
can be detected in the LRT of naïve animals or animals that 

had previously been infected or vaccinated at sites distant from 
the lung (6, 43, 50, 140–143). It is believed that there is a basal 
level of in�ux that enables continual surveillance of the lung by 
antigen-experienced CD8+ T cells in the “lung-unconditioned” 
animals. For instance, some blood-borne cells are recruited to 
the airway under steady-state condition and CXCR3 expressed 
on antigen-experienced CD8+ T cells is known to be involved in 
this process (140). Once recruited to the lung airways, T cells do 
not return to the interstitium or the circulation unless there is  
an infection or an in�ammatory condition (144).

Upon pulmonary infection, epithelial cells, lung-resident 
populations of immune cells in the interstitium and airway 
epithelium (such as macrophages, DC, and ILC) cooperatively 
promote acute in�ammation (145). Although the full array of 
adhesion molecules and chemokine receptors that speci�cally 
guide T cells to the lung has not yet been determined, it is known 
that CXCR3 is important for the recruitment of e�ector CD8+ 
T cells to the epithelial layer of the interstitium as well as the 
airway (146). In addition, local in�ammation-induced upregu-
lation of CD69, and the activation of integrin α1β1 (very late 
antigen-1, CD49a) promotes transient localization and retention 
of CD8+ T cells in the lung interstitium (134, 147). As with the 
other mucosal tissues, local TGF-β signaling is required for the 
expression of CD103 on CD8+ T  cells in the lung (135, 148), 
which then promotes localization of CD8+ T cells along the walls 
of large airways (149). IL-15 [produced primarily by CD11b+ 
macrophages in the interstitium during the early phases of a res-
piratory infection (150)] also facilitates the migration of e�ector 
CD8+ T cells to the lung (151). However, IL-15 is dispensable 
for the di�erentiation and maintenance of CD8+ TRM cells in  
the lung (152).

Following the resolution of infection, substantial numbers of 
memory CD8+ T cells are maintained in both the lung interstit-
ium and the airways for several months (153). We have recently 
shown that memory CD8+ T cells in both of these sites comprise 
a mixture of two distinct memory T cell populations: a major, 
stable population of TRM cells, and a minor, dynamic population 
of TEM cells that is continuously replenished by new cells from 
the circulation (134) (Figure 4). We also identi�ed speci�c ana-
tomical niches for CD8+ TRM cells around the bronchiole, which 
are temporarily created at sites of regeneration following tissue 
injury (134). We termed these sites repair-associated memory 
depots (RAMD). As with the epithelial layers in other mucosal 
surfaces, CD8+ TRM cells in the RAMD do not form clusters or 
lymphoid-like structures, but instead accumulate to relatively 
high densities in speci�c niches. By contrast, CD8+ TEM cells are 
widely, but sparsely, distributed throughout the una�ected lung 
interstitium. �is rigid compartmentalization of memory CD8+ 
T cell populations in the lung suggests that the two populations 
are maintained by separate signals. It is also important to note 
that residual antigen-driven reactivation in the mediastinal LN 
plays a role in driving the continual recruitment of CD8+ TEM 
cells to the lung for several months a�er infection (154–157). 
Local instructive signals induced by pulmonary infection, such 
as IL-33 and TNF, presumably also contribute to the transient 
retention of circulating CD8+ TEM cells in the lung interstitium 
(157). A more detailed analysis of the factors and mechanisms 
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that regulate the continual recruitment of memory CD8+ T cells 
to the lung has been presented in our previous review (5).

Interestingly, in our parabiosis experiments we also detected 
minimal, if any, conversion of CD8+ TEM cells into CD8+ TRM 
cells in the lung for several months post-infection, a time period 
when TRM cells still comprise a large proportion of memory  
CD8+ T cell pool in the lung (134). �ese studies further dem-
onstrated that CD8+ T  cells recruited to the lung interstitium 
a�er the peak of the cellular immune response (around day 
10 post-infection) are excluded from the RAMD, and fail to 
form TRM cells (134). �ese data clearly demonstrated that TRM 
niches in the lung interstitium are occupied at the peak of tissue 
damage, but are no longer available for latecomer CD8+ T cells.  
In the skin and FRT sections, we noted that forced recruitment of  
CD8+ T  cells to the epithelial tissues by antigen-independent 
in�ammation or topical administration of chemokines results 
in the establishment of TRM cells (prime and pull) (37, 127). 
Importantly, however, we and others have demonstrated that 
this prime and pull strategy does not work for the establishment 
of CD8+ TRM cells in the lung, as CD8+ T cells recruited to the 

lung by antigen-independent in�ammation in the lung com-
pletely disappear a�er the in�ammation in the lung has resolved  
(134, 158). �e failure of the prime and pull strategy in the lung 
is likely due to the structural di�erence between the lung and 
other mucosal/surface tissues. For instance, skin CD8+ TRM cells 
can occupy DETC niches in the epidermis for their long-term 
survival, whereas normal lung mucosa does not exhibit such 
preformed niches. Administration of cognate antigen in com-
bination with the prime and pull strategy results in the de novo 
creation of the RAMD, and signi�cantly increases the numbers 
of antigen-speci�c, but not antigen-unrelated, CD8+ TRM cells in 
the lung interstitium and airways (134). �is indicates that local 
antigen plays at least two distinct roles: the creation of damage-
associated niches by generating antigen-bearing target cells in 
the lung in the presence of antigen-speci�c CD8+ T cells in the 
circula tion, and the antigen signaling necessary for the establish-
ment, and/or survival, of TRM (159). Following the establishment 
of TRM, Notch signaling may be a potential niche factor that regu-
lates the maintenance of TRM cells in the lung, as the lack of Notch 
signaling results in the loss of CD103+ CD8+ TRM cells from the 
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lung (160). Although cells that express Notch ligands are not yet 
identi�ed in the RAMD, cell to cell contact seems important for 
sustaining TRM cells in the lung. It is noteworthy that the size 
of the RAMD shrinks over time as tissue repair proceeds and 
tends to disappear several months post-infection (134). Such a 
transitional appearance of RAMD may account for the relatively 
shorter longevity of CD8+ TRM cells in the lung (149). Recently, 
Zhou et al. have reported that the addition of local 4-1BB signal-
ing during recall (4-1BB is expressed mainly on memory but not 
naïve T cells) improves the generation of long-lived CD8+ TRM 
cells expressing IL-7 receptor (IL-7R)α (161), suggesting that 
IL-7 plays a key role in the maintenance of CD8+ TRM cells in the 
lung. It will be interesting to determine whether these cells can 
survive outside the RAMD.

In contrast to the lung interstitium, the histological nature 
of putative CD8+ TRM niches in the lung airways remains 
unclear. It has long been believed that the numbers of memory 
CD8+ T  cells in the lung airways are maintained by the 
continual recruitment from the circulation. Resident cells at 
this site are cleared by phagocytic cells or removed through 
mucociliary clearance, resulting in a relatively short half-life 
(~2  weeks) (144). Surprisingly, our parabiosis experiments 
have demonstrated no evidence for the continual replacement 
of host memory CD8+ T cells in the lung airways by CD8+ TEM 
cells derived from the partner. Since it is unlikely that memory 
CD8+ T cells can persist for long within the harsh airway envi-
ronment, we assume that cells in the airways are continually 
replenished by CD8+ TRM cells from the RAMD (interstitium) 
but not by CD8+ TEM cells from the circulation. �us, the major 
source of CD8+ T  cells in the lung airways may be RAMD 
located underneath the bronchoalveolar walls (Figure 4).

In contrast to CD8+ TRM cells, most CD4+ TRM cells in the lung 
are found in B cell follicles and are surrounded by T cell areas 
(134, 162–164) (Figure 4). Such lymphoid-like structures have 
been termed inducible bronchus-associated lymphoid tissues 
(iBALT) and are the primary niches for the maintenance of lung 
CD4+ TRM cells. �e factors regulating the development of iBALT 
are reviewed elsewhere (165). Several other physiological niches 
for the generation and maintenance of lung CD4+ TRM cells have 
also been reported. As with the CD8+ TRM cells, local antigen also 
plays a role (163), as late antigen recognition at day 5–8 post-
infection, which has been termed a “memory check point,” is nec-
essary for the formation of memory CD4+ T cells in the lung and 
spleen (166). Antigen reactivation of the cells triggers autocrine 
IL-2 signaling, which prolongs the survival of CD4+ TRM cells by 
upregulating the IL-7Rα (166–168) and sustains the homeostasis 
of lung CD4+ TRM cells (162, 164). Interestingly, IL-15 signaling, 
as opposed to IL-2 signaling, can generate a separate but similar 
cohort of highly functional and protective CD4+ TRM cells in the 
lung (169). As with the CD8+ TRM cells, increased transcription 
levels of Notch signaling-associated molecules are observed in 
lung CD4+ TRM cells, suggesting the involvement of Notch signal-
ing for the maintenance of lung CD4+ TRM cells (170).

Salivary Gland (SG)
�e SGs are exocrine epithelial tissues that secrete saliva into 
the oral cavity. Humans and rodents have at least three pairs of 

major SGs (parotid, sublingual, and submandibular) and each 
gland has secretory units composed of an acinus, myoepithelial 
cells, and a duct (171). SGs also function as an e�ector site for  
IgA-mediated humoral immune responses that protect oral 
surfaces (172, 173).

It is well known that the SGs can be a target of a variety of 
bacterial as well as viral infections, such as mumps and cyto-
megalovirus (CMV). In the case of CMV, the virus is able to 
establish latent infection in the SGs and is able to evade CD8+ 
T  cell immunity by downregulating MHC class I molecules 
(174). Virus-speci�c CD4+ T cells can control viral production, 
but are not able to eliminate latently infected cells (175, 176) such 
that persistent virus is selectively sequestered in the vacuoles of 
glandular acinar epithelial cells (177, 178). In latently infected 
individuals, resident populations of antigen-speci�c CD8+ and 
CD4+ TRM cells are established in the SGs (179, 180) (Figure 5). 
However, their phenotypes, localization, and the local cues 
regulating their di�erentiation into TRM, di�er signi�cantly (181). 
CD4+ TRM cells are located predominantly in the stroma of the 
SGs and their establishment depends on local antigen (179), 
presumably due to the upregulation of CD69 that antagonizes 
S1P1-medaited tissue egress (181). By contrast, CD8+ TRM cells 
express CD103, and localize predominantly within the epithe-
lium of the acini and ducts (179, 180) (Figure 5). Local TGF-β 
signaling in the SGs is required for upregulation of CD103 on 
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CD8+ TRM cells and their localization into the epithelium (179, 
180). Because CMV downregulates MHC class I molecules, 
particularly in infected acinar glandular epithelial cells in the 
SGs, local antigen does not appear to be required for the forma-
tion of CD8+ TRM cells in the SGs (179). Indeed, virus-speci�c 
CD8+ T cells can be established in the SGs even in the absence of 
virus infection in this tissue (6, 182, 183). Furthermore, ongoing 
presentation of late antigens by non-hematopoietic cells in the 
LN or by virus-uninfected APC (via cross-presentation) during 
CMV infection results in substantial and sustained expansion of 
antigen-speci�c CD8+ T cells in the circulation, a process known 
as memory in�ation (184–187). Some of these memory CD8+ 
T cells are also converted into TRM cells in the SGs on a continual 
basis (180). Blockade of CXCR3, or the genetic deletion of either 
integrin α4β1 or E-cadherin on CD8+ T cells reduces the accu-
mulation of CD8+ TRM cells in the SGs (182, 183, 188), suggesting 
that these molecules promote the migration of circulating CD8+ 
T cells to the glandular epithelium. In contrast to the inability of 
the primary CD8+ T cell response to control the virus infection, 
CD8+ TRM cells resident in the SGs can confer protection upon 
recall by eliminating CMV infected non-epithelial cells, where 
CMV fails to achieve complete downregulation of MHC class I 
molecule (179).

Non-Barrier Tissues
Brain
Owing to the presence of the blood–brain barrier (BBB), the 
blood–cerebrospinal �uid (CSF) barrier (BCSFB), and the 
CSF–brain barrier, the central nervous system (CNS) is regarded 
as an immune privileged site with severely limited ingress 
of blood-borne T  lymphocytes. Relatively few, if any, T  cells  
are present in the healthy brain parenchyma under non-
in�ammatory conditions (189). Consequently, the aberrant 
accumulation of T cells in the brain parenchyma has generally 
been considered to be a pathogenic condition. However, it is 
now becoming clear that the few peripheral T  cells present 
in the brain in the absence of in�ammation play key a role in 
surveying the CNS and keeping the infectious pathogens in 
check (190), as the lack of these cells can result in opportunistic 
infections in the CNS (191).

�e choroid plexus (CP) is recognized as a major gateway 
for peripheral T  cell access to the CNS (192, 193). �e CP is 
comprised of fenestrated blood capillaries lacking endothelial 
tight junctions (192). �us, the barrier properties of the BCSFB 
at this site rely only on the monolayer of epithelial cells intercon-
nected by tight junctions—a structure permissive for immune 
cell transit (192). Consequently, around 150,000–750,000 
immune cells are present in the CSF of healthy individuals, and 
more than 90% of the T cells present are antigen-experienced 
(193). Recent studies have identi�ed a lymphatic vessel network 
lining the dural sinuses that drain CSF and allow the transit of 
immune cells from the adjacent subarachnoid space and brain 
interstitial �uid to the cervical LN (194, 195). �is implies that 
there is the continual tra�cking of TEM cells between CNS (e.g., 
meninges and FSC) and the circulation (196). Nevertheless, 
the brain parenchyma essentially lacks lymphatic vessels and is 
mostly devoid of T cells under steady-state conditions.

Upon infection with neurotropic pathogens, antigen-speci�c 
T cells in�ltrate the subarachnoid spaces of the meninges as well 
as the perivascular spaces of the parenchymal post-capillary 
venule, where specialized APC reside (197, 198) (Figure  6). 
T cells are then activated to proliferate and produce cytokines 
and chemokines in the infected meninges (199–201). �is 
results in local in�ammation, which subsequently disrupts 
vascular tight junctions and the glia limitans, allowing in�l-
tration of T  cells into the parenchyma (190, 198) (Figure  6). 
During this process, the balance of local chemokine production 
regulates the transmigration of circulating T cells into the brain 
parenchyma (202). In brief, CXCL12 is constitutively expressed 
on the basolateral surface of endothelial cell layer in the CNS 
and is also upregulated during in�ammation, which promotes 
CXCR4+ T-cell recruitment to, and retention within, the perivas-
cular space (203, 204). It is only a�er the local concentration of 
CXCL12 declines that e�ector T cells are able to migrate into 
the brain parenchyma in response to in�ammatory chemokines, 
such as ligands for CXCR3 (205, 206) and CCR5 (207, 208). 
In the case of neuroin�ammation associated with experimental 
autoimmune encephalomyelitis, the CXCL10–CXCR3 axis also 
functions to retain T cells within the perivascular space presum-
ably due to di�erential in�ammatory nature in the perivascular 
space (209).

After the clearance of a viral infection in the CNS, some of 
the antigen-specific CD8+ T  cells that had been recruited to 
the brain parenchyma differentiate into TRM cells and become 
resident in the site (133). The numbers of CD8+ TRM cells that 
establish residency depends on the pathogen and is presumably 
linked to the tropism and pathogenesis of each virus (210). 
For example, following intranasal infection with vesicular 
stomatitis virus, which infects nerve endings, CD8+ TRM cells 
form clusters at the site of infection, and are widely distributed 
throughout the brain parenchyma (133). By contrast, intrac-
erebral infection with LCMV, which infects non-neuronal 
cells in the brain (i.e., glial cells), CD8+ TRM cell populations 
are primarily established at brain surface structures, such 
as meninges and CP (around the ventricles or at anatomical 
borders between different brain regions) (211). In both cases, 
these CD8+ TRM cell populations are not pathogenic, but confer 
protection against reinfection even in the absence of circulat-
ing memory CD8+ T cells (211).

Regardless of their location and the nature of the infecting 
pathogens, brain CD8+ TRM cells can be divided into at least two 
populations based on their expression of CD103 (133, 211–214). 
It has been proposed that the initial upregulation of CD103 is 
largely dependent on the local reactivation of CD8+ T  cells 
with cognate antigen in the brain (it remains elevated following 
antigen clearance) (133). However, it is clear that Treg-derived 
TGF-β (215, 216), in�ammation, and other unde�ned local fac-
tors (213), can also upregulate CD103 on CD8+ TRM cells in the 
brain in an antigen-independent manner. �ese di�erent types of 
instructive signals may account for the distinct gene expression 
pro�les between CD103+ and CD103− CD8+ TRM cells (212, 214) 
and the superior e�ector functions for the former (213, 214). 
It is noteworthy that retroviral knockdown of CD103 impairs 
the accumulation of CD8+ TRM cells in the brain, indicating the 
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importance of CD103 for the recruitment and/or retention of 
CD8+ T cells early a�er infection, probably during transmigra-
tion through the BBB. Once recruited to the brain parenchyma, 
however, CD103 expression has no impact on the localization 
of CD8+ TRM cells (211), which may be attributed to the lack of 
E-cadherin expression in the adult brain (217). Taken together, 
it is possible that CD103 expressed on brain CD8+ TRM cells may 
re�ect the prior acquisition of local education but is not func-
tional as an adhesion molecule.

Programmed cell death protein 1 (PD-1) and CD69 are 
both expressed on CD8+ TRM cells in the brain (including both 
CD103+ and CD103− TRM) (213). Although the expression of 
both molecules on CD8+ TRM in non-CNS sites is generally 
dependent on repetitive antigen engagement (218), it has been 
demonstrated that both antigen and in�ammation are dispen-
sable for the sustained expression of PD-1 as well as CD69, and 
programmed cell death ligand 1 (PD-L1) in the brain (213). 
Furthermore, these cells remain functionally competent under 
these conditions (213). Interestingly, PD-1 expression on brain 
CD8+ TRM cells is found to be programmed, as environmen-
tal factors in the brain induce extensive demethylation of 
the Pdcd1 promoter (which controls PD-1 expression) (213).  
In addition, genetic deletion of either PD-1 or PD-L1 dimin-
ishes the establishment of brain CD8+ TRM cells (219, 220). 

�ese �ndings suggest that signaling through PD-1 is a part of 
the TRM di�erentiation program and may be attributed to the 
PD-1 signaling-induced upregulation of CPT1a, an enzyme 
necessary for fatty acid β-oxidation that promotes memory dif-
ferentiation (221, 222). Since upregulation of PD-L1 expression 
is evident on parenchymal cells (e.g., microglia, astrocytes, and 
oligodendrocytes) following di�erent types of viral infections 
in the CNS (223–227), it is reasonable to speculate that PD-1 
expression by brain CD8+ TRM cells maintains a tolerable bal-
ance between immunopathology and immune control of the 
virus in the CNS (190).

Reports of Ki-67 expression on brain CD8+ TRM cells following 
resolution of virus infection suggests that these cells are main-
tained by homeostatic proliferation (211). CD8+ TRM cells located 
at the brain surface structures more frequently express Ki-67 
and phosphorylated Stat5 than those in the brain parenchyma, 
suggesting that their anatomical location allows them access to 
the homeostatic cytokines, IL-7 and IL-15 (211). Furthermore, 
CD8+ TRM cells in the brain parenchyma are less responsive to 
homeostatic cytokines (212). Interestingly, CD8+ TRM cells in the 
brain parenchyma, especially the CD103+ population, are not 
able to survive outside their tissue niche. �e irreversible nature 
of tissue adaptation by CD8+ TRM cells in the brain parenchyma 
is very di�erent to the situation in the lung airway where CD8+ 
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TRM cells retain the plasticity to adapt to di�erent environmental 
niches for their survival (133, 228).

Liver
�e liver is a frontline immune tissue in which antigen-rich 
blood from the gastrointestinal tract enters via the portal vein 
and is passed through a network of sinusoids (the capillary 
bed of the liver). Antigens are e�ectively trapped by sinusoidal 
resident APC, such as Kup�er cells, liver sinusoidal endothelial 
cells (LSEC), and DC (229), and the relatively slow sinusoidal 
blood �ow promotes e�ective interaction of circulating immune 
cells with these APC (230). Fenestrated sinusoidal endothelium 
also enables the direct surveillance of hepatocytes by circulating 
T cells (231).

Recent studies have demonstrated that liver-resident 
memory CD8+ T cells are established in the sinusoid following 
systemic infection or vaccination (232) (Figure 7). Liver CD8+ 
TRM cells in mice are mostly CD69+, CXCR3+, and CXCR6+, but 
lack the expression of CD103, presumably re�ecting the lack of 
tight junctions in the sinusoidal endothelium. �e situation in 
humans is slightly di�erent since a subset of CD8+ TRM in the 
human liver are CD103+ in both healthy and hepatitis B virus-
infected individuals. In this case, the sequential exposure of 
the cells to IL-15 and TGF-β induces the development of liver-
adapted CD103+ CD8+ TRM cells (233). Interestingly, mouse 
liver CD8+ TRM cells exhibit an amoeboid shape and migrate 
with a crawling action along the sinusoids, whereas circulat-
ing CD8+ TEM cells exhibit a round shape and �ow rapidly in 
the sinusoid (232). Lymphocyte function-associated antigen 1 
(LFA-1) has been found to be crucial for the patrolling behavior 
of liver CD8+ TRM cells in the sinusoid (234). It is also known 
that Kup�er cells, macrophages, and LSEC in the sinusoid 
constitutively express CXCL16, a CXCR6 ligand (235–237), 
which attracts NK cells, another resident cell population in the 
sinusoid (238). �is suggests that liver-resident CD8+ T  cells 
and NK  cells share this chemokine niche (239), although 

competition between these populations for this niche has not 
been reported. Local antigen presentation is clearly important 
for the prolonged retention and establishment of CD8+ TRM 
cells in the sinusoid, as targeting antigen presentation to the 
hepatocytes in the presence of antigen-speci�c CD8+ T  cells 
in the circulation leads to the massive accumulation of CD8+ 
TRM cells in the sinusoid, a strategy termed as “prime and trap” 
(232). Since local antigen presentation in the liver can trigger 
the formation of tertiary immune structures known as intrahe-
patic myeloid cell aggregates for T  cell population expansion 
(iMATE) (240), it is tempting to speculate that such follicle-like 
structures provide special T cell niches in the liver, especially 
for CD4+ TRM cells.

Kidneys
�e kidney is a highly vascularized tissue that is crucial for �lter-
ing the blood and removing toxins from the body. Lymphocytes 
are relatively rare in healthy kidneys, although small numbers 
of resident immune cells such as DC, macrophages, and T cells 
can be found in the interstitium under steady-state condition 
(241, 242). CD8+ TRM cells can persist in extravascular renal 
compartments following direct (243) or regional infections with 
pathogens (6, 83, 99, 244), although their precise distribution 
is not clear (244). While the majority of renal CD8+ TRM cells 
express CD69, even in the absence of antigen, only small fraction 
of cells express CD103 (83, 243, 244). �e tissue-derived factors 
that in�uence the formation of renal CD8+ TRM cells are poorly 
de�ned. However, it has been reported that a lack of TGF-β 
signaling leads to reduction in the formation of CD8+ TRM cells 
in the kidney (244). �is has been attributed to the role of TGF-β 
signaling in promoting trans-endothelial migration of e�ector 
CD8+ T  cells by upregulating ligands for E- and P-selectin, 
including an activated form of CD43, and CXCR3 (244). IL-15 
is also known to be essential for the upregulation of CD43 (245), 
which may explain the defective establishment of renal CD8+ TRM 
cells in the absence of IL-15 (99).
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White Adipose Tissue (WAT)
While TRM generally function locally to guard the vulnerable sites 
from reinfection, an interesting exception is the establishment 
of antigen-speci�c CD8+ TRM cells in the WAT (246). �ese cells 
exhibit a high turnover rate and active metabolism and can augment 
recall responses generated by non-lipid compartments, suggesting  
that the WAT functions as a reservoir of TRM cells by improving 
their functional capacities and longevity. Notably, WAT TRM cells 
also remodel the physiological function of the WAT, as reactiva-
tion of adipose TRM cells lead to a sharp decrease in lipid synthesis.  
�is elevates the antimicrobial responses within the adipose tis-
sues, resulting in synergic immunological crosstalk between the 
tissue and the TRM cells. �us, it is of interesting to speculate that, 
beyond the role as the local sentinel, long-term maintenance of 
TRM cells may in�uence the homeostasis and function of each 
tissue, leading to both bene�cial and detrimental consequences.

Tumor
It has been reported that CD8+ T  cells with a TRM phenotypes 
(CD103+ and CD49a+) are present in solid tumors (247, 248). 
Large-scale transcriptome analysis has revealed that CD8+ tumor 
in�ltrating lymphocytes (TIL) exhibit characteristics of TRM cells 
and it has been observed that CD103+ CD8+ TRM cells from 
neighboring peripheral tissues can in�ltrate into solid tumors 
(249, 250). Runx3 expression appears to promote the in�ltration 
of CD8+ TRM cells into tumors as Runx3-de�cient CD8+ T cells 
failed to accumulate in tumors (90). As with other tissues, local 
microenvironmental cues promote the acquisition of TRM pheno-
types of CD8+ that in�ltrate tumor tissues (251). It is important 
to note, however, that CD8+ TIL with TRM characteristics (termed 
as CD8+ TRM TIL herea�er) are no longer true “resting” TRM cells 
as they are located in an e�ector site where cognate antigen is 
abundant and typically express checkpoint molecules to regulate 
their activity (249). �is checkpoint molecule expression may 
be transient, or below suppressive levels, since CD8+ TRM TIL in 
tumors exhibit superior anti-tumor activities and a positive prog-
nosis has been correlated with the quality and quantity of these 
cells (248–250, 252–256). It has also been found that CD103+ 
CD8+ TRM TIL with the strongest CTL activity are located in the 
border area of the tumor. �is contrasts with CD103 negative 
CD8+ TRM TIL that in�ltrate the stroma of the tumor (a poten-
tially highly immune suppressive environment), and mediate 
weak CTL activity (257). CD103-mediated e�cient interaction 
of CD8+ TRM TIL with tumor cells of epithelial origin also pro-
motes prolonged survival and enhanced CTL activity (251, 254,  
258, 259). Based on these �ndings, the generation of CD8+ TRM 
cells in neighboring tissues to the tumor is a promising strategy to 
confer protection against tumor growth (250, 260–263). However, 
this protection is limited to primary tumors, and not metastases, 
since CD8+ TRM cells are segregated from the circulation (250).

LYMPHOiD ORGANS

Secondary Lymphoid Organs
LNs, Spleen
�e SLOs have generally been considered a transit site for TCM 
and TEM cells. In the case of the LN, these cells are transiting 

from the high endothelial venules and a�erent lymphatics, 
respectively, into the circulation. However, recent studies have 
demonstrated that there are also small numbers of memory CD4+ 
and CD8+ T cells that are resident in the LN, spleen, PP, and ton-
sils without recirculation (264–268). �e long-term residency 
of TRM cells within the SLO has been demonstrated by para-
biosis or photoconversion-based cell labeling studies (264, 265,  
267, 268). Unlike circulating memory T cells, TRM cells in the SLO 
share phenotypic characteristics and gene expression pro�les 
with those in the NLT (110), including stable downregulation 
of S1P1, a key molecule for regulating T-cell egress from the LN 
(55). Indeed, most TRM cells in the SLO express CD69, which 
promotes the downregulation of S1P1 (110, 264, 266, 268). Since 
surface expression of CD69 is generally transient, however, it 
is likely that repetitive antigen stimulation is required for the 
maintenance of CD69 expression and the retention of TRM cells 
in the SLO (110). In this regard, there is considerable evidence 
that residual antigen persists in the draining LN for several 
months a�er vaccination or the resolution of an acute infection 
and presumably facilitates the accumulation of memory T cells 
(154–156, 269–272). In addition, a recent study by Beura et al. 
have demonstrated that some CD8+ TRM cells in the LN are 
derived from cells that exit the NLT (273), thereby enhancing 
the accumulation of antigen-speci�c CD8+ TRM cells in the 
draining LN.

�e distribution of TRM cells in the SLO depends on an antigen 
niche, as TRM cells are preferentially localized at the common 
antigen entry sites: the marginal zone and red pulp of the 
spleen and the subcapsular sinuses of the LN (264) (Figure 8). 
Although the maintenance of murine TRM cells in the SLO is rela-
tively independent of IL-15, signaling via IL-15 and TGF-β are 
known to transcriptionally downregulate S1P1 in human T cells. 
Indeed, TRM cells in the tonsils are localized speci�cally near the 
epithelial barrier where IL-15 is constitutively expressed (266). 
�is is indicative of cytokine niche-dependent compartmentali-
zation of TRM cells within the SLO. Since TCM cells in the SLO are 
central to pathogen clearance by generating massively increased 
numbers of secondary e�ector T cells during a recall response, 
it will be important to determine the functional contribution of 
TRM cells in the SLOs during the recall responses. It is possible 
that TRM cells in the SLO do not actively contribute to the recall 
response to avoid unnecessary competition with TCM cells, but 
are strategically positioned to protect the SLO from direct infec-
tion with pathogens.

Primary Lymphoid Organs
Thymus
Antigen-speci�c CD8+ TRM cells have also been found to persist in 
the thymus, a primary lymphoid organ (274). �ymic CD8+ TRM 
cells are established following infection with either thymus-tropic 
or non-tropic pathogens, with considerably higher numbers in 
the former. As with TRM cells in the peripheral tissues, thymic  
CD8+ TRM cells exhibit a canonical TRM phenotype (CD69+ 
CD103+). �ese cells localize predominantly in the medulla 
although a few cells lodge in the cortex (Figure 9). At least three 
mechanisms potentially explain the medullary localization of 
thymic CD8+ TRM cells. First, active TGF-β, which support the 
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indicate CD8+ TRM cells unless otherwise stated. Red lines indicate the representative niche factors that influence the maintenance of TRM cells. Abbreviations:  

Ag, antigen; TRM, tissue-resident memory T cells.
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generation of thymic Treg cells and potentially upregulates T cell 
expression of CD103, is predominantly localized in the thymic 
medulla (275). Second, E-cadherin is highly expressed in all 
thymic epithelial cells (TEC) of both the cortex and medulla 
(276) and promotes the interaction of TEC with CD103+ thy-
mocytes (277). �ird, mature thymocytes express CD69 which 
induces the downregulation of S1P1 on CD8+ TRM and blocks 
the departure of the cells via the medulla or cortico-medullary 
junction (278). �e factors that induce the upregulation of CD69 
on thymic CD8+ TRM cells have not been determined (274). Since 
the immune activation process strongly inhibits the migration 
of peripheral DC populations to the thymus to avoid unfavora-
ble induction of acquired tolerance to the invading pathogens  
(279, 280), it is reasonable to think that thymic CD8+ TRM cells 
mainly function to protect the thymus, rather than contribute to 
the recall responses against systemic infections.

Bone Marrow (BM)
�e BM is another primary lymphoid organ that facilitates the 
long-term maintenance of memory T cells by providing at least 
two distinct niches: a quiescence niche, that harbors a majority 
of quiescent memory T  cells, and a self-renewal niche where 
memory T cells undergo homeostatic proliferation (281). Indeed, 
large numbers of memory CD8+ and CD4+ T cells accumulate 
in the BM (282, 283) and most of them express high levels of 
CD69, a hallmark of TRM cells (164, 284, 285). TGF-β, secreted 
mainly by megakaryocytes in the BM, regulates the quiescence of 
memory T cells (286) and CXCL12 produced by reticular stro-
mal cells promotes their co-localization with CXCR4+ memory  
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T cells (287). �e reticular stromal cells, as well as myeloid cells, 
in the BM also provide niche factors for self-renewal such as IL-7 
and IL-15 (283, 288, 289).

Recently, Di Rosa and Gebhardt have speculated that memory 
CD8+ T  cells in the BM are a circulating population that is 
transiting through the BM niches without establishing residence 
(290). �is is largely based on the observation that memory 
CD8+ T cells derived from the host and partner equilibrate in 
the BM in parabiosis experiments (65). By contrast, the deposi-
tion of memory CD4+ T cells in the BM is relatively stable, as 
these cells persist in the BM for a long period even a�er most 
memory CD4+ T cells disappear from the spleen and LN (283). 
Interestingly, BM memory CD4+ T  cells preferentially home 
back to the BM a�er adoptive transfer (283). A fraction of adop-
tively transferred splenic CD8+ T cells, particularly those with a 
memory phenotype, also home to the BM (282, 284, 291). �ese 
data suggest that circulating memory T cells have high levels of 
access to BM niches. High levels of access of memory T cells to 
the BM niches could also explain the low detection of TRM cells 
in the parabiosis experiments. More analyses are required for 
precise characterization of TRM cells in the BM.

CONCLUDiNG ReMARKS

�e regulation, generation, and maintenance of TRM cells 
depends on two primary cell-extrinsic factors: (i) local signals 
that enable microenvironmental adaptation of T cells in each tis-
sue and (ii) the availability of tissue-speci�c anatomical niches. 
Non-immune cells as well as immune cell populations resident 
in each microenvironment provide these niche factors. Once 
established, TRM cells function locally to guard the vulnerable 
sites from reinfection. Hence, a deep understanding the compre-
hensive picture of TRM niches is required for the development of 
tissue-targeted vaccination strategies to e�ectively generate TRM 
cells in each tissue. For example, “prime and pull” is a potential 
vaccination strategy for the skin and FRT, where TRM cells can 
utilize niches that are originally occupied by other resident cells 
(37, 127). In sharp contrast, this strategy does not work for the 
lung due to the absence of preformed niches for TRM cells to 
displace (134, 158). �e creation of de novo niches in the lung 
by “prime and pull plus cognate antigen” partly resolves this 
problem (5, 134, 158). Antigen-niches also play a role in the 
establishment of TRM cells in the vascularized tissues of the liver, 
a strategy referred to as “prime and trap” (232).

�e description of TRM niches in this review is based primar-
ily on �ndings from mouse studies with occasional reference 
to work in humans. It is important to note, however, that 
the characteristics of TRM cells in these species can vary. For 
example, the TRM signature in humans is primarily de�ned by 
CD69+ expression (292), while CD69 expression is insu�cient 
to infer tissue residence in mice (6, 273). Furthermore, a key 
transcription factor Hobit that instructs tissue residency is 
highly expressed by murine TRM cells (62), while its expression 
is relatively low in human TRM cells (292–294). �ese, and other, 
species di�erences in TRM indicate that many more studies in 
humans will be necessary for the development of e�ective vac-
cines in the clinic.

In summary, the factors regulating the formation of TRM 
cells in each tissue and each species are far more complex than 
originally thought, and numerous hurdles exist in generating and 
maintaining TRM cells in each tissue in terms of the e�cacy, safety, 
and longevity. �ere is still much to learn.
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