
150 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 1, FEBRUARY 2010

Niching Without Niching Parameters: Particle
Swarm Optimization Using a Ring Topology

Xiaodong Li, Senior Member, IEEE

Abstract—Niching is an important technique for multimodal
optimization. Most existing niching methods require specification
of certain niching parameters in order to perform well. These
niching parameters, often used to inform a niching algorithm
how far apart between two closest optima or the number of
optima in the search space, are typically difficult to set as
they are problem dependent. This paper describes a simple yet
effective niching algorithm, a particle swarm optimization (PSO)
algorithm using a ring neighborhood topology, which does not
require any niching parameters. A PSO algorithm using the ring
topology can operate as a niching algorithm by using individual
particles’ local memories to form a stable network retaining the
best positions found so far, while these particles explore the
search space more broadly. Given a reasonably large population
uniformly distributed in the search space, PSO algorithms using
the ring topology are able to form stable niches across different
local neighborhoods, eventually locating multiple global/local
optima. The complexity of these niching algorithms is only O(N),
where N is the population size. Experimental results suggest
that PSO algorithms using the ring topology are able to provide
superior and more consistent performance over some existing
PSO niching algorithms that require niching parameters.

Index Terms—Evolutionary computation, multimodal opti-
mization, niching algorithms, particle swarm optimization (PSO),
swarm intelligence.

I. Introduction

S
TOCHASTIC optimization algorithms such as evolution-

ary algorithms (EAs) and more recently particle swarm

optimization (PSO) algorithms have shown to be effective

and robust optimization methods for solving difficult opti-

mization problems [1]. The original and many existing forms

of EAs and PSOs are usually designed for locating a single

global solution. These algorithms typically converge to one

final solution because of the global selection scheme used.

However, many real-world problems are “multimodal” by

nature, that is, multiple satisfactory solutions exist. For an

optimization problem with multiple global and local optima,

it might be desirable to locate all global optima and/or some

local optima that are also considered as being satisfactory.

Numerous techniques have been developed in the past for

locating multiple optima (global or local). These techniques

Manuscript received May 13, 2008; revised March 2, 2009. Current version
published January 29, 2010.

The author is with the School of Computer Science and Information
Technology, Royal Melbourne Institute of Technology, Melbourne 3001,
Australia (e-mail: xiaodong.li@rmit.edu.au).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2009.2026270

are commonly referred to as “niching” methods. A niching

method can be incorporated into a standard EA to promote and

maintain formation of multiple stable subpopulations within

a single population, with an aim to locate multiple optimal

or suboptimal solutions. Niching methods are of great value

even when the objective is to locate a single global optimum.

Since a niching EA searches for multiple optima in parallel,

the probability of getting trapped on a local optimum may be

reduced.

The success of EAs in real-world applications has also been

accompanied by their uses of niching methods. For example,

classification problems in machine learning can be mapped to

multimodal optimization problems, and hence be treated by

an EA employing a niching method [2]. A niching GA was

also applied to the problem of the inversion of teleseismic

waves [3]. In evolutionary multiobjective optimization, niching

methods are often used to maintain solution diversity [4].

Many niching methods have been proposed in the EA

literature. Some representative examples include crowding [5],

deterministic crowding [6], fitness sharing [7], derating [8], re-

stricted tournament selection [9], parallelization [10], cluster-

ing [11], clearing [12], and speciation [13]. Niching methods

have also been incorporated into PSO variants to enhance their

ability to handle multimodal optimization problems including

NichePSO [14] and SPSO [15], [16]. Most of these niching

methods, however, have difficulties that need to be overcome

before they can be applied successfully to real-world multi-

modal problems. Some identified issues include the following:

1) Reliance on prior knowledge of some niching parame-

ters, which must be set with some optimal values so that

the optimization algorithm can perform well. A common

use of a niching parameter is to tell how far apart two

closest optima are. A classic example is the sharing

parameter σshare in fitness sharing [7]. Other uses of

niching parameters include crowding factor in crowding

method [5], the window size w in restricted tournament

selection [9], or the number of clusters in k-means

clustering methods [11], [17]. Further discussion on the

issue of niching parameters is provided in Section III.

2) Difficulty in maintaining found solutions in a run. Some

found solutions might be lost in successive generations.

For example, the original De Jong’s crowding has

been shown unable to maintain all found peaks during

a run [6]. A good niching algorithm should be able

to form and maintain stable subpopulations over the

run.

1089-778X/$26.00 c© 2010 IEEE

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

LI: NICHING WITHOUT NICHING PARAMETERS: PARTICLE SWARM OPTIMIZATION USING A RING TOPOLOGY 151

3) In traditional niching EAs, it was observed that

crossover between two fit individuals from different

niches could produce far less fit offspring than the

parents [2]. How can we minimize such detrimental

crossover operations across different niches?

4) Some existing niching methods are designed only for

locating all global optima, while ignoring local optima.

Examples include the sequential niche GA (SNGA) [8],

clearing [12], SCGA [13], NichePSO [14], and SPSO

[15], [16]. However, it might be desirable to obtain

both global and local optima in a single run.

5) Higher computational complexity. Most of the niching

algorithms use global information calculated from the

entire population, therefore require at least O(N2)

computational complexity (where N is the population

size). Many niching algorithms suffer from this problem,

probably only with the exception of deterministic

crowding (DC) [6]. However, several studies found that

DC required a higher number of evaluations [18] and

was unable to maintain a proportional distribution of

individuals across niches [19].

To tackle the above-mentioned issues, this research aims to

develop niching algorithms that:

1) do not require specification of any niching parameters

such as how far apart between two optima, or the number

of optima;

2) are able to locate multiple optima and maintain these

found optima until the end of a run;

3) are able to locate multiple global optima, as well as local

optima, as required by a user;

4) have low computational complexity.

Two important criteria by which we can measure the success

of a niching method are whether a niching algorithm can find

all desired optima including global and/or local optima, and

whether it can maintain multiple subpopulations stably over a

run.

This research to develop niching algorithms without niching

parameters is strongly motivated by the recent development

of particle swarm optimization (PSO) [1], [20], [21]. PSO

has some attractive characteristics that make it an ideal opti-

mization algorithm to induce niching behaviors. In a canonical

PSO, each particle in the population knows its current position

in the search space, as well as the best position it has visited

so far (so called personal best position). As described in more

detail later on, the notion of memory and the viewpoint of a

swarm constituting an explorer-swarm and a memory-swarm

play an important role in the niching PSO algorithms described

in this paper. The basic idea is the following—the personal

bests of all particles in the population can be used to form a

memory-swarm providing a stable network retaining the best

positions found so far by the population, while the current

positions of particles act as parts of an explorer-swarm to

explore broadly around the search space. Instead of using a

single global best, each particle is attracted toward a fitter local

best only within its vicinity of the search space. As search con-

tinues, multiple niches (or subpopulations) are formed around

optima in parallel. Eventually multiple optima are found. Since

niches are formed naturally, there is no need to specify any

niching parameter in these kinds of niching methods.

This paper describes an attempt to eliminate the need of

specifying any niching parameters. We demonstrate that by

mapping a PSOs population onto a ring topology, its initial

population can be naturally divided into multiple subpop-

ulations, each operating as a separate PSO with its own

local neighborhood best. Since these subpopulations are only

loosely connected, the speed of convergence is greatly re-

duced. Most importantly, we demonstrate that the ring topol-

ogy based PSO can be used as an effective niching method

for maintaining stable subpopulations (or niches); therefore, it

can reliably locate multiple global and/or local optima.

Using a ring topology for PSO algorithms is not new. In

fact, it was described in one of the first papers on PSO

by Eberhart and Kennedy [22]. Several more recent studies

include [21], [23]. However, the ring topology based PSO

algorithms were primarily used in these studies with an aim

to locate a single global optimum, rather than multiple global

optima (which is the optimization goal of a niching method). It

was found in several recent studies that lbest PSOs (i.e., PSOs

employing some local neighborhood topology) were unable to

induce stable niching behaviors or were inefficient in doing so

[18], [24]. This paper differs from these previous studies by

showing that ring topology based PSO algorithms are capable

of inducing stable niching behaviors and they are robust and

effective niching methods. In particular, one key advantage of

such PSO niching algorithms is that there is no need to specify

any niching parameters that are often required in traditional

niching methods.

The paper is organized as follows. Section II provides

a review of the classic niching methods, followed by Sec-

tion III discussing the issue of niching parameters. Section IV

then gives an introduction to PSO and existing PSO niching

methods. Furthermore, we describe the notion of memory-

swarm and explorer-swarm, which have direct relevance to

the ring topology based PSO niching algorithms described in

this paper. Section V discusses first why the ring topology is

appropriate and then describes in detail the ring topology based

PSO niching algorithms. Convergence behaviors of these nich-

ing algorithms are also studied in this section. Section VI

describes the experimental setup and performance measures,

followed by detailed numerical results in Section VII. Finally,

Section VIII gives the concluding remarks.

II. Revisiting Classic Niching Methods

Just like EAs themselves, the notion of niching is inspired

by nature. In natural ecosystems, individual species must

compete to survive by taking on different roles. Different

species evolve to fill different “niches” (or subspaces) in the

environment that can support different types of life. Instead

of evolving a single population of individuals indifferently,

natural ecosystems evolve different species (or subpopulations)

to fill different niches. The terms species and niche are

sometimes interchangeable.

Niching methods were introduced to EAs to allow mainte-

nance of a population of diverse individuals so that multiple

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

152 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 1, FEBRUARY 2010

optima within a single population can be located. As Mahoud

described [2], “A niching method must be able to form

and maintain multiple, diverse, final solutions, whether these

solutions are of identical fitness or of varying fitness. A

niching method must be able to maintain these solutions

for an exponential to infinite time period, with respect to

population size.” Cavicchio’s dissertation [25] was probably

one of the first studies attempting to induce niching behavior in

a GA. Cavicchio proposed several schemes in which offspring

directly replaced the parents that produce them. These so-

called preselection schemes were later generalized by De Jong

in a scheme called crowding. De Jong’s crowding was initially

designed only to preserve population diversity. In crowding,

an offspring is compared to a small random sample taken

from the current population, and the most similar individual

in the sample is replaced. A parameter crowding factor (CF)

is commonly used to determine the size of the sample. In [6],

Mahfoud carefully examined both crowding and preselection

and found that De Jong’s crowding method was unable to

maintain more than two peaks of a five peaks fitness landscape

due to stochastic replacement errors. Mahfoud then made sev-

eral modifications to crowding to reduce replacement errors,

restore selection pressure, and also eliminate the crowding fac-

tor parameter. The resulting algorithm, deterministic crowding,

was able to locate and maintain multiple peaks.

Another approach to induce niching behavior in an EA

is fitness sharing, which is probably the most widely used

niching method. The sharing concept was originally intro-

duced by Holland [26] and then adopted by Goldberg and

Richardson as a mechanism to divide the population into

different subpopulations [7] according to the similarity of the

individuals in the population. Fitness sharing was inspired by

the “sharing” concept observed in nature, where an individual

has only limited resources that must be shared with other

individuals occupying the same niche in the environment.

A sharing function is often used in an EA to degrade an

individual’s fitness based on the presence of other neighboring

individuals. During selection, many individuals in the same

neighborhood would degrade each other’s fitness, thereby

limiting the number of individuals occupying the same niche.

For example, if there are two individuals, i and j, and the

distance between the two is dij , then a sharing function

sh(dij) = 1 − (
dij

σshare
)α can be used to compute the shared value

for both i and j, if dij ≤ σshare (where σshare is the estimated

niche radius), and this value is added to their niche counts mi

and mj respectively. If dij > σshare, then i and j do not degrade

each other’s fitness, i.e., sh(dij) = 0. For an individual i, the

niche count is calculated as mi =
∑N

j=1 sh(dij), i.e., the sum

of its shared values computed over the population of size N.

Finally the shared fitness value for individual i is fi

mi
. Although

fitness sharing has proven to be a useful niching method, it

has been shown that there is no easy task to set a proper

value for the niche radius σshare and the scaling factor α [27],

[28], without prior knowledge of the problems. For many real-

world problems, it is not uncommon that such domain specific

knowledge is often unavailable.

Apart from the above, many other niching methods have

also been developed over the years, including derating [8],

deterministic crowding [6], restricted tournament selection

[9], parallelization [10], clustering [11], clearing [12] and

speciation [13]. In a recent work, Singh and Deb [29]

proposed a modified clearing method where individuals not

qualified as the best are redistributed to 1.5 times σclear or

more distance away. The algorithm showed good performance

compared with several classic niching EAs. However, the

performance of modified clearing still depends on how well

σclear is set. Niching methods have also been developed for

PSOs, such as NichePSO [14] and SPSO [16]. More dis-

cussion on existing PSO niching algorithms will be given in

Section IV-A.

III. Problems with Niching Parameters

Most existing niching methods, however, suffer from a

serious problem—their performance is subjected heavily to

some niching parameters which are often difficult to set by

a user; for example, the sharing parameter σshare in fitness

sharing [7], the species distance σs in species conserving GA

(SCGA) [13], the distance measure σclear in clearing, [12] and

the species radius rs in the speciation-based PSO (SPSO) [16].

Although different terminologies are used, what is in common

is that they all describe some kind of distance value by which

a niche can be defined. Therefore, in this paper, these terms

will be commonly referred to as niche radius.

Fig. 1 shows two examples of challenging fitness landscapes

that would be difficult for any niching algorithms using a

uniform niche radius value. The inverted Shubert 2-D function

has nine pairs of global peaks and numerous local peaks.

Within each pair, two global peaks are very close to each other

but peaks from different pairs are further away. The inverted

Vincent 2-D function has 36 global peaks with distances be-

tween these peaks varying greatly. A niching algorithm relying

on a fixed niche radius value to determine an individual’s

membership in a niche would have a significant difficulty to

work properly on such a landscape. To capture all peaks, a

niching EA would have to set its niche radius extremely small

so that the closest two peaks can be distinguished. However,

doing so would form too many small niches, with possibly

too few individuals in each niche. As a result, these niches

tend to prematurely converge. On the other hand, if the niche

radius is set too large, peaks with a distance between them

smaller than this value will not be distinguished. In short, it

is likely that there is no optimal value for the niche radius

parameter. Dependence on a fixed niche radius is a major

drawback for niching methods that rely on such a parameter.

For example, on the inverted Shubert 2-D function, SCGA had

to be tuned with a radius value of 0.98 and a population size

of 1000 in order to locate all 18 global peaks reliably [13]. For

Shubert 3-D, SCGA used a population size of 4000 in order

to locate all 81 global peaks. As the dimension increased to

4, SCGA was only able to identify groups of global peaks,

but not individual global optima within each group. Another

similar niching algorithm SPSO [16] suffers from the same

problem.

In an early work, Jelasity and Dombi [30] attempted to

tackle the niche radius problem where they observed that a

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

LI: NICHING WITHOUT NICHING PARAMETERS: PARTICLE SWARM OPTIMIZATION USING A RING TOPOLOGY 153

(a) (b)

Fig. 1. Challenging functions for niching methods using a uniform niche radius value. (a) Inverted Shubert 2-D function. (b) Inverted Vincent 2-D function.

niching method such as fitness sharing could not distinguish

optima that are much closer to each other than the provided

niche radius value. Instead of using a fixed niche radius,

Jelasity and Dombi proposed to use a radius function and a

cooling procedure similar to simulated annealing. However,

their method called GAS (S for species) introduced several

new parameters that have to be specified by a user, such as

the radius function R, the number of evaluations, the maximal

number of species, and the number of steps for cooling. It

seems that for the user to specify these parameters is also

rather challenging.

Shir and Bäck [31] also attempted to address the problem

of using a fixed niche radius. Inspired by the notion of self-

adaptation in evolutionary strategy, in Shir and Bäck’s CMA-

ES niching algorithm, each individual is allowed to adapt its

own niche radius value along with other adaptive strategy

parameters. The adaptation of individual niche radii provided

better performances than those niching methods using a fixed

niche radius. The downside of their method is again the

introduction of some new parameters, which may affect the

performance of the algorithm, e.g., the number of expected

optima and learning coefficients.

Recent development of PSO niching methods by Bird and

Li [32], [33] aimed to reduce the sensitivity of the SPSO to

the niche radius values. However, either this parameter still

remains (though made more robust), or several new parameters

are introduced.

Sometimes niching parameters can be under different dis-

guises, such as the crowding factor in crowding method [5],

the window size w in restricted tournament selection [9], or

the number of clusters in k-means clustering methods [11],

[17]. The performance of these EAs depends very much on

how these parameters are specified. Unfortunately, in many

real-world problems such prior knowledge is often unavailable.

It would be desirable if a user can be completely freed from

specifying any niching parameters.

In this paper, we will demonstrate that a PSO using a ring

topology is able to induce stable niching behavior without

using any niching parameters. Furthermore, the proposed

niching method does not introduce new parameters. Therefore,

it offers distinct advantages over the above-mentioned niching

methods.

IV. PSO

PSO is a swarm intelligence technique originally developed

from studies of social behaviors of animals or insects, e.g.,

bird flocking or fish schooling [1]. Since its inception in 1995

[1], PSO has gained increasing popularity among researchers

and practitioners as a robust and efficient technique for solving

complex and difficult optimization problems.

Like an EA, PSO is population-based. However, PSO differs

from EAs in the way it manipulates each particle (i.e., a candi-

date solution) in the population. Instead of using evolutionary

operators such as crossover and mutation, PSO modifies each

particle’s position in the search space, based on its velocity,

some previous best positions it has found so far, and previous

best positions found by its neighbors.

In a canonical PSO, the velocity of each particle is modified

iteratively by its personal best position (i.e., the position giving

the best fitness value so far), and the position of best particle

from the entire swarm. As a result, each particle searches

around a region defined by its personal best position and the

position of the population best. Let us use �vi to denote the

velocity of the ith particle in the swarm, �xi its position, �pi

the best position it has found so far, and �pg the best position

found from the entire swarm (so-called global best). �vi and �xi

of the ith particle in the swarm are updated according to the

following two equations [34]:

�vi ← χ(�vi + �R1[0, ϕ1] ⊗ (�pi − �xi) +

�R2[0, ϕ2] ⊗ (�pg − �xi)) (1)

�xi ← �xi + �vi (2)

where �R1[0, ϕ1] and �R2[0, ϕ2] are two separate functions

each returning a vector comprising random values uniformly

generated in the ranges [0, ϕ1] and [0, ϕ2] respectively. ϕ1 and

ϕ2 are commonly set to ϕ

2
(where ϕ is a positive constant).

The symbol ⊗ denotes point-wise vector multiplication. A

constriction coefficient χ is used to prevent each particle from

exploring too far away in the search space, since χ applies

a dampening effect to the oscillation size of a particle over

time. This “Type 1” constricted PSO suggested by Clerc and

Kennedy [34] is often used with χ set to 0.7298, calculated

according to χ = 2
∣

∣2−ϕ−
√

ϕ2−4ϕ
∣

∣

, where ϕ = ϕ1 + ϕ2 = 4.1.

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

154 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 1, FEBRUARY 2010

Two common approaches of choosing �pg in (1) are known

as gbest and lbest methods. In a gbest PSO, the position

of each particle is influenced by the best-fit particle from

the entire population, whereas a lbest PSO only allows each

particle to be influenced by the best-fit particle chosen from its

neighborhood. The lbest PSO with a neighborhood size set to

the population size is equivalent to a gbest PSO. Kennedy

and Mendes studied PSOs with various population topolo-

gies [23], and have shown that certain population topologies

could give superior performance over certain optimization

functions.

A. PSO Niching Methods

Several niching methods have been developed within the

framework of a PSO. Parsopoulos and Vrahitis [35] introduced

a method in which a potentially good solution is isolated once

it is found, then the fitness landscape is “stretched” to keep

other particles away from this area of the search space [36],

similar to the derating method used in SNGA [8]. The isolated

particle is checked to see if it is a global optimum, and if it

is below the desired accuracy, a small population is generated

around this particle to allow a finer search in this area. The

main swarm continues its search in the rest of the search

space for other potential global optima. With this modification,

their PSO was able to locate all the global optima of some

selected test functions successfully. However, this stretching

method introduces several new issues, including the difficulty

in specifying several new parameters used in the stretching

function, and the risk of introducing false optima as a result

of stretching.

Brits and van den Bergh [14] proposed NichePSO,

which further extended Parsopoulos and Vrahitis’s model. In

NichePSO, multiple subswarms are produced from a main

swarm population to locate multiple optimal solutions in the

search space. Subswarms can merge together, or absorb parti-

cles from the main swarm. NichePSO monitors the fitness of

a particle by tracking its variance over a number of iterations.

If there is little change in a particle’s fitness over a number

of iterations, a subswarm is created with the particle’s closest

neighbor. The issue of specifying several user parameters still

remains. The authors also proposed nbest PSO in [37], where

a particle’s neighborhood best is defined as the average of the

positions of all particles in its neighborhood. By computing

the Euclidean distances between particles, the neighborhood

of a particle can be defined by its k closest particles, where

k is a user-specified parameter. Obviously, the performance of

nbest PSO depends on how this parameter is specified.

Another niching PSO algorithm inspired by the idea of

species, Speciation-based PSO (SPSO), was proposed in [15],

[16]. A procedure for determining species and the dominant

particles in these species was adopted from [13]. Each species

and its corresponding species seed (i.e., the dominant particle)

form a separate subpopulation that can be run as a PSO itself.

Since species are adaptively formed around different optima,

over successive iterations multiple global optima can be found

in parallel. In SPSO, a niche radius must be specified in

order to define the size of a niche (or species). Since this

knowledge might not be always available a priori, it might be

difficult to apply this algorithm to some real-world problems.

Recently, two PSO niching algorithms aiming to improve the

robustness to such a niching parameter were proposed in [32],

[33]. In [32], population statistics were used to adaptively

determine the niching parameters during a run, whereas in

[33], a time-based convergence measure was used to directly

enhance SPSOs’ robustness to the niche radius value. These

extensions to SPSO made it more robust; however, the need

to specify niching parameters (such as the niche radius)

remains.

A PSO based on fitness-Euclidean distance ratio (FER-PSO)

was recently proposed for multimodal optimization [38]. In

FER-PSO, personal bests of the particles are used to form

a memory-swarm to provide a stable network retaining the

best points found so far by the population, while the current

positions of particles act as parts of an explorer-swarm to

explore broadly around the search space. Instead of using a

single global best, each particle is attracted toward a fittest-

and-closest neighborhood point that is identified via computing

its FER value. FER-PSO is able to reliably locate all global

optima, given that the population size is sufficiently large.

One noticeable advantage is that FER-PSO does not require

specification of niching parameters. Nevertheless, it introduces

a parameter α which needs to be determined by the upper and

lower bounds of the variables. Since the algorithm uses global

information, the complexity of the algorithm is O(N2) (where

N is the population size).

In [39], a vector-based PSO was developed to combat the

issue of having to specify parameters. This algorithm depends

on a niche radius defined by the distance from the current

particle to the closest particle that moves in an opposite

direction. The distance calculation can be expensive since

every particle has to be compared with all others, therefore

the complexity is O(N2). In addition, only simple 1 or 2-D

test functions were used in this paper.

B. Can A More Restrictive Communication Topology Help?

It has been observed by many that different communication

topologies can be used to control the speed of information

propagation in an EA population. More restrictive communi-

cation topologies such as ring, star, or von Neumann have

been shown to be effective in slowing down the convergence

speed of an EA, hence alleviating the problem of premature

convergence. However, it was also noted by some that such

restrictive topologies cannot induce stable niching bebaviours,

as eventually the population would still converge to a single

solution in the presence of multiple equally good solutions. For

example in [40], it was observed that spatially structured EAs

(fine-grained or coarse-grained), where individuals of a popu-

lation are mapped onto some communication topology, often

help maintain a better population diversity, but they did not

prevent the population from converging to a single optimum

eventually. Similarly, mating restriction, where mating among

similar individuals in the population is restricted, though can

produce temporary species, but competition between species

will eventually eliminate all but one best-fit species. As a re-

sult, mating restriction is not effective in maintaining multiple

subpopulations [41]–[43].

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

LI: NICHING WITHOUT NICHING PARAMETERS: PARTICLE SWARM OPTIMIZATION USING A RING TOPOLOGY 155

Fig. 2. (a) Ring topology used in a conventional EA. Each member interacts only with its immediate left and right neighbors, with no local memory used.
(b) Graph of influence for a lbest PSO using the same ring topology [[21], p.89]. Each particle possesses a local memory. (c) The same as (b) but also
showing the overlapping subpopulations, each consisting of a particle and its two immediate neighbors, and their corresponding memories.

In the empirical studies carried out in [18], [24], it was

also found that lbest PSO algorithms with restricted local

neighborhood interactions were unable to form stable niches

or were very inefficient in doing so.

We will demonstrate in the following sections that an lbest

PSO using a ring topology, in fact, is able to induce stable

niching behaviors. One possible explanation of the traditional

EAs’ inability to induce niching behavior is that these EAs do

not allow individuals to have memory, more specifically local

memory. In contrast, a lbest PSO is able to do so because each

particle possesses local memory (via its personal best).

C. Memory-Swarm Versus Explorer-Swarm

In PSO, interactions among particles play an important role

in particles’ behavior. A distinct feature of PSO (which is dif-

ferent from many EAs) is that each particle carries a memory

of its own, i.e., its personal best. We can never underestimate

the significance of using local memory. As remarked by Clerc

in [21], a swarm can be viewed as comprising of two sub-

swarms according to their differences in functionality. The

first group, explorer-swarm, is composed of particles moving

around in large step sizes and more frequently, each strongly

influenced by its velocity and previous position [see (1) and

(2)]. The explorer-swarm is more effective in exploring more

broadly the search space. The second group, memory-swarm,

consists of personal bests of all particles. This memory-swarm

is more stable than the explorer-swarm because personal bests

represent positions of only the best positions found so far by

individual particles. The memory-swarm is more effective in

retaining better positions found so far by the swarm as a whole.

Fig. 2(a) shows an example of a conventional EA using a

ring topology with a population of seven individuals. Fig. 2(b)

shows a swarm of seven particles using a ring topology, as

illustrated by using a “graph of influence” as suggested by

Clerc [21]. The “graph of influence” can be used to explicitly

demonstrate the source and receiver of influence for each

particle in a swarm. A particle that informs another particle

is called “informant.” Here the explorer-swarm consists of

particles as marked from numbers 1 to 7, and the memory-

swarm consists of particles as marked from m1 to m7. Each

particle has three informants, from two neighboring particles’

memories and its own memory. Each particle’s memory also

has 3 informants, from two neighboring particles and the

particle itself. In stark contrast, Fig. 2(a) shows that no local

memories are used in a conventional EA using a ring topology.

The idea of memory-swarm and explorer-swarm inspired us

to develop effective PSO niching algorithms. With an aim to

locate and maintain multiple optima, the more stable personal

best positions retained in the memory-swarm can be used as

the “anchor” points, providing the best positions found so far.

Meanwhile, each of these positions can be further improved

by the more exploratory particles in the explorer-swarm.

V. Niching PSOs using a Ring Topology

In this section, we propose to use a lbest PSO for niching.

We will demonstrate that even with a simple lbest PSO

employing a typical ring topology, stable niching behaviors

can be induced. Kennedy and Mendes [23] studied PSOs using

various population topologies including the ring topology.

Among all topologies, Kennedy and Mendes considered the

ring topology to be “the slowest, most indirect communi-

cation pattern,” whereas the gbest PSO represents the “the

most immediate communication possible.” This paper showed

communication topology could be used as an effective means

to control the speed of convergence for PSO population in

search for a single global optimum. However, using various

topologies for niching (i.e., aiming to locate multiple optima)

was not investigated in this paper.

As shown in Fig. 2(b), in a lbest PSO using a ring topology,

each particle interacts only with its immediate neighbors.

Clearly the ring topology is desirable for locating multiple

optima, because ideally we would like to have individuals to

search thoroughly in its local neighborhood before propagating

the information throughout the population. The consequence

of any quicker-than-necessary propagation would result in the

population converging onto a single optimum (like gbest PSO).

As we will demonstrate in the following sections, the ring

topology is able to provide the right amount of communication

needed for inducing stable niching behavior.

An implementation of such a lbest PSO using a ring

topology is provided in Algorithm 1. Note that we can

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

156 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 1, FEBRUARY 2010

Randomly generate an initial population

repeat

for i = 1 to Population Size do
if fit(�xi) > fit(�pi) then �pi ← �xi;

end

for i = 1 to Population Size do
�pn,i ← neighborhoodBest(�pi−1, �pi, �pi+1);

end

for i = 1 to Population Size do
Equation (3);

Equation (2);
end

until termination criterion is met ;

Algorithm 1: The pseudocode of a lbest PSO using a ring

topology.

Fig. 3. Ring topology with each member interacting with its two immediate
neighbors (left and right). Local neighborhoods are overlapped with each
other. The ith particle’s neighborhood best (�pn,i) is the same as those of
its two immediate neighboring particles, but differs from those particles in
the neighborhoods further out.

conveniently use population indices to identify the left

and right neighbors of each particle. Here we assume a

“wrap-around” ring topology, i.e., the first particle is the

neighbor of the last particle and vice versa. The function

neighborhoodBest(.) returns the best-fit personal best in the

ith neighborhood, which is stored in �pn,i, representing the

neighborhood best for the ith particle. Equation (1) can now

be rewritten as the following:

�vi ← χ(�vi + �R1[0, ϕ1] ⊗ (�pi − �xi) +

�R2[0, ϕ2] ⊗ (�pn,i − �xi)) (3)

where �pg in (1) has been replaced by �pn,i. The position of the

ith particle is now updated according (2) and (3). �pn,i is now

used as the local leader for the ith particle.

Different particles residing on the ring can have different �pn

(note that we use �pn to denote a nonspecific “neighborhood

best” here), and they do not necessarily converge into a single

point over time. As illustrated in Fig. 3, the ring topology

not only provides a mechanism to slow down information

propagation in the particle population, but also allows different

neighborhood bests to coexist (rather than becoming homoge-

neous) over time. This is because a particle’s �pn can only be

updated if there is a better personal best in its neighborhood,

but not by a better �pn of its neighboring particle.

Fig. 4. Example where �pn,i and �pi are situated on different peaks.

On a multimodal fitness landscape, a particle’s personal

best �pi and �pn,i could be either on the same peak or two

different peaks. If they are on the same peak, both �xi and

�pi are likely to catch up with the particle’s �pn,i, resulting in

�pi = �pn,i = �xi (as described in [24]). The particle’s velocity �vi

will be reduced and eventually the particle stops moving when

�vi equals 0. However, if �pi and �pn,i are sitting on two different

peaks, the behavior of the particle’s movement is dramatically

different. As shown in Fig. 4, the chance of moving this �pi

to the same peak as �pn,i is in fact very small, since �xi has

to move somewhere between the “gap” (as indicated by the

dashed lines) and be on the same peak as where �pn,i resides.

In addition, if �xi moves into the “gap” on the peak where

�pi resides, it will only further narrow this gap, resulting in

an even smaller chance of moving �pi onto the peak where

�pn,i resides. Consequently, after some iterations, �pn,i and �pi

tend to differ for the rest of the run. If this occurs, a scenario

like �pi = �pn,i = �xi may never arise. According to (2) and

(3), �vi will become unlikely to reduce to 0, resulting in the

particle oscillating between the �pi and �pn,i, due to the random

coefficients from �R1 and �R2. It is indeed possible that some

particles may never fully converge to any point for the entire

run. However, the population of �pn and �pi (i.e., memory-

swarm) do become stabilized over time, reaching to some

equilibrium state.

A. Convergence Behaviors

The convergence behaviors of the ring topology lbest PSO

can be illustrated by running it on a simple 1-D test function,

the equal maximum function, which has five evenly spaced

global peaks with a height of 1.0 (see f4 in Table I). For the

purpose of illustration, a small swarm of 10 particles was used

for the ring topology lbest PSO, which was then run for some

iterations until all �pn and personal bests stabilized. We employ

an index-position plot as a visualization tool to help analyze

the niching behavior of the lbest PSO. In an index-position

plot, the positions of particles are shown in a sequential

order as in its ring topology. This way one can observe

clearly how niches emerge from interactions among different

local neighborhoods. The index-position plot can be used

together with a variable-fitness plot to gain valuable firsthand

understanding of the niching behavior of the proposed lbest

PSO niching algorithms.

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

LI: NICHING WITHOUT NICHING PARAMETERS: PARTICLE SWARM OPTIMIZATION USING A RING TOPOLOGY 157

TABLE I

Test Functions

Name Test Function Range Number of

Global Peaks

Two-Peak Trap [45] f1(x) =

{

160
15

(15 − x) for 0 ≤ x < 15,

200
5

(x − 15) for 15 ≤ x ≤ 20.
0 ≤ x ≤ 20 1

Central Two-Peak Trap [45] f2(x) =

⎧

⎨

⎩

160
10

x for 0 ≤ x < 10,

160
5

(15 − x) for 10 ≤ x < 15,

200
5

(x − 15) for 15 ≤ x ≤ 20.

0 ≤ x ≤ 20 1

Five-Uneven-Peak Trap [13] f3(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

80(2.5 − x) for 0 ≤ x < 2.5,

64(x − 2.5) for 2.5 ≤ x < 5.0,

64(7.5 − x) for 5.0 ≤ x < 7.5,

28(x − 7.5) for 7.5 ≤ x < 12.5,

28(17.5 − x) for 12.5 ≤ x < 17.5,

32(x − 17.5) for 17.5 ≤ x < 22.5,

32(27.5 − x) for 22.5 ≤ x < 27.5,

80(x − 27.5) for 27.5 ≤ x ≤ 30.

0 ≤ x ≤ 30 2

Equal Maxima [42] f4(x) = sin6(5πx). 0 ≤ x ≤ 1 5

Decreasing Maxima [42] f5(x) = exp

[

−2log(2) ·
(

x−0.1
0.8

)2
]

·sin6(5πx) 0 ≤ x ≤ 1 1

Uneven Maxima [42] f6(x) = sin6(5π(x3/4 − 0.05)). 0 ≤ x ≤ 1 5

Uneven Decreasing Maxima [42] f7(x) = exp

(

−2log(2) ·
(

x−0.08
0.854

)2
)

·sin6(5π(x3/4 − 0.05)). 0 ≤ x ≤ 1 1

Himmelblau’s function [42] f8(x, y) = 200 − (x2 + y − 11)2 − (x + y2 − 7)2. −6 ≤ x ≤ 6 4

Six-Hump Camel Back [46] f9(x, y) = −4[(4 − 2.1x2 + x4

3
)x2 + xy + (−4 + 4y2)y2]. −1.9 ≤ x ≤ 1.9;

−1.1 ≤ y ≤ 1.1 2

Shekel’s foxholes [5] f10(x, y) = 500 − 1

0.002+
∑24

i=0

1

1+i+(x−a(i))6+(y−b(i))6

where a(i) = 16(i mod 5) − 2), and b(i) = 16(⌊(i/5)⌋ − 2) −65.536 ≤ x, y ≤ 65.535 1

Inverted Shubert function [13] f11(�x) = −
∏n

i=1

∑5

j=1
jcos[(j + 1)xi + j]. −10 ≤ xi ≤ 10 n · 3n

Inverted Vincent function [31] f12(�x) = 1
n

∑n

i=1
sin(10 · log(xi)) 0.25 ≤ xi ≤ 10 6n

Inverted Rastrigin function [47] f13(�x) = −
∑n

i=1
(x2

i − 10cos(2πxi) + 10). −1.5 ≤ xi ≤ 1.5,

where i = 1 . . . n 1

Generic Hump function [29] f14(�x) =

{

maxk=1,K[hk(1 − (d(�x,k)
rk

)αk)], if d(�x, k) ≤ rk ;

0 otherwise.
0 ≤ x ≤ 1 Arbitrarily set

Fig. 5(a) shows that in a run with just 10 particles, the

lbest PSO managed to locate four global peaks at iteration

615 with several distinct �pn. From the index-position plot

in Fig. 5(b), it is clear that multiple separate niches have

established themselves firmly on four different peaks. Some-

times more than one niche could reside on the same peak.

A close examination on the raw data in Fig. 6 reveals that

six separate niches have formed at iteration 615, with each

niche determined by a common �pn. These six niches have

effectively become six independent PSO optimizers because

no interactions are possible across niches by this stage. The six

distinct �pn points are able to coexist, because each �pn is only

determined by its immediate neighbors’ personal bests, but not

their �pn. As an example for Fig. 4, we can see that particle 1s

personal best and its �pn are on two different peaks. The fitness

“gap” between the personal best and �pn (which is also particle

2s �pn) has become so narrow (i.e., less than 0.0000001) that it

becomes almost impossible to get an improved personal best

for particle 1 on the peak where its �pn resides.

With a population size as small as five, some runs of the

ring topology lbest PSO were able to reach to an equilibrium

state, where one or two particles were oscillating around their

respective �pn, but never converging, as shown in Fig. 5(a).

Assuming that particles from the initial population are

uniformly distributed across the search space, niches can

naturally emerge as a result of the coexistence of multiple �pn

positions being the local attraction points for the particles in

the population. With a reasonably large population size, such

a lbest PSO is able to form stable niches around the identified

neighborhood bests �pn. As described in Section IV-C, the

memory-swarm acts as the anchor points retaining the best

positions the particles come across, whereas the explorer-

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

158 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 1, FEBRUARY 2010

(a) (b)

Fig. 5. Ring topology lbest PSO on the equal maxima function f4 at iteration
615. (a) variable-fitness plot. (b) Index-position plot. Note that nBest denotes
for �pn, pBest for �pi, and current for �xi. A line is drawn from �pi and its
associated �xi.

Fig. 6. Niches formed by a ring topology lbest PSO with a population of 10
particles on the equal maxima function at iteration 615. Dash lines separate
the stabilized niches that have no further interaction with outside. Each curved
line shows a personal best is chosen as the �pn shared by two personal bests on
two different peaks. Note that particle 0 is an immediate neighbor of particle
9 since the ring-topology is a “wrap-around.”

swarm explores the search space more broadly. One possible

explanation on why some classical EAs are unable to form

niches around multiple optima (as discussed in Section IV-B)

is that they do not have such a memory mechanism to retain

equally good search points in parallel, and a mechanism to

allow these good points to coexist. As a result, selection is

biased toward a single dominant individual in the population.

In contrast, the lbest PSO allows multiple similarly dominant

individuals to coexist through its memory-swarm and the

scheme for choosing neighborhood bests.

B. Other Possible Variants

In addition to the standard ring topology where each local

neighborhood has three members as shown in Fig. 2, some

variants can be implemented to achieve similar niching effects

as well. One variant is to further restrict the local neighborhood

to just two members, as shown in Fig. 7.

Fig. 7. Graph of influence for a lbest PSO with a ring topology using just
two members in each local neighborhood.

Fig. 8. Graph of influence for a lbest PSO. Every two particles form a pair as
a local hill-climber. Note that there is no overlapping between neighborhoods.

Since the lbest PSO with a ring topology has overlapping

neighborhoods, it is still possible for a more dominant �pn to

overtake less dominant �pn. This leads a tendency of the algo-

rithm locating more dominant peaks over other less dominant

peaks. If the goal of optimization is to locate both global and

local peaks, then such influence from a more dominant �pn

could be further prevented. This can be easily achieved by

removing the overlapping neighborhoods in the ring topology.

As shown in Fig. 8, each disconnected local neighborhood acts

as an independent hill climber, searching for a local optimum

only.

Apart from simplicity, these lbest PSOs do not require

any prior knowledge of (neither the need to specify) any

niching parameters, e.g., a niche radius, because niches emerge

naturally from their initial population. The complexity of the

algorithm is only O(N) (where N is the population size), as

the calculation to obtain a neighborhood best is only done

locally from each particle’s local neighborhood.

In the following sections, we will demonstrate through

extensive experiments that these lbest PSOs are able to induce

stable niching behaviors, thereby locating multiple global

optima reliably for multimodal optimization problems.

VI. Experiments

To evaluate the niching ability of the proposed lbest PSOs

with a ring topology, we used some widely used multimodal

optimization test functions of different characteristics, such

as deceptiveness, multiple evenly and unevenly spaced global

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

LI: NICHING WITHOUT NICHING PARAMETERS: PARTICLE SWARM OPTIMIZATION USING A RING TOPOLOGY 159

optima, multiple global optima in the presence of multiple

local optima, function rotation, and high dimensionality (see

Section VI-A). Our experiments were carried out with the

following key aims.

1) To demonstrate the lbest PSOs using a ring topology

with overlapping neighborhood can stably and reliably

locate multiple global optima. In addition, to show

that lbest PSOs with nonoverlapping neighborhood can

locate both global and local optima for some test

functions.

2) To compare the lbest PSOs using a ring topology with

a typical niching algorithm (e.g., SPSO) that does rely

on some user parameters such as the niche radius.

3) To study the effect of varying population size, since this

is a parameter that a user still needs to supply.

We continue to use the index-position plot as described

in Section V-A to illustrate the niching behaviors of the

algorithms. Following ring topology, lbest PSO variants were

used in our experiments.

1) r3pso: A lbest PSO with a ring topology, each member

interacts with its immediate member on its left and right.

2) r2pso: A lbest PSO with a ring topology, each member

interacts with only its immediate member to its right.

3) r3pso − lhc: The same as r3pso, but with no overlap-

ping neighborhoods. Basically multiple PSOs search in

parallel, like local hill climbers. This variant is more

appropriate if the goal of optimization is to find global

optima as well as local optima.

4) r2pso − lhc: The same as r2pso, but with no overlap-

ping neighborhoods, hence acting as multiple local hill

climbers, more suitable for finding global as well as local

optima.

The above lbest PSO niching variants were compared with

two existing PSO niching algorithms.

1) SPSO: This algorithm was chosen because it represents

a state-of-the-art niching algorithm that relies on a

prespecified niche radius value [16]. SPSO was inspired

by the classic clearing [12], and speciation methods

[13], and showed superior performance compared with

NichePSO [14] and SNGA [8].

2) FER-PSO: This algorithm was chosen since it shows

competitive performance on challenging functions such

as the Shubert function.

In addition, in some experiments, we also used the gbest

PSO, i.e., a standard gbest PSO using a global communication

topology.

For any particle with a position xi exceeding the boundary

of the variable range, its position is reset to a value that is

twice of the right (or left boundary) subtracting xi.

In the following sections, we first describe the test functions

used. We then describe the performance measures used for this

paper. For SPSO, since we know the global optima for all the

test functions, we always set the niche radius r to a value that

is less than the distance between two closest global optima,

making sure that it is able to distinguish global optima. In

some sense, SPSO was given an “unfair” advantage over the

lbest PSO algorithms. For all PSO algorithms, we used the

standard constricted version as described in Section IV. There

was no parameter tuning.

A. Test Functions

Table I shows the test functions used in this paper. These

test functions are categorized into six groups ranging from

simple to more complex and challenging.

1) 1-D Deceptive Functions: f1, f2, and f3 are considered

to be deceptive. These functions may be difficult because the

existing local optima can misguide the population to move

away from the true global optimum. For example, in f1, since

3/4 of the initial population have the values between 1 and 15,

offspring generated from these individuals are likely to move

toward the local peak at x = 0, rather than the global peak at

x = 20.

f2 is simply a variation of f1. Both f1 and f2 have only a

single global peak. However, f3 has three local peaks and two

global peaks, presenting additional challenge for an optimizer

to find both global peaks.

These functions are useful for testing an optimizer’s ability

to handle deceptiveness, i.e., avoiding misguidance from those

local peaks (or false global peaks).

2) 1-D Multimodal Functions: f4 has five evenly spaced

global peaks. f5 is similar to f4. The only difference is that

the five peaks decrease in height exponentially (so there is

only one global peak actually). f6 is also like f4, except that

now the five global peaks are unevenly spaced. f7 is like f6,

but with five peaks decrease in height exponentially.

These functions can be used to test a niching algorithm’s

ability to form niches on multiple peaks (either local or

global). In addition, the feature of unevenly spaced peaks is

useful to test those niching methods that rely on a user to

specify a niche radius parameter.

3) 2-D Multimodal Functions: f8 has four global peaks

with two closer to each other than the other two. There are

no local peaks. f9 has two global peaks as well as two local

peaks. f10 has 16 evenly spaced peaks of unequal heights,

with one being the global peak. If the goal of optimization is

to find all global and local optima, then f10 can be used to

test a niching EAs ability to locate all 16 peaks.

4) More Challenging Two or Higher Multimodal Func-

tions: Both the inverted Shubert function f11 and the inverted

Vincent function f12 are especially interesting in this paper.

For f11 the inverted Shubert 2-D, there are 18 global peaks in

9 pairs, with each pair very close to each other, but the distance

between any pair is much greater [see Fig. 1(a)]. There are

760 local peaks. As the dimensionality increases, the number

of global and local peaks also increase quickly. For the n-

dimensional inverted Shubert function, there are n · 3n global

peaks unevenly distributed. These global peaks are divided

into 3n groups, with each group having n global peaks being

close to each other. Hence for f11 Shubert 3-D, there are 81

global peaks in 27 groups; whereas for f11 Shubert 4-D, there

are 324 global peaks in 81 groups. f11 will pose a serious

challenge to any niching algorithm relying on a fixed niche

radius parameter.

f12 the inverted Vincent function has 6n global peaks, but

unlike the regular distances between global peaks in f11, in

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

160 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 1, FEBRUARY 2010

f12 global peaks have vastly different spacing between them.

Furthermore, f12 has no local peaks.

5) Inverted Rastrigin Function: The inverted Rastrigin

function f13 can be used to test an optimizer’s ability to

locate the single global peak in the presence of many local

peaks when the problem dimension is increased dramatically.

Furthermore, to test niching algorithms’ ability to handle non-

separable problems, f13 is also rotated to introduce parameter

interactions between variables, thereby making the function

nonseparable. Rotations are performed in the decision space,

on each plane using a random uniform rotation matrix [44]. All

niching algorithms are run 50 times. A new random uniform

rotation matrix is generated for each run of each algorithm for

the purpose of an unbiased assessment.

6) Generic Hump Functions: To further evaluate the effi-

cacy of the lbest PSO niching algorithms on high dimensional

problems, the generic hump function introduced in [29] was

modified and used for experimentation. One major advantage

of using the hump function is that unlike the Shubert or

Vincent function, it allows an arbitrary number of peaks

generated regardless of the number of dimensions. The basic

idea is as follows: all variables are initialized within [0, 1].

Within this range, K peaks are generated at random locations,

with different shapes and sizes. The radius of each peak

(i.e., the radius of the basin of attraction of each maximum)

is also randomly created, but the distance between any two

neighboring peaks is at least equal to or greater than the radius

of one of the two peaks. For the kth peak, its height hk and

shape factor αk are also randomly chosen. The fitness of a

solution �x is calculated in the following steps: 1) first identify

all peaks that �x reside on; 2) calculate the Euclidean distances

between �x and the centers of these peaks; and 3) calculate the

fitness of �x according to

f14(�x) =

{

maxk=1,K[hk(1 − (d(�x,k)
rk

)αk)], if d(�x, k) ≤ rk;

0 otherwise

where rk denotes the radius of the kth peak, and d(�x, k) denotes

the Euclidean distance between �x and the center of the kth

peak. The original hump function in [29] does not allow peaks

to intersect, hence producing too much flat surface between

peaks. Consequently, the fitness values of many individuals in

the initial population are likely to be zero. The above modified

hump function alleviates such a problem by allowing multiple

peaks to intersect with each other. The fitness is simply the

maximal height value of an individual on all the peaks it

resides on. By choosing different values for hk, rk, αk and

the maximal number of peaks K, multimodal test functions

having different complexities can be created.

B. Population Size and Maximal Number of Evaluations

For functions f1 to f10, we used a population size of 20–

50, which should be adequate for locating all global peaks.

All PSO niching algorithms were run (for f1 to f10) for a

maximum of 10 000 function evaluations, or having located

all known global peaks with the specified accuracy. For f11

Shubert 2-D function, population sizes ranging from 200 to

500 were used, since it has many more global peaks (i.e., 18

global peaks). We also showed the effect of varying population

sizes using f11 Shubert 2-D. Following the same principle,

larger population sizes up to 1000 were used for f11 Shubert

3-D and 4-D, f12 Vincent 1-D to 4-D and f13 Rastrigin 2-D

to 15-D.

For more challenging test functions, the maximal number

of evaluations allowed was increased accordingly. For f11 4-

D, the maximal number of evaluations was 400 000. For f12

Vincent 2-D, 3-D, and f13 Rastrigin 2-D to 15-D, the maximal

number of evaluations was 200 000.

For f14 the generic hump function we used a population

size from 300 to 800 for dimensions ranging from 8 to

20, respectively. Ten peaks were created (K = 10) for all

dimensions. The maximal number of evaluations was set to

200 000.

C. Setting Niche Radius for Higher Dimensional Functions

For higher dimensional multimodal functions, Deb and

Goldberg [43] proposed a method to compute the value of

the niche radius r in a D-dimensional space where there exist

p global optima

r =

√

∑D
k=1(xu

k − xl
k)2

2 D
√

p
(4)

where xl
k and xu

k are the lower and upper bounds on the kth di-

mension of the variable vector of D dimensions. This method,

however, assumes that the number of global optima is known

and they are evenly distributed in the search space. As can be

seen from Fig. 1, both f11 Shubert and f12 Vincent functions

have many unevenly distributed global optima. Hence, (4)

cannot be applied to obtain an estimated niche radius for a

typical niching method relying on a fixed niche radius r, e.g.,

SPSO. In contrast, lbest niching PSOs do not rely on any niche

radius value, hence they certainly provide a distinct advantage

over SPSO.

Due to the difficulty in applying (4), for 2-D functions SPSO

was provided with a niche radius value normally set to be less

than the distance between two closest global optima. However,

for higher dimensional functions with uneven distributions of

global optima, too small niche radius is likely to create too

many small niches, resulting in premature convergence. As-

suming that no prior knowledge about the distribution of global

peaks is readily available, for higher dimensional functions,

we simply used the same niche radius values, which were

empirically found optimal for the 2-D function counterparts.

D. Performance Measures

To compare the performance of the proposed lbest niching

PSOs with those of SPSO and FER-PSO, we first allow a user

to specify a level of accuracy (typically 0 < ǫ ≤ 1), i.e., how

close the computed solutions to the known global peaks are.

If the distance from a computed solution to a known global

optimum is below the specified ǫ, then we can consider the

peak is found. For only the purpose of measuring performance,

we make use of an algorithm for identifying species seeds [16],

in order to check if a niching algorithm has located all known

global peaks. Basically at the end of each run, this algorithm

is invoked to first sort all individuals in the population in

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

LI: NICHING WITHOUT NICHING PARAMETERS: PARTICLE SWARM OPTIMIZATION USING A RING TOPOLOGY 161

(a) iteration 1 (b) iteration 5 (c) iteration 20

Fig. 9. Niching behavior induced by r3pso on the f1. Majority of the 20 particle personal bests gradually move toward the global optimum.

decreasing order of fitness values. With a prespecified niche

radius, we iterate from the best-fit individual on the sorted list,

to check if any other individuals are within the niche radius

from it. If so, they are tagged as belonging to the same species.

These individuals are then excluded from the sorted list. The

next best-fit individual on the sorted list is then considered,

and the above process is repeated. The algorithm terminates

when there is no individual left.

As long as the niche radius r is set to a value not greater

than the distance between two closest global peaks, individuals

on two found global peaks would be treated as from different

species. The species seeds identification algorithm will pro-

duce a list of best as well as different personal best positions

based on the prespecified niche radius and a given list of all

personal best positions from the swarm population. For the test

functions in Table I, since the exact number of global peaks is

known a priori, and also roughly how far apart between two

closest global peaks, a niching algorithm’s performance can be

measured in terms of the number of evaluations required to

achieve a given accuracy ǫ for all known global peaks for

a run. In this case, we only need to check species seeds,

which are the dominant particles sufficiently different from

each other. We can determine if a global peak is found by

checking each species seed to see if it is close enough to

a known different global peak. Note again that this species

seeds identification algorithm is only used for performance

measurement in determining if a sufficient number of global

peaks has been found, but not in any part of the optimization

procedure.

For real-world problems, it is not uncommon that the num-

ber of global optima is unknown. However, the above species

seeds identification algorithm is still useful. A practitioner can

still run a niching algorithm for a certain number of iterations

before invoking this algorithm (with a reasonably small niche

radius value). Presuming that the best-fit individual has found

a global optimum (this is often the case for low dimensional

problems), then seeds on the sorted list can be checked against

this best-fit seed to see if they are good enough in fitness as

well as sufficiently different.

The performance of all compared PSO niching algorithms is

measured in terms of the success rate, which is the percentage

of runs in which all global peaks are successfully located. Note

that the success rate can depend on the specified ǫ. For a more

relaxed (or higher value) of ǫ, an algorithm is more likely to

have a higher success rate.

For more challenging functions, it is possible that success

rate may become 0 if not all peaks are found in any run. In

such a case, the number of global peaks found in a run is

recorded, and averaged over 50 runs.

VII. Numerical Results

This section summarizes the results and analysis on the

experiments carried out.

A. 1-D Deceptive Functions

1) f1: For f1, if ǫ is set to 0.1, i.e., r3pso has 100%

success rate in locating the global peak. However, if ǫ is set

to 0.0001, the success rate drops to 94%. This shows that the

fine-tuning ability of an lbest PSO such as r3pso is not so

good, but it has always managed to find at least some points

in a very close vicinity of the global peak (x = 20).

Fig. 9 shows a simulation run of the r3pso on f1 using only

20 particles. In just 20 iterations, the population managed to

find the true global optimum. Fig. 10 shows that most �pn have

moved to the vicinity of the global peak, though the catchment

area of the global peak is only 1/3 of that of the local peak.

Our experiment shows that even the gbest PSO performed

remarkably well on f1. With a population size of 50, gbest

PSO always located the true global optimum, instead of being

attracted to the local peak. If it runs long enough, all particles

will end up on the slope of the global peak (Fig. 11). This

contrasts with the fact that often a simple GA is being misled

to the local peak due to the 75% of the initial population fall

on the slope leading up to the local peak. The gbest PSO did

not lose good solutions found largely due to its use of personal

bests, but a GA does not have such a mechanism.

With a respectable ǫ set to 0.1, r3pso, r2pso, gbest PSO,

and SPSO were all able to locate the true global optimum with

100% success rate. SPSO was the fastest in locating the global

peak. However, SPSO requires a user to supply a niche radius

value.

If r3pso−lhc is used, then both the global and local optima

will be located with 100% success rate.

The results on f2 are similar to those of f1, hence we will

not show them here.

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

162 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 1, FEBRUARY 2010

(a) iteration 1 (b) iteration 5 (c) iteration 20

Fig. 10. Index-position plot for the same run as given in Fig. 9 shows that most of the niches are formed around the global optimum.

(a) (b)

Fig. 11. gbest PSO on the two-peak trap function at iteration 60. (a)
Variable-fitness plot. (b) Index-position plot.

(a) (b)

Fig. 12. r3pso on the five-uneven-peak-trap function f3 at iteration 100
(with a population size of 50). (a) Variable-fitness plot. (b) Index-position
plot.

2) f3: f3 has five peaks, of which two are global peaks and

three are local peaks. It presents additional challenges than f1

and f2 as two global peaks must be located, while avoiding the

three local peaks. Fig. 12(a) shows that r3pso can locate both

global peaks without any difficulty. It is interesting to see that

all �pn are located on the two global peaks (i.e., none on local

peaks), which helps the population remain on the two global

peaks stably. However, particles on local peaks are unstable,

as their corresponding �pn on the slopes of two global peaks

continue to attract them to move toward the two global peaks.

Fig. 12(b) shows clearly that there are three or four stable

niches formed around each global peak.

Local hill climbers such as r2pso − lhc and r3pso − lhc

were shown to be more effective in locating both global and

(a) (b)

Fig. 13. r2pso − lhc on the five-uneven-peak-trap function f3 at iteration
20 (with a population size of 50). (a) Variable-fitness plot. (b) Index-position
plot.

local peaks. Fig. 13 shows that r2pso− lhc was able to locate

all global and local peaks. Since r2pso − lhc has only two

members for each neighborhood, many small niches were

formed around the five peaks. Each niche is in fact a local

hill climber, i.e., an independent PSO with a population size

of just two.

B. 1-D Multimodal Functions

f4, f5, f6, and f7 were introduced by Deb [42] for testing

his sharing GA. f4 and f6 both have five global peaks. Most

interesting is that f6s peaks are unevenly spaced. As a result,

this would require any niching method that relies on a uniform

niche radius, to choose an appropriate niche radius value.

Choosing a value either too large or small will cause the

niching method either being unable to distinguish between two

peaks, or prematurely converged. Figs. 14 and 15 show that

r3pso had no difficulty in locating all global peaks on all

Deb’s four functions. For f5 and f7, particles were attracted

toward the single global peak because it has the best-fit �pn.

Since r3pso has overlapping neighborhoods, the influence

from the best-fit �pn on the global peak eventually took over

the population.

For locating not only the global peak, but also the local

peaks in f5 and f7, local hill climbers r2pso − lhc and

r3pso − lhc performed consistently well. Since each niche

performs searches independently of each other, particles that

have located lower peaks are not influenced by particles on

the more dominant peaks. Fig. 16 shows that r2pso − lhc

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

LI: NICHING WITHOUT NICHING PARAMETERS: PARTICLE SWARM OPTIMIZATION USING A RING TOPOLOGY 163

(a) f4 (b) f5 (c) f6 (d) f7

Fig. 14. r3pso (with a population size of 50) on the Deb’s four functions (f4 to f7) after 100 iterations.

(a) f4 (b) f5 (c) f6 (d) f7

Fig. 15. Index-position plot for each function shown in Fig. 14.

(a) f5 (b) f7

Fig. 16. r2pso − lhc on f5 and f7 respectively, after 100 iterations (with a
population size of 50).

performed well on these 2 functions. r2pso− lhc did not have

any difficulty with the uneven distances between the peaks.

C. 2-D Multimodal Functions, f8 to f8

The results on f8 Himmelblau suggest that f8 favors more

r2pso − lhc, r3pso − lhc, FER-PSO, and SPSO than the

more connected r2pso and r3pso. Since two out of the four

global peaks are very close to each other, for r2pso and

r3pso there is a tendency for particles on these two peaks to

merge into one niche. This suggests that for functions having

very close global peaks, more restricted or even independent

local hill climbers might be better optimizers. On the other

hand, for functions having many local peaks and only a few

distant global peaks, in order to escape local peaks, more

connected topologies would be better suited. For example,

in the case of f10 Shekel’s foxholes function that has 16

evenly distributed peaks (including one global peak), r2pso

and r3pso outperformed their local hill climber counterparts.

These results are shown in Table II, which is described in the

next section.

D. Success Rates

Table II summarizes the success rates on f1 to f10. A

population size of 50 was used. The PSO niching algorithms

were run until all known global peaks were found, or a

maximum of 100 000 evaluations were reached. Note that ǫ

and r (niche radius) values were chosen in order to maximally

measure the ability of each algorithm in forming niches in the

vicinities of all known global peaks. The uses of ǫ and r were

purely for performance measurements. Table II shows that all

ring topology based lbest PSO algorithms and FER-PSO give

comparable or better performance than SPSO. Most noticeably

is that SPSO gives inconsistent performances across different

functions, with very poor performance on f1, f2, f3, and f10,

though scoring perfectly for f4 to f9. A close look reveals

that SPSO has difficulty in handling situations where a global

peak is located at the boundary of the search space, such as

f1 to f3. For f10, SPSO was more inclined to be trapped to

some of the 15 local peaks than the ring topology lbest PSOs.

Table III shows the number of evaluations for each algorithm

to achieve the success rates presented in Table II. SPSO is

certainly the fastest for f4 to f9, but for other functions, the

ring topology lbest and FER-PSO are better. Two additional

factors are not considered here: 1) both SPSO and FER-

PSO would have a higher cost on sorting the population;

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

164 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 1, FEBRUARY 2010

TABLE II

Success Rates for f1 to f10 Functions

fnc ǫ r r2pso (%) r3pso (%) r2pso-lhc (%) r3pso-lhc (%) FER-PSO (%) SPSO (%)

f1 0.1 0.5 98 100 94 78 88 24

f2 0.1 0.5 100 96 98 88 100 22

f3 5 0.5 100 96 96 96 98 40

f4 0.01 0.01 100 100 100 100 100 100

f5 0.01 0.01 98 100 100 100 100 100

f6 0.01 0.01 98 98 100 100 100 100

f7 0.01 0.01 100 100 100 100 100 100

f8 0.1 0.5 92 74 100 98 98 100

f9 0.01 0.5 100 100 100 100 100 100

f10 0.01 0.5 100 100 72 78 100 50

TABLE III

Averaged Number of Evaluations Over 50 Runs (Mean and One Standard Error) for Results Presented in Table VII

fnc ǫ r r2pso r3pso r2pso-lhc r3pso-lhc FER-PSO SPSO

f1 0.1 0.5 3.46E+3(1974.95) 2.62E+03(874.07) 7.39E+03(3348.05) 2.32E+04(5834.66) 1.44E+04(4535.92) 7.72E+04(5859.19)

f2 0.1 0.5 2.96E+03(1520.06) 5.34E+03(2764.73) 4.34E+03(2229.64) 1.31E+04(4588.84) 2.11E+03(227.71) 7.83E+04(5856.06)

f3 5 0.5 9.78E+02(186.65) 4.65E+03(2784.21) 4.71E+03(2783.41) 6.73E+03(3088.01) 2.66E+03(1992.22) 6.33E+04(6773.53)

f4 0.01 0.01 3.76E+02(30.55) 4.43E+02(51.80) 3.96E+02(51.01) 4.47E+02(52.75) 3.84E+02(29.01) 3.55E+02(30.55)

f5 0.01 0.01 2.12E+03(1999.53) 1.41E+02(11.22) 1.43E+02(14.64) 1.44E+02(13.68) 1.70E+02(12.78) 1.27E+02(9.39)

f6 0.01 0.01 2.43E+03(1994.23) 2.44E+03(1994.73) 4.56E+02(33.73) 6.23E+02(273.13) 3.71E+02(31.72) 3.43E+02(23.91)

f7 0.01 0.01 1.75E+02(17.91) 1.60E+02(20.20) 1.78E+02(18.14) 1.62E+02(16.88) 1.89E+02(20.17) 1.44E+02(13.82)

f8 0.1 0.5 7.87E+03(2891.69) 2.14E+04(5467.19) 1.49E+03(138.32) 7.38E+03(3347.13) 5.07E+03(1945.99) 1.25E+03(45.95)

f9 0.01 0.5 6.19E+02(24.11) 6.84E+02(30.02) 6.18E+02(30.26) 6.50E+02(25.03) 9.65E+02(53.99) 6.53E+02(32.9)

f10 0.01 0.5 4.36E+03(559.98) 3.51E+03(453.55) 2.97E+04(6277.07) 2.48E+04(5738.45) 3.47E+03(336.15) 4.28E+04(6968.96)

and 2) SPSO was tuned with user specified niche radius

values, but no such parameter is used for the ring topology

lbest PSOs.

E. f11 2-D, 3-D, and f12 1-D

For more challenging functions f11 inverted Shubert 2-D

and 3-D, a population size of 500 was used. And for f12

inverted Vincent 1-D, a population size of 100 was used. As

Table IV shows that the best overall performer is r3pso. Even

r3pso − lhc did well. The worst performer is SPSO, even

though it was given the knowledge to specify a reasonable

niche radius r. Both FER-PSO and SPSO completely failed on

f11 inverted Shubert 3-D. Table V shows the averaged number

of evaluations for the corresponding results in Table IV.

Fig. 17 shows that r3pso was able to locate all 18 global

peaks on f11 inverted Shubert 2-D by iteration 75 in a single

run. Multiple emerged niches are clearly visible.

f11 inverted Shubert 4-D has 324 global peaks. Even with

a large population size, it was becoming difficult to find all

peaks in any run. Hence we measured the number of global

peaks found by each algorithm, instead of using success rate.

We used a population size of 1000, and ran all algorithms for

a maximum of 400 000 evaluations.

For f12 inverted Vincent 2-D and 3-D, there are 36 and

216 global peaks, respectively. The distances between these

global peaks are vastly different, making them difficult for any

niching algorithm relying on a uniform niche radius value. A

population size of 500 and 1000 was used for f12 2-D and

3-D, respectively. All niching variants were run for 200 000

evaluations.

Table VI shows the number of global peaks (averaged over

50 runs) found by all PSO niching variants. None of them was

able to find all global peaks. All lbest PSOs gave much better

results than SPSO on f11 4-D, and comparable results on f12

2-D and 3-D. On f12 Vincent 2-D, Fig. 18 shows that r3pso

was able to develop stable niches on the majority of the global

peaks, without much concern to the vastly different distances

between these peaks.

F. Inverted Rastrigin Function

f13 the inverted Rastrigin function has only a single global

peak, and many local peaks. The number of local peaks

increases exponentially as the dimension increases. To locate

the single global optimum, niching algorithms will have to

overcome these local peaks. We carried out the following

experiment to study the effect of increasing dimensionality on

the performance. We assume that there is no prior knowledge

of the number of global peaks and local peaks, and neither the

distance between the closest global peaks. The only knowledge

we have is the upper and lower bounds of the variables to

be optimized. This is the only information we use to set an

estimated niche radius value. In this case, we set the niche

radius value for SPSO to 5.12, which is half of the distance

between the lower and upper bounds [we did not use (4),

as it assumes the number of optima is known a priori]. Of

course, this niche radius r should have no influence on the

performance of lbest PSOs. We set ǫ to 5, so that we consider

an algorithm has located the global peak if the difference

between the fitness of the global peak and the best-fit particle is

less than 5. Fig. 19 shows the success rates of all niching PSOs

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

LI: NICHING WITHOUT NICHING PARAMETERS: PARTICLE SWARM OPTIMIZATION USING A RING TOPOLOGY 165

TABLE IV

Success Rates on f11 Inverted Shubert 2-D and 3-D, and on f12 Inverted Vincent 1-D

fnc ǫ r r2pso (%) r3pso (%) r2pso-lhc (%) r3pso-lhc (%) FER-PSO (%) SPSO (%)

f11 (2-D) 0.1 0.5 90 98 98 100 56 49

f11 (3-D) 0.2 0.5 4 100 4 92 0 0

f12 (1-D) 0.01 0.2 94 86 92 90 88 84

TABLE V

Averaged Number of Evaluations Over 50 Runs (Mean and One Standard Error) for the Results Presented

fnc ǫ r r2pso r3pso r2pso-lhc r3pso-lhc FER-PSO SPSO

f11

(2-D)
0.1 0.5 5.59E+04(2676.00) 3.91E+04(1648.14) 3.78E+04(1480.85) 3.24E+04(581.97) 9.49E+04(1261.83) 6.16E+04(4463.33)

f11

(3-D)
0.2 0.5 1.99E+05(830.26) 7.40E+04(2343.35) 1.98E+05(1789.94) 8.13E+04(5849.36) 2.00E+05(0) 2.00E+05(0)

f12

(1-D)
0.01 0.2 8.31E+03(3371.59) 1.54E+04(4906.90) 9.60E+03(3824.11) 1.47E+04(4344.29) 1.30E+04(4601.37) 1.70E+04(5192.03)

TABLE VI

Averaged Number of Global Peak Solutions Found (Mean and One Standard Error)

fnc ǫ r r2pso r3pso r2pso-lhc r3pso-lhc SPSO

f11 (4-D) 0.2 0.5 115.8(1.62) 185.52(1.25) 136.78(1.37) 182.6(1.16) 4.5 (0.26)

f12 (2-D) 0.01 0.2 25.18(0.3) 22.82(0.25) 25.88(0.31) 24.78(0.36) 28.6(0.24)

f12 (3-D) 0.01 0.2 76.16(0.65) 66.68(0.66) 84.18(0.61) 82.1(0.56) 74.48(0.59)

TABLE VII

Averaged Number of Global Peak Solutions Found and Time Taken for the Hump Functions (Mean and One Standard Error)

Dims r2pso r3pso r2pso-lhc r3pso-lhc SPSO

8 No. of peaks found 3.68(0.16) 3.80(0.22) 3.60(0.14) 5.24(0.19) 5.56(0.20)

Time taken 6485.00(246.32) 6457.64(39.67) 5382.40(59.67) 5709.76(21.45) 11236.88(498.89)

10 No. of peaks found 2.74(0.19) 3.62(0.21) 0.82(0.13) 3.82(0.18) 4.10(0.20)

Time taken 8921.82(548.39) 8836.20(168.93) 9078.86(346.48) 8202.72(150.62) 38742.14(2249.15)

14 No. of peaks found 2.26(0.14) 2.66(0.16) 0.00(0.00) 1.62(0.16) 0.66(0.11)
Time taken 27205.36(2888.24) 19240.34(1690.72) 42029.00(1983.71) 32436.28(2561.68) 129112.42(2730.24)

18 No. of peaks found 0.60(0.12) 1.58(0.15) 0.00(0.00) 0.04(0.03) 0.00(0.00)
Time taken 91436.94(3721.06) 80859.68(3138.12) 96248.84(815.83) 83970.94(2202.69) 198891.58(4121.75)

20 No. of peaks found 0.16(0.05) 0.68(0.11) 0.00(0.00) 0.00(0.00) 0.00(0.00)
Time taken 150470.64(3352.18) 1144292.68(1898.63) 146460.56(834.42) 143922.56(1347.14) 293197.86(6064.52)

over increasing dimensions from 2 to 15. It is noticeable that

SPSOs performance degraded more rapidly than r2pso and

r3pso. The performance of two local hill climbers r2pso− lhc

and r3pso − lhc also degraded very quickly, which is not

surprising, as they have multiple independent optimizers each

consisting of just two and three particles, respectively. How-

ever, the better connected r2pso and r3pso fared better. The

results suggest that even if the goal is to locate a single global

peak in the presence of a massive number of local peaks,

and with no prior knowledge of the problem domain, it may

be preferable to use lbest PSOs using a ring topology, rather

than a niching method relying on a fixed niche radius value.

Especially r3pso showed a better scalability to increasing

dimensions.

The same experiment was repeated on the rotated version

of f13 inverted Rastrigin function. Comparing Fig. 20 with

Fig. 19, it can be noted that all niching algorithms suffered

from performance loss as a result of rotation of the function.

However, the best performers are still r3pso and r2pso. SPSOs

performance also suffered badly. As remarked by Clerc [21]

and Jason and Middendorf [48], the movements of particles

in a standard PSO have a clear dependency on the coordinate

axes. There is no exception for PSO niching algorithms.

Nevertheless, the ring topology-based lbest PSOs performed

better than SPSO.

G. Generic Hump Functions Up To 20 Dimensions

In the experiments on f14 the generic hump functions,

the radius of each peak was randomly chosen, however, the

distance between any two neighboring peaks must be at least

equal or greater than the radius of one of the two peaks. A

constant height hk = 1.0 and a constant shape factor αk = 1.0

were chosen. An algorithm is said to have found a peak if it

is able to find a solution at least within 0.1 times the radius

of the peak from the peak’s midpoint. The niche radius for

SPSO was set to 0.5. The population size for 8, 10, 14, 18,

and 20 dimensions were set to 300, 400, 500, 600, and 800,

respectively.

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

166 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 1, FEBRUARY 2010

(a) iteration 10 (b) iteration 50 (c) iteration 75

Fig. 17. Niching behavior of the r3pso (with a population size of 500) on the f11 Inverted Shubert 2-D function over a run.

(a) iteration 10 (b) iteration 50 (c) iteration 140

Fig. 18. Niching behavior of the r3pso (with a population size of 500) on f12 the inverted Vincent 2-D function over a run.

Fig. 19. Success rates for varying dimensions on f13 inverted Rastrigin
function.

Table VII shows the results on the hump functions. No

algorithms were able to find all 10 peaks, hence the number

of peaks found was used as the performance indicator. The

averaged time taken (i.e., milliseconds) by each algorithm is

also included. It can be noted that SPSO performed better than

lbest ring topology based PSOs on dimensions 8 and 10. How-

ever, as the dimension increased further, r3pso became the

best performer, which shows r3pso scaled better than SPSO.

All algorithms suffered from performance degradation as the

dimension increased, among which the local hill climbers

Fig. 20. Success rates for varying dimensions on f13 rotated inverted Rast-
rigin function.

r2pso−lhc and r3pso−lhc were the worst, as one would have

expected. It is also noted that SPSO took a considerable longer

time than lbest PSOs, because it had to sort all individuals in

a population at each iteration.

H. Maintaining Found Optima

A good niching algorithm should be able to locate global

optima and maintain them until the end of a run (see also

Section II). All ring topology lbest PSO niching algorithms

fulfil this requirement, because the memory-swarm (in other

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

LI: NICHING WITHOUT NICHING PARAMETERS: PARTICLE SWARM OPTIMIZATION USING A RING TOPOLOGY 167

Fig. 21. Number of global optima found by r3pso over five independent
runs, on f11 inverted Shubert 2-D function (using a population size of 300).

Fig. 22. Success rates for varying population sizes on f11 inverted Shubert
2-D function.

words the population of personal bests) forms a stable network

retaining the best positions (i.e., personal best positions) found

so far by the swarm population. These personal best positions

are only updated if their corresponding current positions are

better. Otherwise, they remain unchanged. This means a parti-

cle will never lose the best position it has found so far. A ring

topology lbest PSO allows different personal best positions to

coexist on a multimodal fitness landscape. In contrast, personal

best positions in a standard PSO tend to become homogenous

eventually converging toward the single global optimum.

Fig. 21 shows five independent runs of r3pso on f11 the

inverted Shubert 2-D function. For each run, r3pso was able

to continuously locate more global peaks and maintain them

until all 18 global peaks were found. All ring topology lbest

PSO niching algorithms share this property; therefore we will

not show other results.

I. Effect of Varying Population Size

For the ring topology lbest PSO niching algorithms, one

important parameter that needs to be specified is population

size. Given a reasonably large population size, these PSOs

are able to locate global optima (and/or local optima) reliably,

especially for low dimensional problems. Fig. 22 shows that

on f11 the inverted Shubert 2-D, with a population size of 450

or above, the ring topology lbest PSOs achieved 90% or above

success rates. In contrast, even with a population size of 500,

SPSO only managed to achieve 60% success rate. Another

similar niching algorithm, SCGA [13], which also required a

user to specify a niche radius parameter, needed a population

size of 1000 or above in order to locate all 18 global peaks.

It is worth noting that the local hill-climber variants r2pso−
lhc and r3pso − lhc performed better than r2pso and r3pso

on f11 2-D. This suggests that when handling low dimensional

problems with multiple global optima in the presence of many

local optima, it may be more effective to have multiple local

hill climbers each optimizing independently than a niching

algorithm with a more connected neighborhood topology.

VIII. Conclusion

Niching as an important technique for multimodal optimiza-

tion has been used widely in the evolutionary computation

research community. Many niching methods, however, are dif-

ficult to use in practice because they require prior knowledge to

specify certain niching parameters. This paper has addressed

this issue by proposing lbest PSO niching algorithms using

a ring topology, which eliminate the need to specify any

niching parameters. We have demonstrated that the lbest PSO

algorithms with a ring topology are able to induce stable

niching behavior. The lbest PSO algorithms with an overlap-

ping ring topology (e.g., r2pso and r3pso) are able to locate

multiple global optima, given a reasonably large population

size, whereas the lbest PSO algorithms with a nonoverlapping

ring topology (e.g., r2pso− lhc and r3pso− lhc) can be used

to locate global as well as local optima, especially for low

dimensional problems. Experimental studies carried out on a

range of multimodal test functions suggest that the lbest PSO

algorithms with a ring topology can provide comparable or

better, and more consistent performance, than some existing

niching PSO algorithms over these test functions. Even with

a comparable or smaller population size, the proposed algo-

rithms can outperform a niching algorithm using a fixed niche

radius, in terms of success rate and the actual number of global

optima found. More importantly, one major advantage over

existing niching algorithms is that no niching parameters are

required. This should pave the way for more widespread use

of this kind of niching algorithms in real-world applications.

As far as we know, this paper is the first attempt showing

that lbest PSOs with ring topology are able to induce stable

niching behavior.1 The findings of this research suggest that

local memory and slow communication topology are the two

key elements for the success of the proposed lbest PSO niching

algorithms. In fact it does not have to be PSO functioning

as a local optimizer. It is foreseeable that other population-

based stochastic optimization methods characterized by these

two key elements can be also used to induce stable niching

behavior. Of course, the proposed ring topology based PSO

is no panacea. If one has the domain knowledge on how

to set niching parameters, using such knowledge might give

even better performance. However, our study here assumes

that there is no such prior knowledge readily available.

Since lbest PSO niching algorithms with an overlapping or

nonoverlapping ring topology tend to generate multiple small

1The source code can be downloaded from the author’s website:
http://goanna.cs.rmit.edu.au/˜xiaodong/rpso/.

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

168 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 1, FEBRUARY 2010

niches, one interesting future research topic will be studying

how to increase the search capability of small niches so that the

performance of these niches will scale well with increasing di-

mensions. We will be also interested in developing techniques

to adapt or self-adapt the population size, as this is the only

parameter that still needs to be supplied by a user. It will

be also interesting to apply the ring topology based PSO to

tracking multiple peaks in a dynamic environment [16].

Acknowledgment

The author is grateful to Prof. K. Deb for his valuable

comments and suggestions, via personal communication, and

T. Nest for his careful proofreading of the paper.

References

[1] J. Kennedy and R. Eberhart, Swarm Intelligence. San Mateo, CA:
Morgan Kaufmann, 2001.

[2] S. W. Mahfoud, “Niching methods for genetic algorithms,” Ph.D.
dissertation, Univ. Illinois, Urbana, IL, 1995. [Online]. Available:
citeseer.ist.psu.edu/mahfoud95niching.html

[3] K. Koper and M. Wysession, “Multimodal function optimization with
a niching genetic algorithm: a seis-mological example,” Bull. Seismol.

Soc. Am., vol. 89, pp. 978–988, 1999.
[4] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched Pareto

genetic algorithm for multiobjective optimization,” in Proc. 1st

IEEE Conf. Evol. Comput., IEEE World Congr. Comput. Intell.,
vol. 1. Piscataway, NJ, Jun. 1994, pp. 82–87. [Online]. Available:
citeseer.ist.psu.edu/horn94niched.html

[5] K. A. De Jong, “An analysis of the behavior of a class of genetic adaptive
systems,” Ph.D. dissertation, Univ. Michigan, Ann Arbor, MI, 1975.

[6] S. W. Mahfoud, “Crowding and preselection revisited,” in Proc. Parall.

Prob. Solv. Nat. 2, Amsterdam: North-Holland, 1992, pp. 27–36.
[Online]. Available: citeseer.ist.psu.edu/mahfoud92crowding.html

[7] D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing
for multimodal function optimization,” in Proc. 2nd Int. Conf. Genet.

Algorith., Cambridge, MA, 1987, pp. 41–49.
[8] D. Beasley, D. R. Bull, and R. R. Martin. (1993, Summer). A

sequential niche technique for multimodal function optimization.
Evol. Comput. [Online]. 1(2), pp. 101–125, 1993. Available:
citeseer.ist.psu.edu/beasley93sequential.html

[9] G. R. Harik, “Finding multimodal solutions using restricted tournament
selection,” in Proc. 6th Int. Conf. Genet. Algorith., San Francisco,
CA: Morgan Kaufmann, Jul. 1995, pp. 24–31. [Online]. Available:
citeseer.ist.psu.edu/harik95finding.html

[10] M. Bessaou, A. Petrowski, and P. Siarry, “Island model cooperating with
speciation for multimodal optimization,” in Proc. 6th Int. Conf. Parall.

Prob. Solv. from Nat.: PPSN VI, Paris, France: Springer Verlag, 2000,
pp. 16–20. [Online]. Available: citeseer.ist.psu.edu/bessaou00island.html

[11] X. Yin and N. Germay, “A fast genetic algorithm with sharing scheme
using cluster analysis methods in multi-modal function optimization,” in
Proc. Int. Conf. Artif. Neural Netwo. Genet. Algorith., 1993, pp. 450–
457.

[12] A. Petrowski, “A clearing procedure as a niching method for genetic
algorithms,” in Proc. 3rd IEEE Int. Conf. Evol. Comput., Nagoya, Japan,
May 1996, pp. 798–803.

[13] J.-P. Li, M. E. Balazs, G. T. Parks, and P. J. Clarkson, “A species
conserving genetic algorithm for multimodal function optimization,”
Evol. Comput., vol. 10, no. 3, pp. 207–234, 2002.

[14] A. E. R. Brits and F. van den Bergh, “A niching particle swarm
optimizer,” in Proc. 4th Asia-Pacif. Conf. Simul. Evol. Learn. (SEAL

2002), Singapore, Feb. 2002, pp. 692–696.
[15] X. Li, “Adaptively choosing neighborhood bests using species in a

particle swarm optimizer for multimodal function optimization,” in Proc.

Genet. Evol. Comput. Conf. 2004, LNCS 3102. pp. 105–116.
[16] D. Parrott and X. Li, “Locating and tracking multiple dynamic optima by

a particle swarm model using speciation,” IEEE Trans. Evol. Comput.,
vol. 10, no. 4, pp. 440–458, Aug. 2006.

[17] J. Kennedy, “Stereotyping: Improving particle swarm performance with
cluster analysis,” in Proc. IEEE Int. Conf. Evol. Comput., La Jolla, CA,
2000, pp. 303–308.

[18] R. Brits, A. Negelbrecht, and F. van den Bergh, “Locating multiple
optima using particle swarm optimization,” Appl. Math. Comput., vol.
189, pp. 1859–1883, 2007.

[19] B. Sareni and L. Krahenbuhl, “Fitness sharing and niching methods
revisited,” IEEE Trans. Evol. Comput., vol. 2, no. 3, pp. 97–106, Sep.
1998.

[20] A. Engelbrecht, Fundamentals of Computational Swarm Intelligence.
New York: Wiley, 2005.

[21] M. Clerc, Particle Swarm Optimization. London, U.K.: ISTE Ltd., 2006.
[22] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm

theory,” in Proc. 6th Int. Symp. Micromach. Hum. Sci., Nagoya, Japan,
1995, pp. 39–43.

[23] J. Kennedy and R. Mendes, “Population structure and particle
swarm performance,” in Proc. 2002 Cong. Evol. Comput., 2002,
pp. 1671–1675.

[24] A. Engelbrecht, B. Masiye, and G. Pampara, “Niching ability of basic
particle swarm optimization algorithms,” in Proc. IEEE Swarm Intell.

Symp., 2005, Pretoria, South Africa, Jun. 2005, pp. 1–4.
[25] D. Cavicchio, “Adapting search using simulated evolution,” Ph.D. dis-

sertation, Univ. Michigan, Ann Arbor, 1970.
[26] J. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor:

University of Michigan Press, 1975.
[27] D. E. Goldberg, K. Deb, and J. Horn, “Massive multimodality,

deception, and genetic algorithms,” in Proc. Parall. Prob. Solv. Nat.

2 (PPSN 2). Amsterdam: Elsevier Science Publishers, B. V., 1992.
[Online]. Available: citeseer.ist.psu.edu/goldberg92massive.html

[28] P. J. Darwen and X. Yao, “A Dilemma for Fitness Sharing with a Scaling
Function,” in Proc. 2nd IEEE Int. Conf. Evol. Comput., Piscataway, NJ,
1995. [Online]. Available: citeseer.ist.psu.edu/darwen95dilemma.html

[29] G. Singh and K. Deb, “Comparisons of multi-modal optimization
algorithms based on evolutionary algorithms,” in Proc. Genet. Evol.

Comput. Conf. 2006 (GECCO ’06), Washington D.C., pp. 1305–1312.
[30] M. Jelasity and J. Dombi (1998). GAS, a concept on modeling

species in genetic algorithms. Artif. Intell. [Online]. 99(1). Available:
citeseer.ist.psu.edu/jelasity98gas.html

[31] O. Shir and T. Bäck, “Niche radius adaptation in the cms-es niching
algorithm,” in Proc. 9th Int. Conf. Parall. Prob. Solv. Nat. (PPSN), LNCS
4193. Reykjavik, Iceland: Springer, 2006, pp. 142–151.

[32] S. Bird and X. Li, “Adaptively choosing niching parameters in
a PSO,” in Proc. Genet. Evol. Comput. Conf. (GECCO ’06),
Seattle, WA: ACM, pp. 3–10. [Online]. Available: http://doi.acm.org/
10.1145/1143997.1143999

[33] S. Bird and X. Li, “Enhancing the robustness of a speciation-based
PSO,” in Proc. 2006 IEEE Cong. Evol. Comput., Vancouver, BC,
Canada: IEEE Press, Jul. 16–21, 2006, pp. 843–850. [Online].
Available: http://ieeexplore.ieee.org/servlet/opac?punumber=11108

[34] M. Clerc and J. Kennedy, “The particle swarm—explosion, stability, and
convergence in a multidimensional complex space,” IEEE Trans. Evol.

Comput., vol. 6, no. 1, pp. 58–73, Feb. 2002.
[35] K. Parsopoulos and M. Vrahatis, “Modification of the particle swarm

optimizer for locating all the global minima,” Artificial Neural Networks

and Genetic Algorithms, Springer, 2001, pp. 324–327.
[36] K. Parsopoulos and M. Vrahatis, “On the computation of all global

minimizers through particle swarm optimization,” IEEE Trans. Evol.

Comput., vol. 8, no. 3, pp. 211–224, Jun. 2004.
[37] R. Brits, A. Negelbrecht, and F. van den Bergh, “Solving systems of

unconstrained equations using particle swarm optimizers,” in Proc. IEEE

Conf. Syst., Man, Cybernet., Pretoria, South Africa, Oct. 2002, pp. 102–
107.

[38] X. Li, “Multimodal function optimization based on fitness-euclidean
distance ratio,” in Proc. Genet. Evol. Comput. Conf. 2007, pp. 78–
85.

[39] I. Schoeman and A. Engelbrecht, “Using vector operations to identify
niches for particle swarm optimization,” in Proc. 2004 IEEE Conf.

Cybernet. Intell. Syst., Singapore, Dec. 2004, pp. 361–366.
[40] Y. Davidor, “A naturally occurring niche & species phenomenon: The

model and first results,” in Proc. 4th Int. Conf. Genet. Algorith., San
Mateo, CA: Morgan Kaufmann, Jul. 1991, pp. 257–263.

[41] Z. Perry, “Experimental study of speciation in ecological niche theory
using genetic algorithms (doctoral dissertation),” Ph.D. dissertation,
Univ. Michigan, Ann Arbor, 1984.

[42] K. Deb, “Genetic algorithms in multimodal function optimization, the
Clearinghouse for Genetic Algorithms,” M.S thesis and Rep. 89002,
Univ. Alabama, Tuscaloosa, 1989.

[43] K. Deb and D. Goldberg, “An investigation of niche and species
formation in genetic function optimization,” in Proc. 3rd Int. Conf.

Genet. Algorith., 1989, pp. 42–50.

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

LI: NICHING WITHOUT NICHING PARAMETERS: PARTICLE SWARM OPTIMIZATION USING A RING TOPOLOGY 169

[44] A. W. Iorio and X. Li, “Rotated test problems for assessing the
performance of multiobjective optimization algorithms,” in Proc. 8th

Annu. Conf. Genet. Evol. Comput. (GECCO ’06), New York, pp. 683–
690.

[45] D. Ackley, “An empirical study of bit vector function optimization, in
Genetic Algorithms Simulated Annealing, London, U.K.: Pitman, 1987,
pp. 170–204.

[46] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution

Programs. New York: Springer-Verlag, 1996.
[47] A. Törn and A. Zilinskas, Global Optimization, volume 350. New York:

Springer-Verlag, 1987.
[48] S. Jason and M. Middendorf, “On trajectories of particles in PSO,” in

Proc. 2007 IEEE Swarm Intell. Symp. (SIS 2007). Piscataway, NJ: IEEE
Service Center, Feb. 2007, pp. 38–44.

Xiaodong Li (SM’07) received the B.Sc. degree
from Xidian University, Xi’an, China, in 1988, and
the Dip.Com. and Ph.D. degrees in information
science from the University of Otago, Dunedin, New
Zealand, in 1992 and 1998, respectively.

Currently, he is with the School of Computer Sci-
ence and Information Technology, RMIT University,
Melbourne, Australia. His research interests include
evolutionary computation, neural networks, complex
systems, and swarm intelligence.

Dr. Li is an Associate Editor of the IEEE Trans-

actions on Evolutionary Computation and International Journal of

Swarm Intelligence Research. He is a Member of the IASR Board of Editors
for the Journal of Advanced Research in Evolutionary Algorithms.

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

