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The class of standard braided vector spaces, introduced by Andruskiewitsch and
the author in 2007 to understand the proof of a theorem of Heckenberger, is
slightly more general than the class of braided vector spaces of Cartan type.
In the present paper, we classify standard braided vector spaces with finite-
dimensional Nichols algebra. For any such braided vector space, we give a PBW
basis, a closed formula of the dimension and a presentation by generators and
relations of the associated Nichols algebra.
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Introduction

A breakthrough in the development of the theory of Hopf algebras occurred with
the discovery of quantized enveloping algebras [Drinfel’d 1987; Jimbo 1985]. This
special class of Hopf algebras has been intensively studied by many authors and
from many points of view. In particular, finite-dimensional analogues of quantized
enveloping algebras were introduced and investigated by Lusztig [1990a; 1990b].

About ten year ago, a classification program of pointed Hopf algebras was
launched by Andruskiewitsch and Schneider [1998] (see also [Andruskiewitsch
and Schneider 2002b]). The success of this program depends on finding solutions
to several questions, among them:
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Question 1 [Andruskiewitsch 2002, Question 5.9]. Given a braided vector space
of diagonal type V, such that the entries of its matrix are roots of unity, compute
the dimension of the associated Nichols algebra B(V). If it is finite, give a nice
presentation of ‘B(V).

Partial answers to this question were given in [Andruskiewitsch and Schneider
2000; Heckenberger 2006b] for the class of braided vector spaces of Cartan type.
These answers were already crucial to proving a classification theorem for finite-
dimensional Hopf algebras whose group is abelian with prime divisors of the order
great than 7 [Andruskiewitsch and Schneider 2005]. Later, a complete answer to
the first part of Question 1 was given in [Heckenberger 2006a].

The notion of a standard braided vector space, a special kind of diagonal braided
vector space, was introduced in [Andruskiewitsch and Angiono 2008], and is re-
viewed in Definition 3.5 below. This class includes properly the class of braided
vector spaces of Cartan type.

The purpose of this paper is to develop from scratch the theory of standard
braided vector spaces. Here are our main contributions:

» We give a complete classification of standard braided vector spaces with finite-
dimensional Nichols algebras. As usual, we may assume the connectedness of
the corresponding braiding. It turns out that standard braided vector spaces are
of Cartan type when the associated Cartan matrix is of type C, D, E or F, see
Proposition 3.8. For types A, B, G there are standard braided vector spaces not
of Cartan type; these are listed in Propositions 3.9, 3.10 and 3.11. Those of type
Aj and B, appeared already in [Grana 2000]. Our classification does not rely
on [Heckenberger 2006a], but we can identify our examples in the tables of that
reference.

e We describe a concrete PBW (Poincaré—Birkhoff—Witt) basis of the Nichols
algebra of a standard braided vector space as in the previous point; this follows
from the general theory of Kharchenko [1999] together with [Heckenberger
2006b, Theorem 1]. As an application, we give closed formulas for the di-
mension of these Nichols algebras.

o We present a concrete set of defining relations of the Nichols algebras of stan-
dard braided vector spaces as in the previous points. This is an answer to the
second part of Question 1 in the standard case. We note that this seems to be
new even for Cartan type, for some values of the roots of unity appearing in the
picture. Essentially, these relations are either quantum Serre relations or powers
of root vectors; but in some cases, there are some substitutes of the quantum
Serre relations due to the smallness of the intervening root vectors. Some of
these substitutes can be recognized already in the relations in [Andruskiewitsch
and Ddscdlescu 2005].
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Here is the plan of this article. We start by collecting necessary tools. Namely,
we recall the definition of Lyndon words and give some properties about them, such
as the Shirshov decomposition, in Section 1A. Next, in Section 1B, we discuss
the notions of hyperletter and hyperword, following [Kharchenko 1999] (where
they are called superletter and superword); these are certain iterations of braided
commutators applied to Lyndon words. In Section 1C, a PBW basis is given for
any quotient of the tensor algebra of a diagonal braided vector space V by a Hopf
ideal using these hyperwords. This applies in particular to Nichols algebras.

In Section 2, after some technical preparations, we present a transformation of a
braided graded Hopf algebra into another, with different space of degree one. This
generalizes an analogous transformation for Nichols algebras given in [Hecken-
berger 2006b, Proposition 1]; see Section 2C.

In Section 3 we classify standard braided vector spaces with finite-dimensional
Nichols algebra. In Section 3A, we prove that if the set of PBW generators is
finite, the associated generalized Cartan matrix is of finite type. So in Section
3B we obtain all the standard braidings associated to Nichols algebras of finite
dimension.

Section 4 is devoted to PBW bases of Nichols algebras of standard braided vector
spaces with finite Cartan matrix. In Section 4A we prove that there is exactly one
PBW generator whose degree corresponds to each positive root associated to the
finite Cartan matrix. We give a set of PBW generators in Section 4B, following a
nice presentation from [Lalonde and Ram 1995]. As a consequence, we compute
the dimension in Section 4C.

The main result of this paper is the explicit presentation by generators and re-
lations of Nichols algebras of standard braided vector spaces with finite Cartan
matrix, given in Section 5. It relies on the explicit PBW basis and transformation
described in Section 2C. Section 5A states some relations for Nichols algebras of
standard braidings and proves facts about the coproduct. Sections SB—5D contain
the explicit presentation for types Ag, By and G, respectively. For this, we estab-
lish relations among the elements of the PBW basis, inspired in [Andruskiewitsch
and Ddscdlescu 2005] and [Grafia 2000]. We finally prove the presentation in the
case of Cartan type in Section SE. To our knowledge, this is the first self-contained
exposition of Nichols algebras of braided vector spaces of Cartan type.

Notation. We fix an algebraically closed field k of characteristic 0; all vector
spaces, Hopf algebras and tensor products are considered over k.
For each N > 0, Gy denotes the set of primitive N-th roots of unity in k.
GivenneNand g €k, g ¢ Ug< <, Gj, we deﬁne

my o gt =TT« d (k), =
(j)q ©gt i—fyg here (! H( o nd 0= ngq



38 Ivan Ezequiel Angiono

We define
h— 1 >
t) = ek[t], heN; t) i =——= 5 e k[[t].
an(r) 1= —— €kl] Goo (1) = 7 Z(; 1
For each @ € N and each n = (n1,...,ng) € 7%, we set x" = x{'---x;’ €
k[[xlil, ... ,x;tl]]. For each Zg—graded vector spaces ‘B, we denote by Hy =

> ne 70 dimB"x" the Hilbert series associated to B.
Let C = @neNo Ciyj be a Ng-graded coalgebra, with projections 7, : C — C,.
Given i, j > 0, we denote by

Ai,j = (7l'i®7l'j)oA2C,'+j—> C;®C;,

the (i, j)-th component of the comultiplication.

1. PBW bases

Let A be an algebra, P, S C A and h: S +— NU {oco}. Let also < be a linear order
on S. Let us denote by B(P, S, <, h) the set

{psle'...sf’:teNo, s1>--->8, 5;€8, 0<e <h(s), peP}.

If B(P, S, <, h) is a linear basis of A, then we say that (P, S, <, h) is a set
of PBW generators with height h, and that B(P, S, <, h) is a PBW basis of A.
Occasionally, we shall simply say that S is a PBW basis of A.

In this section, following [Kharchenko 1999], we describe an appropriate PBW
basis of a braided graded Hopf algebra B =, B" such that B! =V, where V
is a braided vector space of diagonal type. This applies in particular, to the Nichols
algebra ®B(V). In Section 1A we recall the classical construction of Lyndon words.
Let V be a vector space together with a fixed basis. Then there is a basis of the
tensor algebra T (V) by certain words satisfying a special condition, called Lyndon
words. Each Lyndon word has a canonical decomposition as a product of a pair of
smaller Lyndon words, called the Shirshov decomposition.

We briefly recall the notions of a braided vector space (V, ¢) of diagonal type
and of a Nichols algebra in Section 1B. In Section 1C we recall the definition of
the hyperletter [/]., for any Lyndon word /; this is the braided commutator of the
hyperletters corresponding to the words in the Shirshov decomposition. Hyperlet-
ters are a set of generators for a PBW basis of 7'(V) and their classes form a PBW
basis of ‘B.

1A. Lyndon words. Let 8 € N. Let X be a set with 8 elements and fix an enumer-
ation xp, ..., xy of X; this induces a total order on X. Let X be the corresponding
vocabulary (the set of words with letters in X) and consider the lexicographical
order on X.
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Definition 1.1. An element u € X, u # 1, is called a Lyndon word if u is smaller
than any of its proper ends; that is, if u = vw, v, w € X — {1}, then u < w. The set
of Lyndon words is denoted by L.

We shall need the following properties of Lyndon words.

(1) Letu e X—X. Then u is Lyndon if and only if for any representation u = uu>,
with u1, up € X not empty, one has uuy =u < usu;.

(2) Any Lyndon word begins by its smallest letter.
3) fuy,up e L,uy <up,thenujuy € L.

The basic Theorem about Lyndon words, due to Lyndon, says that any word
u € X has a unique decomposition

u=hl.. .1, (1-1)

with/; € L, I, <---<l;, as aproduct of nonincreasing Lyndon words. This is called
the Lyndon decomposition of u € X; the [; € L appearing in the decomposition (1-1)
are called the Lyndon letters of u.

The lexicographical order of X turns out to be the same as the lexicographical
order in the Lyndon letters. Namely, if v =1/ .../, is the Lyndon decomposition
of v, then u < v if and only if

(i) the Lyndon decomposition of u is u =1y ...l;, for some 1 <i <r, or

(ii) the Lyndon decomposition of uisu =1y ...1; Il

i+1 -
seNand LI}, ,...,I,in L, with [ <I;.

.1, forsome 1 <i <r,

Here is another useful characterization of Lyndon words.

Lemma 1.2 [Kharchenko 1999, p. 6]. Let u € X — X. Then u € L if and only if
there exist uy, up € L with uy < up such that u = uyu,.

Definition 1.3. Let u € L — X. A decomposition u = ujuy, with uy, up € L such
that u, is the smallest end among those proper nonempty ends of u is called the
Shirshov decomposition of u.

Letu, v, w € L be such that u =vw. Then u =vw is the Shirshov decomposition
of u if and only if either v € X, or else if v = vjv; is the Shirshov decomposition
of v, then w < v,.

1B. Braided vector spaces of diagonal type and Nichols algebras. A braided vec-
tor space is a pair (V, ¢), where V is a vector space and ¢ € Aut(V ® V) is a solution
of the braid equation

(c®id)(id®c)(c®id) = (([d®c)(c®id)(id® c).
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We extend the braiding to ¢ : T(V)QT (V) — T(V)QT (V) in the usual way. If
x,y € T(V), the braided commutator is

[x, y]; := multiplication o (id —c¢) (x® ). (1-2)

Assume that dim V < oo and pick a basis X = {xy, ..., xg} of V; we may then
identify kX with T'(V). We consider the following gradings of the algebra T'(V):

(i) The usual Ny-grading T (V) = @nzo T"(V). If £ denotes the length of a word
in X, then T"(V) = D, cx ¢(x)=n K*-

(i) Let ey, ..., ey be the canonical basis of 7°. Then T(V) is also Ze—graded,
where the degree is determined by degx; =e;, 1 <i <.

A braided vector space (V,¢) is of diagonal type with respect to the basis
X1, ...Xxp if there exist g;; € k™ such that c(x; ®x;) = g;;x;®x;, 1 <1, j <0. Let
% :Z% x 7° — k* be the bilinear form determined by y (e;, e)=gqij, 1 <i,j<0.
Then

c(u®v) = y(degu,degv)oQu (1-3)
for any u, v € X, where g, , = y(degu, degv) € k*. In this case, the braided com-
mutator satisfies a “braided” Jacobi identity as well as braided derivation properties,
namely

[[u9 D]C 9 w]c = [M, [DQ w]C]C - X(a’ ﬁ)v [u7 w]C + X(ﬂ’ y) [u> w]C D’ (1_4)
[M,U w]c:[u,v]cw—i_x(as ﬁ)l) [u5w](:5 (1_5)
[uv,wl. = x (B, y)u, wlev+ulv,wl, (1-6)

for any homogeneous u, v, w € T(V), of degrees a, 5, 7 € N?, respectively.

We denote by ZOHQD the category of Yetter—Drinfeld module over H, where H
is a Hopf algebra with bijective antipode. Any V € Zoygb becomes a braided
vector space [Montgomery 1993]. If H is the group algebra of a finite abelian
group, then any V € Zoygb is a braided vector space of diagonal type. Indeed,
V = @,cr et Vi where V¥ = VNV, with V, = {o € V | d(0) = g ® v}
and VX ={v € V| g-v = y(g)vforall g € T'}. The braiding is given by
cx®y)=y(@yQux,forallxeV,,gel,ye V1, el.

Reciprocally, any braided vector space of diagonal type can be realized as a
Yetter—Drinfeld module over the group algebra of an abelian group.

IfV e Z@)@, the tensor algebra T (V) admits a unique structure of graded
braided Hopf algebra in 2% such that V € ®(V). Following [Andruskiewitsch
and Schneider 2002b], we consider the class G of all the homogeneous two-sided
ideals I C T (V) such that

« [ is generated by homogeneous elements of degree > 2,
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e [ is a Yetter—Drinfeld submodule of 7'(V), and
e [isaHopfideal: A(/) CIQT(V)+T(V)®I.

The Nichols algebra B(V) associated to V is the quotient of 7' (V) by the max-
imal element 7 (V) of G.

Let (V, ¢) be a braided vector space of diagonal type, and assume that g;; = g;;
for all 7, j. Let I" be the free abelian group of rank 8, with basis gy, ..., gg, and
define the characters yi,..., yg of I by

xig)=gqij, 1=i,j=<0.
Consider V as a Yetter-Drinfeld module over kI by defining x; € V{'.

Proposition 1.4 [Lusztig 1993, Proposition 1.2.3; Andruskiewitsch and Schneider
2002b, Proposition 2.10]. Let ay, ...,ap € k*. There is a unique bilinear form
(1): T(V)xT(V)— ksuch that (1]1) =1,

(xi|x;) = 6;ja; forall i, j, (1-7)
(xlyy) = (xy|¥) (x@)y) forall x, y, y' € T(V) (1-8)
(xx'ly) = (x|ya)) (x'ly) forall x, x', y € T(V). (1-9)

This form is symmetric and also satisfies
(xly)=0 forallxeT(V)g, yeT(V)y, g, hel', g#h. (1-10)
The quotient T(V)/1(V), where
I(V):={xeT(V):(x|y)=0forally e T(V)}

is the radical of the form, is canonically isomorphic to the Nichols algebra of V.
Thus, (| ) induces a nondegenerate bilinear form on 6(V) denoted by the same
name. 0

If (V, ¢) is of diagonal type, the ideal (V) is Z-homogeneous, since it is the
radical of a bilinear form in which the different Z’-homogeneous components are
orthogonal; see [Andruskiewitsch and Schneider 2004, Proposition 2.10]. Hence
B(V) is Z?-graded. The following statement, that we include for later reference,
is well-known.

Lemma 1.5. Let V be a braided vector space of diagonal type, and consider its
Nichols algebra B(V).

(a) If qi; is a root of unity of order N > 1, then xiN =0.
(b) Ifi # j, then (ad. x;)" (x;) = 0 if and only if
g [ O —dakaijain=0.

0<k<r—1
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(c) Ifi # j and qijqji = q};, for some r < 0, then (ad, x;)' " (x;) = 0. g

1C. PBW basis of a quotient of the tensor algebra by a Hopf ideal. Let (V, ¢)
be a braided vector space with a basis X = {x|, ..., xp}; identify T (V) with kX.
There is an important graded endomorphism []|. of kX given by

u ifu=1orucelX,
[u]e := [[U]Ca [w]c]c ifuelL, t(u)>1
€ and # = vw is the Shirshov decomposition;
[1]e ... [us)e if u € X— L with Lyndon decomposition u = uj ... u;.
Now assume that (V, c¢) is of diagonal type with respect to the basis xi, .. ., xg,

with matrix (g;;).

Definition 1.6. The hyperletter corresponding to [ € L is the element [[].. A
hyperword is a word in hyperletters, and a monotone hyperword is a hyperword of
the form W = [ul]lccl ...[um]f"’, where u; > - - - > u,,.

Remark 1.7. If u € L, then [u]. is a homogeneous polynomial with coefficients
inZ [qij] and [u]. e u+ kXi(L'f).

The hyperletters inherit the order from the Lyndon words; this induces in turn an
ordering in the hyperwords (the lexicographical order on the hyperletters). Now,
given monotone hyperwords W, V, it can be shown that

W=l[wile...[wyple >V =[v1lc...[v/]c,
where w; > --- > w,, 0] >---> vy, if and only if
W=wW]...Wy, >0="0]...0.

Furthermore, the principal word of the polynomial W, when decomposed as sum
of monomials, is w with coefficient 1.

Theorem 1.8 [Rosso 1999]. Let m, n € L, with m < n. Then the braided commuta-
tor [[m]¢, [n]c]. is a Z|qij)-linear combination of monotone hyperwords [l1]., .. .,
[l1c, i € L, such that

o the hyperletters of those hyperwords satisfy n > l; > mn,
o [mn]. appears in the expansion with a nonzero coefficient, and

o any hyperword appearing in this decomposition satisfies
deg(ly ...1,) = deg(mn). O

A crucial result of Rosso describes the behavior of the coproduct of 7' (V) in the
basis of hyperwords.
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Lemma 1.9 [Rosso 1999]. Letu € X, and u = uy...u, 0™, v,u; € L,v <u, <
-+« < uj the Lyndon decomposition of u. Then

A ([ule) =1®[ule+ D (’7) 20 P 728 B ) - T

i=0 qv,0
() j
+ > x) el bl
h=-=lp>v, liel
0<j<m

where each xl(lj )

,,,,,

.....

deg(xl(]j) l,,) +deg(/; .. .lpvj) =deg(u). O

As in [Ufer 2004], we consider another order in X it is implicit in [Kharchenko
1999].

Definition 1.10. Let u, v € X. We say that u > v if and only if either £(u) < £(v),
orelse £(u) =¢(v) and u > v (lexicographical order). This > is a total order, called
the deg-lex order.

Note that the empty word 1 is the maximal element for >. Also, this order is
invariant by right and left multiplication.

Let now [ be a proper ideal of T(V),andset R=T(V)/I. Letz : T(V) - R
be the canonical projection. Consider the subset of X given by

Gr=lueX:ug¢kX,, +1}.

(@) Ifue Gyand u =ovw, thenv, w € Gy.

(b) Any word u € Gy factorizes uniquely as a nonincreasing product of Lyndon
words in Gy.

Proposition 1.11 ([Kharchenko 1999]; see also [Rosso 1999)). The set t(Gy) is a
basis of R. O

In what follows, I is a Hopf ideal. We seek to find a PBW basis by hyperwords
of the quotient R of T' (V). For this, we look at the set

S =G;NL. (1-11)
We then define the function Ay : Sy — {2,3, ...} U{oo} by
hi(u):=min{t e N:u' € kX, +1}. (1-12)

The next result plays a fundamental role in this paper.
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Theorem 1.12 [Kharchenko 1999]. Keep the notation above. Then
By =B ({1+1},[S/l.+1, <, hy)
is a PBW basis of H=T(V)/I. OJ

The next three results are consequences of Theorem 1.12; see [Kharchenko
1999] for their proofs.

Corollary 1.13. A word u belongs to G if and only if the corresponding hyperlet-
ter [u]. is not a linear combination, modulo 1, of hyperwords [w]., w > u, where
all the hyperwords have their hyperletters in Sj. O

Proposition 1.14. In the conditions of the Theorem 1.12, if v € S; is such that
hi(v) < oo, then q,, is a root of unity. In this case, if t is the order of q,, ,, then

h[(l)) =1 OJ
Corollary 1.15. If h;(v) := h < oo, then [v]" is a linear combination of hyper-
words [w]., w > v". O

2. Transformations of braided graded Hopf algebras

In Section 2C, we shall introduce a transformation over certain graded braided Hopf
algebras, generalizing [Heckenberger 2006b, Proposition 1]. It is an instrumental
step in the proof of Theorem 5.25, one of the main results of this article.

2A. Preliminaries on braided graded Hopf algebras. Let H be the group algebra
of an abelian group I'. Let V € Z@y@ with a basis X = {x1,...,xp} such that
X; € Vg)gi, 1 <i<é. Let qij = Xj(g,'), so that c(xi®)g,) =qijXjQx;, 1<i,j<6.

We fix an ideal [ in the class &; we assume that I is Ze—homogeneous. Let
B := T(V)/I: this is a braided graded Hopf algebra, 8° = k1 and B! = V. By
definition of 7(V), there exists a canonical epimorphism of braided graded Hopf
algebras 7 : B — B(V). Let g; : B — ‘B be the algebra automorphism given by
the action of g;.

For the proof of the next result, see [Andruskiewitsch and Schneider 2002b,
2.8], for example.

Proposition 2.1. (1) For each 1 < i < 0, there exists a uniquely determined
(id, o;)-derivation D; : B — B with D;(x;) =6, j forall j.

(2) 1 =1(V) ifand only if (\'_, ker D; = k1. O

These operators are defined for each x € B*, k > 1 by the formula

0
Ap—1,1(x) = Z D;(x)®x;.

i=1
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Analogously, we can define operators F; : B8 — B by F;(1) =0 and

o
Arao1(x) =D xi®F;(x) forall x e B
i=1 k>0

Let y be as in Section 1B. Consider the action > of kZ? on B given by
e;>b= y(u,e)b, bhomogeneous of degree u e 7°. (2-1)
Such operators F; satisfy F;(x;) = J; ; for all j, and
Fi(biby) = Fi(b1)by + (ei>b1) Fi(b2), b1,by €B.
Let 21/ := (ade x,)" (x)), i, j € {1,...,0),i # j and r € Np.
Remark 2.2. The operators D;, F; satisfy

Di(x]) = (0)g;; %], (2-2)

D; ((ade x)" (xj, ... x;,)) =0forr,s >0, ji #i, (2-3)
I

D; 2%y = T1 (1 — gk qijqji)x! for r >0, (2-4)
k=0

Fo(70)y = L—a™ g .q:)70) 2.5

1(Zm ) (m)qii( q;i qqul)zm_la (2-5)

Fi(z3) =0, m>1. (2-6)

The proof of the first three identities is as in [Andruskiewitsch and Schneider 2004,
Lemma 3.7]; the proof of the last two is by induction on m.

For each pair 1 <i, j <0,i # j, we define
M; j(B) := {(adc x;)" (x;) :m € N} ; (2-7)
mij =min {m € Ny : (m + 1)y, (1 — ¢ qi;q;i) = 0} . (2-8)

mij+

Then either g;,° qi;qji = 1, or q;; o1, ifgqijqji #1forallm=0,1,...,m,

or such m;; does not exist, in which case we consider m;; = oo.
If B ="B(V), we write simply M; ; =M, ;(8(V)). Note that (ad, xi)’""f'“xj =0
and (ad. x;)™7x; # 0, by Lemma 1.5, so

| Mi ;| =mij +1.

By Theorem 1.12, the braided graded Hopf algebra ‘B has a PBW basis con-
sisting of homogeneous elements (with respect to the Z’-grading). As in [Hecken-
berger 2006b], we can even assume that

® The height of a PBW generator [u], deg(u) = d, is finite if and only if 2 <
ord(q,,,) < oo, and in such case, h(v)(u) = ord(qy,.).



46 Ivan Ezequiel Angiono

This is possible because if the height of [u], deg(u) = d, is finite, then 2 <
ord(qy,,) = m < 00, by Proposition 1.14. And if 2 < ord(q,,,) = m < oo, but
hivy(u) is infinite, we can add [u]™ to the PBW basis: in this case, h;v)(u) =
0rd(u,u.), and gun n = gl = 1.

Let AT(B) C N" be the set of degrees of the generators of the PBW ba-
sis, counted with their multiplicities and let also A(B) = AT(B) U (—AT(B)):
AT (®B) is independent of the choice of the PBW basis with the property ® (see
[Andruskiewitsch and Angiono 2008, Lemma 2.18] for a proof of this statement).

In what follows, we write

qo =y (0, a), N, :=ordg,, o€ AT(B).

2B. Auxiliary results. Let I be Z?-homogeneous ideal in G and B = T(V)/I as
in Section 2A. We shall use repeatedly the following fact.
In what follows, we use the convention ord 1 = 1.

Remark 2.3. If xl.N =01n ‘B with N minimal (this is called the order of nilpotency
of x;), then g;; is a root of 1 of order N. Hence (ad. x,-)ij =0.

The following result extends (18) in the proof of [Heckenberger 2006b, Propo-
sition 1].

Lemma?24. Forie{l,..., 0}, letH; be the subalgebra generated by Uj#i M; ;(°B)
and denote by n; the order of q;;. Then there are isomorphisms of graded vector
spaces

e ker(D)) =EH; @k [x?i], if 1 <ordg;; < oo but x; is not nilpotent, or
e ker(D;) = H;, if ord g;; is the order of nilpotency of x; or q;; = 1.

Moreover,

B =H; Qklx;]. (2-9)

Proof. We assume for simplicity i = 1 and consider the PBW basis obtained in the
Theorem 1.12. Now x; € Sy, and it is the least element of S;, so each element of
B is of the form [u]*" ... [ux]*x], with uy <--- <uy,u; € S\ {x1},0 <5 <
hy(u;),0<s <hj(xy). Call 8= S;\ {x1}, and

By:=B(1+1,[ST.+1, <, hils),

that is, the PBW set generated by [S’]. 4+ I, whose height is the restriction of the
height of the PBW basis corresponding to S’. We have

B=kB, Qk|[x1].

By (2-3), any (ad. x1)"(x;) € ker(D1); as D is a skew-derivation, we have
H1 C ker(Dy).
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Also, ad; x; is a (o7, id)-derivation of 8. This derivation restricts to an endo-
morphism of the algebra J{;, because if we apply ad. x; to the generators of ¥y,
we obtain another generators (or 0).

We shall prove by induction on the length of u that [u]. € ;| for each u € L\ {x;}.
If u=x;, j>1, then [u]. = x; € J;. Now let u € L\ {x;} be of length greater
than 1, and (v, w) its Lyndon decomposition. Then:

e If v # x1, then [v],, [w]. € ¥, by induction hypothesis, so

[ule = [v]c[w]e — x (degv, deg w)[w]c[v]. € 1,
because X is a subalgebra.
o If v = x1, then [u]. = ad, x;([w].) C ad, x1 () C K|, because by induction
hypothesis [w]. € ;.

Then we prove that [L]. \ {x;} € ¥, and B; is generated by [L]. \ {x;}; that is,
kBy C ¥y, and D{(B,) =0.
If u € ker(D), we can write [u]. = ZweB; oplw]e. If w does not end with xq,

then w € By, and Dy ([w].) = 0. Butif w = u,yx{, [uwle € B2,0 <ty < hy(x1),
we have

Dy ([w]e) = ()1 luwlex( ™

where (t,) g # 0 if n; does not divide ¢,,. Then

0= Dl([u]C) = Z aw(tw)l]ﬁl[”w]cx;w_l,

weB]/t,>0

But [uw]cxi'“_1 € B, and B, is a basis, so a,, = 0 for each w such that n; does
not divide #,,. Then ker(D;) = ¥ ;k[x;"], so ker(D;) ~ ¥; ® k[x;"] as k-vector
spaces. This fact and the first part conclude the proof. 0

2C. Transformations of certain braided graded Hopf algebras. Let I be 7°-
homogeneous ideal in & and 2 = T(V)/I as in the previous subsections. We
fixie{l,...,0}.

Remark 2.5. ordg;; = min{k € N : F} =0}, if g;; # 1.
Proof. If k € N, then F; (xf) = (k)q“xf_l, and for all k e N,
FF Gy = (0,1
That is, if FX = 0, then (k) 1! = 0. Hence ordg;; < min{k € N : FF =0}
Reciprocally, if g;; is a root of unity of order &, then Fl.k (x/) =0 for all r > k by the

previous claim, and Fl.k (x/)=0forall t <k by degree arguments. Since F;(x;) =0
for j #i, FF =0, O
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We now extend some considerations in [Heckenberger 2006b, p. 180]. We con-
sider the Hopf algebra defined by

k(y, e, ei_l le;y — qi;lye,-, yNi)  where N; is the order of nilpotency
H; = of x; in ‘B, if x; is nilpotent,
k(y, e;, el._] le;y — q;] yve;) if x; is not nilpotent,

together with A(e;) =¢; Qe;, A(Y)=¢; @y +y® 1.
Notice that A is well-defined by Remark 2.3. We also consider the action > of
H; on ‘B given by

ei>b=y(u,e)b, y>b=F;(b),

if b is homogeneous of degree u € N?, extending the previous one defined in (2-1).
The action is well-defined by Remark 2.3 and because

(e;y)>b =ei>(Fi(b)) = q;; ' Fi(e;>b) = (q;; ' yei)» b for b eB.
It is easy to see that B is an H;-module algebra; hence we can form
A; = B#H;.
Also, if we denote explicitly by - the multiplication in &{;, we have
(1#y) - (b#1) = (e; > b#1) - (1#y) + F;(b)#1 forall b € B. (2-10)

As in [Heckenberger 2006b], «; is a left Yetter—Drinfeld module over kI", where
the action and the coaction are given by

gk Xi#l =qjxj#1, gi-1#y= qlgll#y, gr-1#e; = 1#e;,
O(x;#1) =g;®x;#1, o(1#y) = g;l®1#y, o(l#e;) = 1@ 1#e;,
for each pair k, j € {1, ..., 8}. Also, d; is a kI'-module algebra.

We now prove a generalization of [Heckenberger 2006b, Proposition 1] in the
more general context of our braided Hopf algebras 8. Although the general strat-
egy of the proof is similar as in loc. cit., many points need slightly different
argumentations here.

Theorem 2.6. Keep the notation above. Assume that M; ;(*B) is finite and
(M j(B) =mij+1, jefl,....0},)+#i (2-11)
(1) Let V; be the vector subspace of A; generated by

{(ade x)™7 (xj)#1: j #i}U{1#y}.
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The subalgebra s;(2B) of d; generated by V; is a graded algebra such that
5i(B)! = V;. There exist skew derivations Y; : s;(B8) — s;(B) such that, for
all by, by € s;i(W),and !, je{l,...,0}, ) #1,

Yj(biby) = b1Y;(b2) + Y (b2) (g, " &7 " - ba), (2-12)
Yi(b1b2) = b1Y;(b) + Yi(b1) (g 1b]) (2-13)
Y;((ade x;)™7 (x;)#1) = dy;, Y (1#y) = di. (2-14)

(2) Set N; := {n e N:ne; € A(®B)} (by the previous remarks, N; = {1} or N; =
{1, h;}). The Hilbert series of s; (B) satisfies

%Sios):( I1 %JX“‘”))(Hqm(x;f))- (2-15)
a€AT(B)\N;e; SEN;

Therefore, if s;(B) is a graded braided Hopf algebra,
At (si(B)) = {si (AT (B)) \ —Nie;} U Nie;.
3) If B =B(V), the algebra s;(B) is isomorphic to the Nichols algebra 6 (V;).

Proof. (i) Note that V; is a Yetter—Drinfeld submodule over kI of s{;. Now,
A = B ® H; as graded vector spaces. Let K; be the subalgebra generated by
U];ﬁl M; ;(°B), as in Lemma 2.4. Then s, (B) C 57{ ® k[y], since F; is a skew-
derivation and F( (U)) (k) g, (1 — q” q,,q,,)zk 1» by (2-5). From (2-10),

(1#y) - (25 #1) = (250#1) - (1#y) + Fi (25)) #1.
Also, s1ncem,J—i—1_|M , we have (m;;)q, (1— qm,, quqﬂ)#o SOZ(U) #1

lies in s; (*B), and by induction each zk] )#1 for k=0, . —1,is an element
of 5;(23). Then H; @ k[y] C 5, (8), and therefore

5i(B) = H; @ K[y]. (2-16)

Thus, s;(2B) is a graded algebra in t;ﬁl}@ with s;(B)! = V;. We have to find the
skew derivations Y; € End(s; (28)), [ =1,...,0. Set Y¥; := gl._] oad(x; #1)[s;(m).
Then, for each b € ¥{; and each j # 1,

ad(x; #1)(b#1) = (ad, x;)(b)#1,
ad(x;#1) ((ade x;)™ (xj)#1) = (ad. x;)™ 1 (x))#1 = 0.

Also,
Yi(l#y) =g ((a#1) - (1#y) — (gi - (1#y)) - (xi#1))
=g ' (xi#y +1—qii(g; ' xi#y)) = 1.
Thus Y; € End(s; (*B)) satisfies (2-14).
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Therefore, ad(x; #1)(b1by) = ad(x; #1)(b1)by + (g; - b1) ad(x; #1)(by), for each
pair by, by € 5;(®8), so we conclude that ad(x; #1)(s;(*B)) C s;(®B), and Y; €
End(s; (*B)) satisfies (2-13).

Before proving that Y; satisfies (2-12), we need to establish some preliminary
facts. Let us fix j #1i, and let z(” ) = (ad. x;)* (xj) as before. We define inductively

A(U) = Dj, Al(cl—i/-)l _D,z,g”) q”q,JZ](;_{_)lDi € End(%3).

We calculate

Lij =2 (@) =" a,D!" 7 DD (24)
s=0

= (D)™ (Dj)(zr(rll{,)) = Gy (mij)g! € K,

k(k—1)/2
where a; = (— 1)k(m)q.iql'i( / qlk]

Note that (D;)™i 1 D;(b) = 0 for all b € M; i, k # i, j, and that
(D)™ D (i) = (D)"i*! (g7 a,xf) =0 forall r < my,

so (D;)™iT'D;(¥;) = 0. This implies that z,fl{j)(b) € H;, for each b € H;. Now
define Y; € End(s; (°B)) by

Y;(b#y™) =gy gl A lz(”)(b)#y for b € K;, m e N.

We have Y;(1#y) = 0, and moreover Y;((ad. x;)™"(x;)#1) =01if [ #1i, j. By the
choice of 4;;, Yj((ad. x;)™ (x;)#1) = 1.

Now, using that Dy (g;-b) = g1 g1 - (Dr(b)) foreachbeB and k,l € {1, ..., 0},
we prove inductively that for by, by € K;,

2 (b1by) = b1z (b2) + 27 (01) (kg5 - bo).
Hence,
Y;(bi#1-by#1) = Y;(biba#1) = A} 2, (b1b2)#1
= by#1-Y;(by#1) + Y; (b1 #1) - (g

m,,

gj - (ba#l)).
By induction on the degree we prove that F; commutes with D;, D;, so
A(”)(F (b)) =F:(2 (‘/)(b)) for all b € B.
Consider b € H; C ker(D;),
Y; (b#1- 1#y) = Y; (b#y) =q;;" q;i2\) (b)#y
= b#1-Y;(1#y) + Y;(b#1) - (g;

m,J

8j - (1#)’))
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where we use that Y;(1#y) = 0. Since,
bi#1-by#y' =bi#1-by#1-(1#y)",
(2-12) is valid for products of this form. To prove it in the general case, note that

(b1 #y") - (ba#y®) = (b1 #1) - (1#y)" - (b2#Y").
At this point, we have to prove (2-12) for b € ¥; ker(D;), s € N:
Yi(1#y - b#y*)
= ¥, (Fi(b)#y" + (e; > b#Y) - 1#y)
=g g2 FD (B ) #y +q) g 2 (e by#y T
= (g g0 D )y + ) i e v (0] a5 250 (0) #3°)
= (l#y) - Y;(b#y’)
= L#y Y, (b#Y") + Y;(1#y) - (g g; - b#Y’),

where we use that 2,(1;{!) (ei>b) =q;; " qjiei > (2,(1;{]) (b)).

(ii) The algebra H; is Z‘g—graded, with
degy = —e;, deg el.jEl =0.

Since B and H; are graded and (2-10) holds, the algebra s4; is Z?-graded.

Consider the abstract basis {u;};e(1,...) of V;. With the grading degu; = e;,
the algebra B(V;) is Z%-graded. Consider also the algebra homomorphism Q :
T (V;) — s;(*B) given by

] (adg x;)™i(x;) if j #£1,
Q(uj)':{y e ifj'?:éi.

By part (i) of the theorem, Q is an epimorphism, so it induces an isomorphism
between s; (B) := T (V;)/ ker Q and s;(28), which we also denote by Q. We have

deg Q(u;) = deg ((adc x;)™ (xj)) =e; +m;;e; = s;(degu;) if j #1i,
deg Q(u;) = deg(y) = —e; = s;(degu;).

Since Q is an algebra homomorphism, we have deg(Q(u)) = s;(deg(u)) for all
u € s;(B). Since si2 =id, s;(deg(Q(u))) = deg(u) for all u € 5;(*B)’, and $H,(wy =
8i (95,(1))-

From this point on, the proof goes exactly as in [Andruskiewitsch and Angiono
2008, Theorem 3.2].
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(iii) This is Proposition 1 in [Heckenberger 2006b]. O

By Theorem 2.6, the initial braided vector space with matrix (gx;)1<x,j<¢ i8
transformed into another braided vector space of diagonal type V;, with matrix
(Gj) 1<k, j<6, Where gjx = qz?ijmikq;?;{ijq;;ikQ/k for j,kefl,...,0}

If j #1i, then ﬁiﬁ = min {m eN:(m+ 1)51.1. (c}i'?é,-jc]ﬁ = 0)} = mjj.

For later use in Section 5, we recall a result from [Andruskiewitsch et al. 2008],
adapted to diagonal braided vector spaces.

Lemma 2.7 [Andruskiewitsch et al. 2008, Lemma 2.8(ii)]. Let V be a diagonal
braided vector space and I a 7°-homogeneous ideal of T(V). Set B := T (V)/I
and assume that for all i € {1, ..., 0} there exist (id, o;)-derivations D; : B — B
with D;(x;) = d; j forall j. Then I C I1(V). O

That is, the canonical surjective algebra morphisms from 7 (V) onto B8 and
%3 (V) induce a surjective algebra morphism B — B(V).

3. Standard braidings

Heckenberger [2006a] has classified diagonal braidings whose set of PBW genera-
tors is finite. Standard braidings form an special subclass, which includes properly
braidings of Cartan type.

We first recall the definition of a standard braiding from [Andruskiewitsch and
Angiono 2008], and the notion of a Weyl groupoid, introduced in [Heckenberger
2006b]. Then we present the classification of standard braidings, and compare
them with [Heckenberger 2006a].

Like Heckenberger, we use the generalized Dynkin diagram associated to a
braided vector space of diagonal type, with matrix (g;;)1<i,j<¢: this is a graph
with @ vertices, each labeled with the corresponding ¢;;, and an edge between two
vertices i, j labeled with g;;q;; if this scalar is different from 1. So two braided
vector spaces of diagonal type have the same generalized Dynkin diagram if and
only if they are twist equivalent. We shall assume that the generalized Dynkin
diagram is connected, by [Andruskiewitsch and Schneider 2000, Lemma 4.2].

Summarizing, the main result of this section says:

Theorem 3.1. Any standard braiding is twist equivalent with one or more of

e a braiding of Cartan type,

e a braiding of type Ay listed in Proposition 3.9,

e a braiding of type By listed in Proposition 3.10, or
e a braiding of type G, listed in Proposition 3.11.
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The generalized Dynkin diagrams appearing in Propositions 3.9 and 3.10 cor-
respond to rows 1, 2, 3, 4, 5, 6 in [Heckenberger 2006a, Table C]. The generalized
Dynkin diagrams in Proposition 3.11 are (T8) in [Heckenberger 2008, Section 3].
However, our classification does not rely on Heckenberger’s papers.

3A. The Weyl groupoid and standard braidings. Let E = (eq, ..., ey) be the

canonical basis of Z?. Consider an arbitrary matrix (g; <i,j<0 € (k*)?*0 and
fix once and for all the bilinear form y : 7% x 7% — k* determined by
x (e, e) =gqij, 1<i,j=<0. (3-D

If F=(fy,...,f,) is another ordered basis of 7/, then we set gij = x &, £),
1 <i,j<0. We call (g;;) the braiding matrix with respect to the basis F. Fix
iefl,...,0}.If 1 <i, j <0, we consider the set

Mi; :={m € No : (m + 1), (G Gi;3;i — 1) = 0}.

If this set is nonempty, its minimal element is denoted m;; (which of course
depends on the basis F). Define also m;; = 2. Let s; r € GL(ZQ) be the pseudo-
reflection given by s; p(f;) :=f; +m;;f;, for j € {1,...,6}.

Let G be a group acting on a set X. We define the transformation groupoid as
G x X with the operation given by (g, x)(h, y) = (gh, y) if x = h(y), but undefined
otherwise.

Definition 3.2. Consider the set X of all ordered bases of Z?, and the canonical
action of GL(Z?) over X. The Weyl groupoid W(y) of the bilinear form y is
the smallest subgroupoid of the transformation groupoid GL(Z?) x X that satisfies
following properties:
e (id, E) € W(y),
o if (id, F) € W(y) and s; f is defined, then (s; r, F) € W(y).

Let B(y) = {F : (id, F) € W(y)} be the set of points of the groupoid W(y).
The set

A= |J F (3-2)
FePB(x)

is called the generalized root system' associated to y.

We record for later use the following evident facts.

Remark 3.3. Take i € {1, ..., 6} such that s; ¢ is defined. Set F' =s; g(E) and let
(gi;) be the braiding matrix with respect to the basis F'. Assume that

lFollowing the traditional notation in the theory of Lie algebras, we should speak about systems
of real roots, since in the case of braidings of symmetrizable Cartan type one would get just the real
roots. But we prefer to follow the denomination in [Andruskiewitsch and Angiono 2008]
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e gii = —1 (somjr =0if gijxgri =1 or m; = 1, for each k # i);
« there exists j # i such that g;;q;ig;; = 1 (thatis, m;; =mj; = 1).
Then cjjj = 1.
Proof. Simply, g;; = qiiqijqjiqjj = qii = —1. 0

Remark 3.4. If the m;; satisfy q?il"jq,-jqji =1 for all j # i, the braiding of V; is
twist equivalent with the corresponding to V.

Define o : W(y) — GL(0, Z) by a(s, F) =s if (s, F) € W(y), and denote by
Wo(x) the subgroup generated by the image of a.

Definition 3.5. [Andruskiewitsch and Angiono 2008] We say that y is standard
if for any F' € PB(y), the integers m,; are defined, for all 1 <r, j < 6, and the
integers m,; for the bases s; r (F) coincide with those for F' for all i, r, j. Clearly
it is enough to assume this for the canonical basis E.

We now assume that y is standard. We set C := (a;;) € 7979

this is a generalized Cartan matrix.

, where a;j = —m;;;

Proposition 3.6 [Andruskiewitsch and Angiono 2008]. Wo(x) = (si.g:1<i <0).
Furthermore Wo(y) acts freely and transitively on B (y). O

Hence, Wy(y) is a Coxeter group, and Wy(y) and B(y) have the same cardi-
nality.
Lemma 3.7 [Andruskiewitsch and Angiono 2008]. The following are equivalent:
(1) The groupoid W (y) is finite.
(2) The set PB(yx) is finite.
(3) The generalized root system A(y) is finite.
(4) The group Wy(y) is finite.
(5) The Cartan matrix C is symmetrizable and of finite type. U
We shall prove in Theorem 4.1, that if A(y) is finite, the matrix C is sym-

metrizable, hence of finite type. Thus B(V) is of finite dimension if and only if
the Cartan matrix C is of finite type.

3B. Classification of standard braidings. We now classify standard braidings such
that the Cartan matrix is of finite type. We begin with types Cy, Dy, E; (I =6,7, 8)
and Fj: these standard braidings are necessarily of Cartan type.

Proposition 3.8. Let V be a braided vector space of standard type, set @ =dim V,
and let C = (a,-j)i,je{l ,,,,,
E; (1 =6,7,8) or Fy. Then V is of Cartan type (associated to the corresponding
matrix of finite type).

g} be the corresponding Cartan matrix, of type Cy, Dpg,
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Proof. Let V be standard of type Cg, 6 > 3.

ol 02 o3 o 0?2 of—1 <« of (3-3)

Note that gg—1,9—1 # —1 by Remark 3.3 and the assumption mg_; 9 = 2. Since
mo—1,0-2 =1, go—1,0-199—1,0—299—2,6—1 = 1. Using Remark 3.3 when i =6 —
2,j =0 —1, since go—1,9—1 # —1 when we transform by sp_, (since the new
braided vector space is also standard), we have gy g—2 7= —1, so

40-2.0-290-2.0-190—1,0-2 = 46—2,0—299—2,0-396-3,0—2 = 1,
and gg—1,0—1 = qo—2,6—2. Inductively,

ik Qi k—1Gk—1,k = Gk Gk k+19k+1,k = q11912921 =1, k=2,...,0 -1

and g1 = g2 = ... = qp—1,6—1. S0 we look at ggg: since myg—_; = 1, we have

qos = —1 or qeeqe.0—196—1,0 = 1. If gg9 = —1, transforming by sg, we have
Go—1.0-1=—q""s  Go-1.0G0.0-1 =q°,

and q2 = —1 since mg_1 g—» = 1. Then

90090,0-199-1.0 =1, qoo =q°,
and the braiding is of Cartan type in both cases.

Let V be standard of type Dy, 6 > 4.

We prove the statement by induction on §. Let V be standard of type D4, and
suppose that g2 = —1. Let (g;;) the braiding matrix with respect to F = s g (E).
We calculate for each pair j # k € {1, 3, 4}:

gixqri = ((—=Dqugj2qx) ((=Dq2jqx2qx;) = (q2xqx2) (9259;2) »
where we use that gjrgx; = 1. Since also gjrqr; = 1, we have gy qi2 = (qzjqu)_1
for j #k, so qakrqro = —1, k=1, 3, 4, since qaxqxr2» 7 1. In this case, the braiding is
of Cartan type, with ¢ = —1. Suppose then 2> # —1. From the fact that m»; =1,
we have

42q29i2=1, j=1,3,4.
For each j, applying Remark 3.3, we see that g;; # —1 (since g2» # —1), so
qjjq2jq;2 =1, for j =1, 3,4, and the braiding is of Cartan type.

ol o2 03 o of2 o’ (3-4)

00—1
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We now suppose the statement valid for 8. Let V be a standard braided vector
space of type Dg1. The subspace generated by x5, ..., xg+1 is a standard braided
vector space associated to the matrix (g;;);, j=2,....0+1, of type Dy, so it is of Cartan
type. To finish, apply Remark 3.3 withi =1, j =2, to conclude that V is of Cartan
type with ¢ = —1, or, if g2 # —1, we have q;; # —1 and q11912¢g21 = 1, and in
this case it is of Cartan type too (because also qixqx; = 1 when k > 2).

Let V be standard of type E¢. Note that 1,2,3,4,5 determine a braided vector
subspace, which is standard of type Ds, hence of Cartan type. To prove that
qe69659s56 = 1, we use Remark 3.3 as above.

ol 02 03 0’ 0® (3-5)

04

If V is standard of type E; or Eg, we proceed similarly by reduction to E¢g or E7,
respectively.

o! 0?2 o3 o* o o’ (3-6)
o5

Ol 02 03 04 O5 O7 08 (3_7)
%6

Let V be standard of type Fy. Vertices 2, 3, 4 determine a braided subspace, which
is standard of type C3, so the g;; satisfy the corresponding relations. Let (g;;) the
braiding matrix with respect to F = s g(E). Since g13g31 = 1 and g20g23q32 = 1,
we have g22q12921 = 1.

Ol 02 _ 03 o4 (3-8)

Now, if we suppose g11 = —1, applying Remark 3.3 we have ¢2o = —1 =¢»1412,
and the corresponding vector space is of Cartan type Fy4, associated to g € (4.
If g11 # —1, then q11912g21 = 1, and the space it again is of Cartan type. O

To finish the classification of standard braidings, we describe the standard braid-
ings that are not of Cartan type. They are associated to Cartan matrices of type
Ag, Bg or Gz.
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We use a notation similar to the one in [Heckenberger 2006a] for a special
kind of braiding of type Ay (here we emphasize the positions where g;; = —1,
which we use to compute the dimension of the corresponding Nichols algebra);
€(0,q;ii,...,i;) corresponds to the generalized Dynkin diagram

ol 0? o3 . of-1 o? (3-9)
where the following equations hold:

*q= qg—l,e%,e—lqg,g,

* (q00 + 1) (@0090-1,090,0-1 — 1) = (q11 + 1)(q11912921 — 1) = 0;

* —qii =qi-1,iqi,i-19i+1,iqi,i+1 = Lifi € {iy, ..., ij}.

* giigi—1,iqii—1 = 4iiqi+1,i¢ii+1 = 1, otherwise.
Then g;; = —1 if and only if ¢;1igii—1 = (gi41.igiiv) "

Proposition 3.9. Let V be a braided vector space of diagonal type. Then V is

standard of type Ay if and only if its generalized Dynkin diagram is of the form

€0, q;i1,...,0)). (3-10)

This braiding is of Cartan type if and only if j =0, or j =n with g = —1.

Proof. Let V be a braided vector space of standard Ay type. For each vertex i, with
1 <i <0, wehave g;; = —1 0r q;iqi,i—19i-1,i = qiiqi,i+19i+1,; = 1, and similar
formulas hold for i =1, 8. So suppose that 1 <i < and g;; = —1. We transform
by s; and obtain

qgi—1,i+1 = —4ii+19i—1,i4i—1,i+1, Yi+l,i—1 = —4i,i—19i+1,iqi+1,i—1,

and using that m;_; ;41 =m;_1 ;11 = 0, we have

Gi-1,i+19i+1,i—1 =1,  Gi—1,i+1Gi41,i—-1 =1,

so we deduce that g; ;11giy1,; = (q[,,-_lq;_l,,-)_l. Then the corresponding matrix
(gij) is of the form (3-10).

Now consider V of the form (3-10). Assume g;; = g*!; if we transform by
s;, the braided vector space V; is twist equivalent with V by Remark 3.4. Thus,
ff’l,‘ j = m; j.

Assume ¢g;; = —1. We transform by s; and calculate

4jj if |j—il>1,

q 2 ij . . . .
3jj = (=D"i(qijqi)" gjj = { (~DgFlgF' = -1  if j=i%1, q;; =¢*,
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Also, g;;qji = qijqji it |j —il > 1 and g;;q;; =ql.;]qﬁl if |j —i| = 1; moreover

qrjqjr if |j—il or |k —i[>1,

S n — (N (e N o
qkj4qjk (%kal) (‘11]%1) qkjqjk l 1 ifj=i—1k=i+1.

Then V; has a braiding of the above form too, and (—m;;) corresponds to the

finite Cartan matrix of type Ag, so it is a standard braiding of type Ag. Thus this
is the complete family of standard braidings of type Ayp. O

Proposition 3.10. Ler V a diagonal braided vector space. Then V is standard of
type By if and only if its generalized Dynkin diagram is of one of these forms:

C q_l q
(A o——0 with f€Gs, g#¢ (@ =2);

-2
(b) (€017 i1 withqg #0,~1, 0<j<6-1,
(c) @(9—1,—5_1;1'1,...,1‘19;(6 with (e€Gsz, 0<j<6—-1

This braiding is of Cartan type if and only if it is as in (b) and j = 0.

Proof. First we analyze the case § = 2. Let V a standard braided vector space of
type B;. There are several possibilities:

* 41214126121 = g»qg21912 = 1: this braiding is of Cartan type, with ¢ = ¢g1;. Note
that g # —1. This braiding has the form (b) with 8 =2, j = 0.

. qlzlqlzqzl =1, g» = —1. We transform by s, obtaining
~ 1 o -1 -1
q11 = —4q11 > 412921 =415 951 -
Thus G7,G12G21 = 1. It has the form (b) with j = 1.
e q11 € G3, 922921912 = 1. We transform by s, obtaining
~ ~ 2 -1 -1
q22 = 411912921, 412921 = 411912 971 -
S0 §22G21G12 = 1, which is the case (a).
e q11 € G3, g2 = —1: we transform by s;, obtaining
~ 2 2 -~ ~ 2 -1 -1
q22 = —q12921911> 412921 = 411912 921 -
If we transform by s»,
Gi1 = —qnqq11, G124 =41, 457 -

So g12g21 = £4q11, and we discard the case g12g21 = g11 because it has been
considered before. The braiding has the form (c) with j =0, and is standard.
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Conversely, all braidings (a), (b) and (c) are standard of type B;.

Now let V be of type By, with 8 > 3. The first 8 — 1 vertices determine a braiding
of standard type Ag_;, and the last two determine a braiding of standard type B;;
so we have to glue the possible such braidings. The possible cases are the two
presented in Proposition 3.10, plus

But if we transform by sy, we obtain

Go-1.0-1=0q""s  Go-10-2G0-20-1=q"",
s0 1 =§g_1,0-1Go—1,0-2Go—2,0—1 and we obtain g = £¢ !, or Gg_1 9—1 = —1. Then
g =—¢""orgq=—1, so it is of some of the above forms.
To prove that (b) and (c) are standard braidings, we use the following fact: if
m;; =0 (that is, g;jg;; = 1) and we transform by s;, then

q4jj = 4jj and dikqjk = qjkqkj fork #i.

In this case, m;; =01if |i — j| > 1; if, on the contrary, j =i+ 1, we use the fact that
the subdiagram determined by these two vertices is standard of type B; or type A».
So this is the complete family of all twist equivalence classes of standard braidings
of type By. O

Proposition 3.11. Let V a braided vector space of diagonal type. Then V is
standard of type G, if and only if its generalized Dynkin diagram is one of the
following:

qa ¢34 . .
(a) q with ordg > 4;

2ot 2ol cos -1
(b) ¢ or ¢ or ¢ with ¢ € Gg.

This braiding is of Cartan type if and only if it is as in (a).
Proof. Let V be a standard braiding of type G;. There are four possible cases:

. qflqlzqﬂ =1, g2q21q912 = 1: this braiding is of Cartan type, as in (a), with
q = q11- If g is a root of unity, then ord g > 4 because m, = 3.

. qflqlzqﬂ =1, g» = —1: we transform by s;, obtaining
qi = —611_12, 412921 =‘I1_21‘12_11'
Ifl1= c}flc}uc}z] = _‘11_13’ then g12g21 = —1, and the braiding is of Cartan type

with g1 € Gg. If not, 1 = é;‘l = q]_I8 and ordg;; =4, so ordg;; = 8. Then we
can express the braiding in the form of the third diagram in (b).
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e q11 € Ga, g20gr1q12 = 1: we transform by s, obtaining
~ 2 2 ~ o~ -1 _ -1
q22 = q11912921> 412921 = —415 4o1 -
If 1 = G22G21G12 = —q11912921, We have g;,q12g21 = 1 because g7, = —1, and
this is a braiding of Cartan type. So consider now the case —1 =g =¢11¢ 1226]221,

from which ¢, = ¢;;' and g2, € Gg. Then we obtain a braiding of the form of
the first diagram in (b).

e q11 € Ga, g2 = —1: we transform by s,, obtaining
Gl =—qngn4qi. G124 =41, 45 -

If §11 € Gy, then (g12g21)* = 1. Moreover q2g21 # 1 and g12g21 # ql_ll because
miy = 3. So qiaq21 = —1 or q12g21 = q11 = ql_13; but these cases have been
considered already. There remains to analyze the case

1=G3,412421 = 41191293,
which we can express in the form of the second diagram in (b), for some ¢ € Gg.

A simple calculation proves that these braidings are of standard type, so they are
all the standard braidings of type G». O

4. Nichols algebras of standard braided vector spaces

In this section we study Nichols algebras associated to standard braidings. We
assume that the Dynkin diagram is connected, as in Section 3. In Section 4A
we prove that the set AT(B(V)) is in bijection with A", the set of positive roots
associated with the finite Cartan matrix C.

We describe an explicit set of generators in Section 4B, following [Lalonde
and Ram 1995]. We adapt their proof since they work on enveloping algebras of
simple Lie algebras. In Section 4C, we calculate the dimension of Nichols algebra
associated to a standard braided vector space, type by type.

4A. PBW bases of Nichols algebras. We start with a result analogous to [Hecken-
berger 2006b, Theorem 1], but for braidings of standard type.

Theorem 4.1. Let V be a braided vector space of standard type with Cartan matrix
C. Then the set A(%B(V)) is finite if and only if the Cartan matrix C is symmetriz-
able and of finite type.

Proof. Since we assume V of standard type, A(®5(V)) coincides with the set of
real roots corresponding to the matrix C by [Heckenberger 2006b, Proposition 1],
where we identify corresponding simple roots. Hence, if C is not symmetrizable
or not of finite type, the set of real roots is infinite by the classification of finite
Coxeter groups, and hence A(®B(V)) is infinite.
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Conversely, let C be symmetrizable and of finite type. Then the set of real roots

is finite. Take a € A(B(V)) and letk e N, iy, ...,ir € {l,..., 0} be a sequence
of integers such that s;, - - -s;, is a longest element in Wy(y). Since all roots are
positive or negative, there exists / € {1,...,k} such that g = s;,, ---5; () is
positive and s;,(f) is negative. But then g = a;,, and a = s;, - - - 5;,,, (@i;,) is a real
root. Thus A(2B(V)) is finite. U

Corollary 4.2. Let V be a braided vector space of standard type, set 0 =dimV,
and let C = (a;j)i, je1,....0) be the corresponding generalized Cartan matrix of finite

type.

@) ¢(Ac) = A (B(V)), where as before ¢ : Zn — 77 is the Z-linear map deter-
mined by ¢ (a;) := e;.

(b) The multiplicity of each root in A(®B(V)) is one.

Proof. Statement (a) follows from the proof of Theorem 4.1.

Using this condition, since each root is of the form f = w(a;) for some w € W
andi € {1, ..., 0}, we conclude by applying a certain sequence of transformations
s; that this is the degree corresponding to a generator of the corresponding Nichols
algebra, so the multiplicity (which is invariant under these transformations) is 1. [J

4B. Explicit generators for a PBW basis. In view of Corollary 4.2, we restrict
our attention to finding one Lyndon word for each positive root of the root system
associated with the corresponding finite Cartan matrix.

Proposition 4.3 [Lalonde and Ram 1995, Proposition 2.9]. Let [ be an element of
S;. Then l is of the form [ =1, ... a, for some k € Ny, where

o [; €S;foreachi=1,...,k;

e [; is a beginning of l;_1 for eachi > 1; and

e a is a letter.

Also, if | = uv is the Shirshov decomposition, then u, v € Sj. 0

In what follows, we describe a set of Lyndon words for each Cartan matrix of finite
type C.

Consider a = Zle ajaj € AT and let [, € S; be such that degl, = a. Let
la=lp, ...l x; be adecomposition as above, where s € {1, ..., 0} and deglp, = f3;.
Since each Iy, is a beginning of /5, all the words begin with the same letter x’,
which satisfies x” < x; because [ is a Lyndon word. Therefore x’ is the least letter

of [, so

%
x'=x;, i=min{j:aq; #0} = a=Zaja.,-.
j=i
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Then k < a; < 3, for the order given in (3-9), (3-4), (3-5), (3-6), (3-7), (3-8) (the
value a; = 3 appears only when C is of type G»).

Now, each g, lies in Sy, so B € AT; i.e., it corresponds to a term of the PBW
basis. Also Z;‘:l pi+os=a.Ifk=2,wehave 1 — = Z?:l bjaj and b; > 0,
because f; is a beginning of f#; (an analogous claim is valid when the matrix is of
type G, and k = 3). With these rules we define inductively Lyndon words for a
PBW basis corresponding with a standard braiding for a fixed order on the letters.
This is done as in [Lalonde and Ram 1995], but taking care that in that reference
Serre relations are used; here we have quantum Serre relations, and some quantum
binomial coefficients may be zero.

Type Ap: In this case, the roots are of the form
J
u ::Z“’“ 1<i<j<é.
k=i

By induction on s = j — i, we have
lui,j =XiXi41 - - .x]'.

This is because when s = 0 we have i = j, and the unique possibility is Iy, ; = x;.
If we remove the last letter (when j —i > (), we must obtain a Lyndon word, so
the last letter must be x;.

Type By: For convenience, we use the following vertex numbering:

ol «—==02 o3 of~1 ol . 4-1)

The roots are of the form w; ; := > 1_ oy, or

i J
Vi j :=22ak—|— Z o.
k=1

k=i+1

In the first case we have lu,—,,- = XjXi41...Xj, as above. In the second case, if
j =i+ 1, we must have x;;; as the last letter to obtain a decomposition in two
words xi - - - x;;if j > i + 1, the last letter must be x;, so we obtain

Ly, ; = x1x2 ... XiX1X2 . .. Xj.

Type Cy: The roots are of the form u; ; := Z,{:i o, or

Jj—1 -1

Wi :=Zak+22ak+a9, i<j<é.
k=i k=j
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As before, Iy, ; = x;x;41 ... x;. Now, if i < j, the least letter x; has degree 1, so if
we remove the last letter, we obtain a Lyndon word; that is, w; ; — x; is a root, and
then x; = x;, so

lw,;,- = XjXigl .. -X9—1X0X9—1 ... Xj.
When i = j, a; =2, so there are one or two Lyndon words f; as before. Since w—x;
isnotaroot, fors =i+1,...,8,and i < s, there are two Lyndon words f; > [,
and f1+ 5>, =2 ZZ;} o. The only possibility is f; = 2 = x;X;+1 ... Xg—1; that is,

Iw,; = XiXit1 .. . Xg—1XiXit1 ... X9—1X0.

Type Dy: the roots are of the form u; ; := Z',i:l. o, 1<i<j<@6,or

j—1 0-2
Zj; ::Zak+22ak+a971+a9, i<j<6-2,
k=i k=j
6-2
Zi= ) optog, 1<i<0-2.
k=i

As above, lu,»,,- =X;iXj41...X; if j <n—1. When the roots are of type z;, we have
s =0, since z; —x,; must be a root (if x; is the last letter); thus lz, = x;x; 41 .. . Xg—_2Xg
is the unique possibility.

Now, when a = u; ¢, the last letter is xy—; or xp: if it is xp, we have Iy, =
XiXit1 ... X9—1X%g. Since mg_1,9 = 0, we have xg_1x9 = qo—1,6X6X6—1, SO

XiXig] - -X0—1X0 = XiXi4]-..X9—2X9X9—1 mod I,

and then x;x; 1 ...x9-1x9 ¢ S;. SO, ly,, = X; ... Xg—2X9Xp—1.

In the last case, note that if j = n — 2, the unique possibility is f, as before,
because the least letter x; has degree 1 and x; = xy_, (since o —a is a root). Hence
lzig_» = Xi ... Xg—2X9Xg—1X9—2, and inductively,

lg;; = Xi ... Xg—2X0Xp—1X0—2 - . . Xj.

Type Eg: Let a = Z;-):] aja;. If ag =0, a corresponds to the Dynkin subdiagram
of type Ds determined by 1,2, 3,4, 5, and we obtain [, as above. If a; =0 then o
corresponds to the Dynkin subdiagram of type Ds determined by 2, 3, 4, 5, 6; the
numbering is different from the one given in (3-4). Anyway, the roots are defined
in a similar way, and we obtain the same list as in [Lalonde and Ram 1995, Fig.1].
If a4 =0, then a corresponds to the Dynkin subdiagram of type A5 determined by
1,2,3,5,6.

So we restrict our attention to the case a; #0, i = 1,2, 3,4, 5, 6. We consider
each case in turn:
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e a=a1+or+aztas+as+oe: sincea; =1, a —a; = ) is aroot, where a; is the
last letter. Then s =2 or s = 6. In the second case, /g, = x1x2Xx3x4Xs, but using
that xox3 = go3x3x2, we have x1xpx3x4x5 € S;. So s =2, and [, = X1 X3X4X5X6X2.

e a=o014 0403+ 2a4+ as+ ag: from a; = 1, we note that « —a; = f is a
root. Then s =4, and [, = x1x3x4X5X6X2X4.

e a=oa;+0y+203+ 204+ a5+ ag: since a; =1, a — a; = f; is aroot. So
s =3, and [, = X1 X3X4X5X6X2X4X3.

e a=a;+ar+ a3+ 2a4+ 205+ ag: since a; =1, a —ay; = f is aroot. The
only possibility is s =5, and [, = x;X3X4X5X6X2X4X5.

e o =0a1+0r+203+204+205+06: as above a; =1, and a — oy = f; is a root.
So s =3, and [, = X1 X3X4X5X6X2X4X5X3.

e a=a;+ay+2a3+3a4+2as5+ ae: since a; = 1, a —ay = f; is a root. Then
s =4 and [, = X1 X3X4X5X6X2X4X5X3X4.

e o =0a1 420+ 203+ 304+ 205+ ag: since a; =1, a —ay = f; is a root. So
s =2, and [, = X1 X3X4X5X6X2X4X5X3X4.

Type E7: If a = 217-:1 aja; and a; = 0, the root corresponds to the subdiagram
of type Dg determined by 1, 2, 3,4, 5, 6, and we obtain [, as above. If a; =0, it
corresponds to the subdiagram of type E¢ determined by 2,3,4,5,6,7. If as =0,
then o corresponds to the subdiagram of type Ag determined by 1, 2, 3,4, 6, 7.

As above, consider each case where a; 20, i =1,2,3,4,5,6,7:

coa=a14+oy+03+as+as+as+ay: sincea; =1, a —a, = f is aroot, if ay
is the last letter. Then s = 2 or s = 7. In the second case, [z = x1X2X3X4X5X6,
but from x;x3 = go3x3x2, we have xxyx3x4Xxs5x6x7 ¢ S;. Sos =2, and [, =
X1 X3X4X5X6X7X2.

e a=oa;+ar+a3+204+0s+ag+a7: nows =4,7. We discard the case s =7
since m47 = 0; for the case s =4 we have [, = x| X3X4X5X6X7X2X4.

e a=o0a1+ar+2a3+204+ 05+ ae+a7: as above, s =3, 7, but we discard s =7
since m37 =0, S0 [, = X1 X3X4X5X6X7X2X4X3.

e a=ua1+ar+az+204+205+ ag+a7: now s =5, 7, and we discard the case
s =7 because ms57 =0, S0 [, = X1 X3X4X5X6X7X2X4X5.

e a=a|+oar+203+2a4+205+0¢+a7: now s =3, 7, and as above we discard
the case s = 7, SO [, = X1 X3X4X5X6X7X0X4X5X3.

e a=a1+ar+2a3+ 304 + 205 + ag + a7: now s = 4, and therefore we have
la = X1X3X4X5X6X7X2X4X5X3X4.

e o =a;+ 20y + 203 + 304 + 205 + ag + a7: now s = 2, as above, and [, =
X1X3X4X5X6XT7X2X4X5X3X4X7).
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o =a;+ay+ az+ 204 + 2as + 206 + a7: as above, the unique possibility is
s =6, 80 [, = X1X3X4X5X6X7X2X4X5X6.

e a=a1+tar+203+204+205+206+07: 5 =3, Iy = X1X3X4X5X6X7X2X4X5X6X3.

oa=a1+or+203+3a4+2a5+206+07: s =4, |, = X1 X3X4X5X6X7X2X4X5X6X3X4.

o =01+ 20y + 203 + 304 + 205 + 206 + a7: s = 2, and in this case we obtain
ly = X1X3X4X5X6X7X2X4X5X6X3X4X7.

e oo =01+ 0ay+ 203+ 304+ 305+ 206+ a7: s =5, and in this case we obtain
Ly = X1X3X4X5X6X7X2X4X5X6X3X4X5.

e o =01+ 20y + 203 + 304 + 305 + 206 + a7: as above, s = 2, and we get
ly = X1X3X4X5X6X7X2X4X5X6X3X4X5X7.

e a =01+ 20+ 203 + 404 + 305+ 206 + a7: s =4, and in this case we obtain
la = X1X3X4X5X6X7X2X4X5X6X3X4X5X2X4.

e a =01+ 20+ 3a3 + 404 + 305+ 206 + a7: s =3, and in this case we obtain
la = X1X3X4X5X6X7X2X4X5X6X3X4X5X2X4X3.

e oo =201 +2ay + 303 +4a4 + 305 + 206 + o7: now there are one or two words
Bj. Since o — ay € At if and only if s = 1 and x; is not the last letter (because
it is the least letter), there are two words f;. So looking at the roots we obtain
s =7, and [, = (X]1X3X4X5X6X2X4X5X3X4X2) (X1 X3X4X5X6)X7

Type Egs: Consider o = Z;;:] aja;; if ag = 0, the root corresponds to the sub-
diagram of type D7 determined by 1,2,3,4,5,6,7, and we obtain /, as in that
case. If a; = 0, it corresponds to the subdiagram of type E; determined by
2,3,4,5,6,7,8. If ag = 0, then a corresponds to a subdiagram of type A; de-
termined by 1, 2, 3,4,5,7, 8.

So, we consider the case a; #0, i =1,2,3,4,5,6,7,8, and solve it case by
case in a similar way as for E7, by induction on the height.

Type F4: Now a = z;‘: yaja;. If ag =0, then it corresponds to the subdiagram of
type Bz determined by 1, 2, 3, so we obtain /, as before. If a; = 0, a corresponds
to the subdiagram of type Cs determined by 2, 3, 4.

So consider the case a; #0, i =1, 2, 3, 4:

cea=a+ay+a3+as: ag =1, s0a—a; =p is a root, where oy is the last
letter. Then s =4, and [, = x1x2x3X4.

cea=o1+ay+203+04:a;=1,50a —a;=fisaroot. Now s =3 or s =4.
If s =4, then [, :x1x2x32X4. But m34 =2, so

x3x4 = @3a(1 + q33)X3%4%3 — g33q34x4x3  mod 1,

and x1x2x32x4 ¢ S1, a contradiction. So s = 3, and we have [, = x1x2x3X4X3.
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o =01+ 2ar+ 203+ as: a; =1, and as above, s =2 or s = 4: if s = 4, then

l, = xlxzxgxz)u, but it is not an element of S;, because xx4 = go4x2x4 mod 1.

Then s =2, and [, = x1xpx3X4X3X7.

e a=a0a1+20+303+04: a; =1, sos =3, and we have [, = x1x2X3x4x3X2X3.

cea=a+tar+2a3+204: a;=1,s0s5s =4, and [, = x1x2x3x4Xx3X4.

e a=a1+20)+2a3+2a4: ag =1,s0s5 =2 ors =4, but we discard the case
s = 4 since xpx4 = goax2x4 mod 1. So, [, = X1 X2X3X4X3X4X7.

e a=a01+2a+303+204: a; =1,s0s =3, and [, = X1X2X3X4X3X4X2X3.

e a=a)+20+403+204: a; =1,s05 =3,and [, = x1x2)C3X4x3X4x2x32.

e a=oa1+30,+403+204: a1 =1,s05s =2, and [, = x1x2x3x4X3x4x2x32x2.

e o =2a1+3ax+403+2a4: ay =2, and there are one or two Lyndon words g;. If

there is only one, B =a—a; € AT. The only possibility is s = 1, but it contradicts

that [, is a Lyndon word. Hence there exist B, B> € AT such that f1+B> =a—as,

and S, is a beginning of ;. Sos =2 and f; = fr = a1 +as + 2a3 + ay, i.e.,

Ly = X1X0X3X4X3X1 X2 X3X4X3X7.

Type G,: the roots are ay, az, o) + az, 2a1 + a2, 3a1 + az, 3a1 + 2a5:

la1 = X1, laz = X2, lmal—‘,-az = xinx25 m = 17 29 3

If o =301+ 200, the last letter is x,. If we suppose 1 = 3a; +ao, then [, = xfx%,

but
(ad x2)%x1 = x3x1 — g21 (1 + g22)x2X1 X2 + g22g21 X163 =0 mod 1,
so we have
xfx% = (512_21 + l)x12x2x1x2 — q2_2] q2_11x12x22x1 mod 1,

and then [, = xfx% ¢ S; because q2_21qz_11 # 0, so there are at least two words f;.
Analogously, if we suppose that there are three words f;, we obtain lp = lg, =
x| > lg; = x1x2 since f; > B > f3 and Bi + B2 + f3 = 3a1 + a2; moreover
ly = xfx% ¢ S;. So there are two Lyndon words of degree | > f», and the unique
possibility is f; = 2a; + a2, f» = ay; thatis, [, = xlzxlexz.

4C. Dimensions of Nichols algebras of standard braidings. We begin with the
standard braidings of types Cy, Dy, E¢, E7, Eg, F4, which are of Cartan type.

Proposition 4.4. Let V a braided vector space of Cartan type, with g4 € Gy if V
is of type Fy and q11 € Gy otherwise, in each case for some N € N. The dimension
of the associated Nichols algebra B(V) is as follows:

N for N odd,

Type Cy: di V)=
DPpe o- imB(V) lN92/29 for N even;
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N4 for N odd,

Type F4: dlIl'lsB(V) = lN24/212 fOi’N even:

Types Dy, Eg, E7, Eg: dimB(V) = N'A"1,

The last case corresponds to simply laced Dynkin diagrams.

Proof. If N is odd, then ord g> =ord ¢ = N, but if N is even, we have ord g> = N /2.
Since the braiding is of Cartan type,

Gsi(a) = X i), si(@)) =y (a, @) = x(a, &) = qq.

Using this, we just have to determine how many roots there are in the orbit of each
simply root.

When V is of type Cy, we have g;; = g, except for ggg = ¢>. The roots in the
orbit of ay by the action of the Weyl group are gy, for 1 <i < @, and the others
are in the orbit of «;, for some j < 6. Hence there are & roots such that g, = q°,
and g, = g for the rest.

When V is of type Fy, we have q11 = gy = q2 and ¢33 = qaa = q. There are
exactly 12 roots in the union of orbits corresponding to o; and a5, and the other
12 are in the union of orbits corresponding to a3 and a4. So

e e At iqo=q}|=|{a e At 1q. =%} =12.

When V is of type D or E, all the g, equal g because g;; = ¢, forall 1 <i <4.
The formula for the dimension follows from Theorem 2.6(ii) and Corollary 4.2.
O

Now we treat the types Ag, Bg and G5.

Proposition 4.5. Let V be a standard braided vector space of type Ag as in Propo-
sition 3.9. The associated Nichols algebra B(V) is of finite dimension if and only
if q is a root of unity of order N > 2. In this case,

TN o B G AR G ) s

wheret =60 +1— Zi:] (—1) iy

Proof. First, g is a root of unity of order N > 2 because the height of each PBW
generator is finite. To calculate the dimension, recall that from Corollary 4.2, we
have to determine g, for a € Ac. As before, u;; = Z,{:i er, | < j, and we have

ABWV)) ={u;:1<i<j=<0}.
If1<i<j<6, we define

Kij =card{k € {i,..., j} : qu = —1}.
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We prove by induction on j — i that
o if x;; is odd, then Gu;; = —1;

. . -1 -1
o if x;; is even, then gy,; = q; 1941,

Here 9.04190+1.0 = 435 95,9195 1.0-

If j —i =0, then gy, = gii; in this case, x;; = 1 if ¢;; = —1 or k;; = 0 if
qii = (q,-,,-+1q,-+1,[~)_1 # —1. Now assume this is valid for a certain j, and calculate
it for j + 1:

Gui o =X (Wij €1, 05 +€11) = quy; X (Wij, €11) x (€41, Wij)Gj41,j+1
= qu;;4j,j+19j+1,j9j+1,j+1

Gu;; if gjr1,j+1 # =1 (ki j+1 = Kij),
=1(-Dgg ' =—1 if gjt1,j41 =—1, K;j even,
(_I)Q(_l) =9 ifQj-H,j—H =-1, Kij odd.

This proves the inductive step; to calculate the dimension of 26(V) we have to
calculate the number of u;; such that

Guij = qijil—quiii-ll,i =q*,
that is, card{x;; : i < j, x;; even}.

We consider an 1 x (¢ + 1) board, numbered from 1 to € + 1, and recursively
paint its squares white or black: square § 4 1 is white, and square i has the same
color as square i 4 1 if and only if g;; # —1. The possible colorings of this board
are in bijective correspondence with the choices of 1 <ij <--- <i; <0 forall j
(the positions where we put a —1 in the corresponding ¢;; of the braiding), and the
number of white squares is

J
k=1

Thus card{x;; : i < j,x;; even} is the number of pairs (a, b) (where a = i and
b=j+1)suchthat ] <a <b <6+ 1 and the squares in positions a and b are of

the same color; this number is (;) + (g+2]_’ ) This yields (4-2). Il

Proposition 4.6. Let V be a standard braided vector space of type By as in Propo-
sition 3.10. If the braiding is as in cases (a) or (b) of that proposition, the associ-
ated Nichols algebra B(V) has finite dimension if and only if q is a root of unity
of order N > 2 in case (a), or N > 2 in case (b).

When finite, the dimension of 8(V) is as follows, where t = 0_Z£:1 (=1)7 ki
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o [fthe braiding is as in (a) of Proposition 3.10,

33N? if 3 does not divide N,
dimB(V) = {32N? if 3 divides both N and ord(¢ ~'q),
3N? if 3 divides N but not ord(¢ "'q).

o [fthe braiding is as in (b), then 0 < j <d — 1 and

22t(0—1)+6 k927219+2t2 if N = 2k,

dimB(V) = i2(2t+1)(6—t)+1N62—2ﬂ9+2t2 if N is odd.

o Ifthe braiding is as in (c), then
dim %(V) — 29(9—1)392—2t9+2t2 )

Proof. 1t is clear that g should be a root of unity if dim 2B (V) is finite.

We now calculate dim 2B(V). From Corollary 4.2, we have to determine the g,
for a € Ac, and multiply their orders. As before, u;; = Zi:i eforl <i<j=<0
and Vij = 222:1 ey +Zi:i+1 ey = 26171‘ +eit1,j for 1 <i < j; hence

AB(V)) = {u;:1<i<j<O}Ufvj:l1<i<j<0}.

We calculate gy;;, 1 <i < j <6 as above, because they correspond to a braiding
of standard Ag_; type. We also calculate

4 2 2
Gvi; = x (Vij, Vij) = y ri, )" (@, Wi ;)7 (Wi, W) " Guyy

i 2

4 2 2 2

={411912921 (qukal,kal,ka+l,kC]k+l,k) Quiiyj = quiyy o
k=2

where we have used the equalities g;;q;; = 1 if [i — j| > 1, qflqlz2q§1 =1, and

q,fqu_l,qu_l,quH,quH,k =1if 2 <k <6 — 1. To calculate the other g,’s, we

analyze each case:

(a) Note that ge, =, Gej+e, =C> G2ei+e =rq7 !, de, =q. Setting N’ =ord(¢ ~'q),
we have N’ = 3N if 3 does not divide N; N’ = N if 3 divides both N and N’; and
N’ = N/3 if 3 divides N but not N’ (since ¢ = {p, with p € Gy).

(b) We have gy, = q_]qqu. This equals g?¢~' = g if xo is even, and —g ' if

Kk is odd; moreover g1; = q. Also, ky is even if and only if j € {i; + 1,60}, or
i €{ijo+1,i;_1}, and so on. Then, with

J
= (g—ij)—f—(ij_] —ij_2)+. .. =9_Z(_1)Jfkl-k
k=1

as in the statement of the proposition, there are  numbers such that x; g is even.
There are 2((%) + (°;")) roots such that g, = g2, 2(() — () — (°3")) roots such
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that g, = —1, £+ 1 roots such that ¢, = ¢ and § — 1 —¢ roots such that g, = —g .
If N = 2k, then ord(—g ") = 2k and ord(¢?) =k, so
dimB(V) = 2(971)94(;‘71)7(071)(647l)kt(tfl)+((97t)(07t71)(2k)9
— 2 (9—t)+9k92—219+2t2 '

If N is odd, then ord(—g~") = 2N and ord(¢%) = N, so
dim B (V) = 200-D=1a=D=O=-nO=1-0) N1(=D+O-0O—1=)+1+1
(2N)9—l—t _ 2(2z+1)(0—t)+1N92—2z0+2z2_

(c) In a similar way, we have gy, = (—¢?)qu,;» Which equals (—¢2)? = ¢ if xy; is
even, and (—1)(—(2) = (2 if xp; is odd; moreover ¢y = ¢. There are 2((;) + (0;))
roots such that g, = —¢2, 2((?) — (;) — (9;)) roots such that g, = —1, t 4 1 roots
such that g, = ¢ and @ — 1 — ¢ roots such that g, = ¢. Since ord¢ = ord (> =3
and ord(—¢?) = 6, we have

dlm%(V) — 29(0—1)—t(t—1)—(9—t)(9—1—t)6l(t—1)+(9—l‘)((9—1—1)39

_ 29(0—1)302—2t0+2z2_ 0

Proposition 4.7. Let V be a standard braided vector space of type G, as in Propo-
sition 3.11. If the braiding is as in case (a) of that proposition, the associated
Nichols algebra B(V) is of finite dimension if and only if q is a root of unity of
order N > 4.

When finite, the dimension of *B(V) is as follows:

o In case (a) of Proposition 3.11,

N© if 3 does not divide N,

dimB(V) =4 ¢ U
N°®/27 if 3 divides N.
e In case (b), dim B(V) =212,

Proof. For (a) note that g is a root of unity because x; has finite height, and g, = ¢
if a € {e1, e] + e, 2e; + €2}, while g, = q3 if a € {ep, 3e; + €2, 3e1 + 2e2}.
Case (b) can be checked as follows:

type v e 4o G, dox, 4o dimB(V)

-1

e 8 4 2 8 2 4 212
2

) 8 2 4 8 4 212
L S SR 8 4 2 38 212

This completes the proof. O
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5. Presentation by generators and relations of Nichols algebras of standard
braided vector spaces

In this section we give presentations for the Nichols algebras of standard braided
vector spaces. We start with some technical results about relations and PBW bases
in Section 5A; also we calculate the coproduct of some hyperwords in 7 (V). In
Sections 5B, 5C and 5D we express the braided commutator of two PBW generators
as a combination of elements of the PBW basis under some assumptions. Then we
obtain the desired presentation with a proof similar to the ones in [Andruskiewitsch
and Discilescu 2005] and [Andruskiewitsch and Schneider 2002b]. In Section SE
we solve the problem when the braiding is of Cartan type using the transformation
in Section 2C.

For rank two, a set of (not necessarily minimal) relations is given in Theorem 4
of [Heckenberger 2007].

5A. Some general relations. Let V be a standard braided vector space with con-
nected Dynkin diagram and let C be the corresponding Cartan matrix. In what
follows we assume that C is symmetrizable and of finite type. Let xq, ..., xg be
an ordered basis of V and {x, : a € AT(B(V))} a set of PBW generators as in
the previous section. Here x, € ‘B(V) is, by abuse of notation, the image by the
canonical projection of x, € T (V'), the hyperword corresponding to a Lyndon word
l,. As before, we write

g = y(a,a) and N,:=ordg, forae AT(B(V)).
Each x, is homogeneous and has the same degree as [,. Also,
xq € T(V)Ee, (5-1)

wheregazgi"...ggg and)(az)(lbl...)(g" if a =bje; +-- -+ bgeg.

Proposition 5.1. If the matrix of the braiding is symmetric, the PBW basis is or-
thogonal with respect to the bilinear form in Proposition 1.4.

Proof. We must prove that (#|v) = 0, where u # v are ordered products of PBW
generators (we also allow powers greater than the corresponding heights). We
argue by induction on k := max{{(u), £(v)}. If k =1, then v is some x; and u is
either 1 or x;; since (x;|x;) = d;; for all i, j € {1, ..., &}, the proposition holds in
this case.

Suppose the statement is valid when the length of both words is less than &, and
let u, v € By(v) be distinct hyperwords such that one (or both) has length k. If both
are hyperletters, they have different degrees a # f € Z%, so u = x4, v = xp, and
(xq|xp) =0, since the homogeneous components are orthogonal for ( | ).
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Suppose that u =x, and v :le‘ X ﬁ’" , forsome xg, > --->xp, . If u and v have
different Z?-degrees, they are orthogonal. Hence we assume that a = Z}"zl o P -
By [Bourbaki 1968, VI, Proposition 19], we can reorder the f;’s, using /; copies of
pi, in such a way that each partial sum is a root. By [Rosso 1999, Proposition 21],
the order induced by the Lyndon words /, is convex (the order on Lyndon words
used there is the same as ours). Therefore f,, < a. Using Lemma 1.9 and (1-8),

(o) = (xa|w)(Axg,) + Aw) (g, [x5,)+ D Gyt W)U - - [p)elxg,),
Lz-=l,>a
lieL
where v = wxg,. Note that (1]xg,) = (I|lw) = 0. Also, [[i].---[lp]c is a linear
combination of greater hyperwords of the same degree and an element of (V).
From the inductive hypothesis and the fact that / (V) is the radical of the bilinear
form, we see that ([/1].---[/,]:]xg,) =0.
Now consider
u =le . .xj” with x,, > ... > xq,,

hy h m

v=Xg o xg Withxg > o> xp

Since the bilinear form is symmetric, we may as well assume that x,,, <xg, . Using
Lemma 1.9 and (1-8), we obtain

h
m hm _
<u|v)=(w|1)<xa,,|v)+2(l.) (wlxlf ek ) e, ™)

i=0 qpm

Y @i ) e e [, 1),

hiz->l,>1liel
Osjsm

where w = xh xgl ~1. Note that in the first summand, (w|1) =0. In the last sum,
(xg, 1111 - - [l p] [Xﬂm]c) vanishes, because by earlier results [/1]....[/,]c [Xﬂm]

a combination of hyperwords of the PBW basis greater or equal than it and an
element of 7(V), then we use induction hypothesis and the fact that 7(V) is the
radical of this bilinear form. Since x,,, xZ:_i are different elements of the PBW

basis for h,, —i # 1, we have

h h”'l hnl
(ulp) = (hm)qﬁm (w|xﬂll X 11 B )(xa,, 1%8,,)-

This is clearly zero if a, # f,,. To see that it is zero also if a, = f,,, note that in

that case w and lel xZ’” le”’ ! are different products of PBW generators, and
use the induction hypothesis. 0

Corollary 5.2. Ifa € AT (B(V)), then xY« = 0.
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J1 Jn

Proof. Let (g;;) be symmetric. If u = x5, ... X5, Xq > -+ > Xg,, then

@) = [ JGigs,! (o 12, (5-2)
i=1

where (x4 |x,) # 0 for all « € AT(B(V)).

If we consider u = x(’xv «, we have (u#|v) =0 for each v in the PBW basis (because v
is an ordered product of x4’s different from u), and (u|u) =0 since g, € Gy, . Also,
(I(V)|xNe) =0, because it is the radical of this bilinear form, so (7' (V)|x)«) =0,
and then x« € I (V). That is, we have xY = 0 in B(V).

For the general case, recall that a diagonal braiding is twist equivalent to a braid-
ing with a symmetric matrix [Andruskiewitsch and Schneider 2002a, Theorem
4.5]. Also, there exists a linear isomorphism between the corresponding Nichols
algebras. The corresponding x, are related by a nonzero scalar, because they are
an iteration of braided commutators between the hyperwords. U

In what follows, J denotes the family of Z’-graded (hence N-graded) ideals
of T(V) that are generated by their components of degree > 1. For each I € J,
B =T (V)/I is a 7°-graded algebra such that B° =kl and B' ~ V.

We shall need some technical results about graded algebras between T (V') and
B(V). We start with three lemmas dealing with the presence of some important
roots in A(*B). Remember that a Lyndon word is a PBW generator in 8 =7 (V)/I
if it is not a linear combination of greater words modulo 7 in 7(V). We shall
relate the absence of some roots in A (28) (meaning that the Lyndon words of such
degrees are linear combinations of greater words modulo /) with the validity of
certain relations in 8.

Lemma 5.3. Leti, j € {1,...,0} be distinct, and consider [ € J, B =T(V)/I.
Let Dy, k=1, ...,0, be skew derivations of B as in Proposition 2.1, and assume
that xiN =01ifq qijq;i # 1 for all n € Ny (where N = ord g;;).

There exists m € N such that x!" x; is a linear combination of greater hyperwords
(for a fixed order such that x; < x;) modulo I if and only if, in B.

(ade x;)"7+ oy = 0. (5-3)

Proof. If (ad. x;)"x; = 0, there exist a; € k such that
m—1
0=[x"xj]. = (ad. x;)"x; = x"x; + Z akxl(‘xjxim_k.
k=0
Conversely, suppose there exists m € N such that x"x; is a linear combination
of greater hyperwords modulo /. Let

n=min{m € N : x;"x; is a linear combination of greater hyperwords}.
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If x/' =0, then g;; is a root of unity. In this case, if N is the order of g;;, then
=0and x'~' #0. Also,

N-1
N
(adex)Vx; = xVx + > () Tl =0,
s=1 qii

=0for 0 <s < N. Hence, we can assume x;' # 0 and (n),,! # 0.
n—k

because (]:’ )q

ii

Note that [x] xJ k]c =[x/ kxj]cxl(‘. Since ‘B is graded, x]'x; is a linear com-
bination of terms xl kx] x;, 0 <k < n. Hence there exist a; € k such that

n
—k k
[x!xj]lc = Zak[xi" xjlex; .

Applying D; we obtain
n
0= [x xjle Z ockD [x;~ kxj]cxf) = Z ok (k)g, [xl.”_kxj]cxlk.
k=1

By the hypothesis about n, a1 = 0. Since (n),,! # 0, applying D; several times we
conclude that ay =0 for k =2, ..., n. Hence [x]'x;]. = 0. O

Recall that (5-3) holds in B(V), for 1 <i # j <8.

The second lemma is related to Dynkin diagrams of a standard braiding which
have two consecutive simple edges.

Lemma 5.4. Let I € Jand B =T (V)/I. Assume that

o there exist skew derivations Dy in B as in Proposition 2.1,

o there exist different j, k,1 € {1, ...,0} such that my; =my =1, mj; =0;
. (adxk)zxj = (ad x)%x; = (ad xj)x; =0 hold in °B;

o xi =0 if quqrjqx # 1 or qrququ # 1.

(1) If we order the letters xy, ..., xg such that x; < x; < x;, then x;xyx;xy is a
linear combination of greater words modulo 1 if and only if, in ‘B,

[(ad xj)(ad xp)x;, xi ] = 0. (5-4)

(2) If V is standard and qy, # —1, then (5-4) holds in B.
(3) If V is standard and dimB(V) < oo, then (5-4) holds in B = B(V).

Proof. (1) (<) If (5-4) holds, then x;jx;x;x; is a linear combination of greater
words, by Remark 1.7, and

[xjxexixile = [ xexde, x|, = [(ad x;) (ad xp)xz, xi ], -
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(=) If xjxix;x; is a linear combination of greater words, then the hyperword
[xjxkxlxk]c is a linear combination of hyperwords corresponding to words greater
than x;x;x;x; (of the same degree, because B is homogeneous); this follows from
Remark 1.7. Since (adxk)zxj = (ad xz)%x; = (ad x;)x; = 0, we do not consider
hyperwords with xjxlf, x,fx, and x;x; as factors of the corresponding words. Then
[xjxkx;xk]c is a linear combination of

[eexixexile = [xpxlexex;, [xpxrxjxi]e = xpxe[xjxile,
2 2
Lxrxjxexi]e = xilxjxexile, [xixixjle = xixx;.
Since Dj([xjxixixile) = Dj(xlxjxixi]le) = Dj(xxilxjxi]e.) = 0, in that linear
combination there are no hyperwords ending in x;; indeed,
2 2
Dj ([xkxilexexj) = [xexilexk,  Dj(xixpxj) = xixj,

and [xgx]cxk, xlx,f are linearly independent. Therefore, there exist a, f € k such
that

xjxpxixg)e = axpxp[xjxe)e + Bxilxjxex]e.

Applying D;, we have

0 =aqrjquxi[xjxi)e + a(l — qrjqj) xixex; + Barrqrjqr[xjxrxi]c.
Now x;[xjxile, x;x,x; and [x;x;x;]. are linearly independent by Lemma 2.7, so
o=p=0.

(2) We assume that some quantum Serre relations hold in 28; using them we get

xjxexixe = g (L4 que) ™ 00 + qraegry (1 + qroe) ™ xxxg
=G i) D XXX+ G G G (14 qri) ™ X0 xx
+ qrrqrqie (14 qre) ~ xpxjx 2.
It follows that x;x;x;x; ¢ G for an order such that x; <x; <x;. Also, xjxlx,f ¢Gy,
since (ad. xj)x; = 0 and (5-4) is valid by part (1).

(3) If V is a standard braided vector space satisfying the conditions of the lemma,
consider Vj as the braided vector space obtained transforming by s;. Then m;; =0.
Therefore e; + ¢, ¢ AT(B(Vi)), so si(ej +€) = 2er + e +e ¢ AT(B(V)). It
follows that x;x;x;x, is a linear combination of greater words, since it is a Lyndon
word when we consider an order such that x; < x; < x;. O

We now prove two relations involving the double edge in the Dynkin diagram
of a standard braiding of type By.

Lemma 5.5. Let [ € Jand B =T (V)/I. Assume that

e there exist j #k € {1,...,0} such thatmyj =2, mj; = 1;
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o there exist skew derivations as in Proposition 2.1,

e the following relations hold in ‘B:
(ad x¢)’x; = (ad xj)*x; = 0; (5-5)
q=xf=0  ifgy=q;=1

(1) If we order the letters x1, . . ., Xg such that x; < x;, then x,ijxkxj is a linear
combination of greater words modulo 1 if and only if, in *B,

[(ad x¢)*x;, (ad xi)x;]. = 0. (5-6)
(2) If' V is standard, q;; # —1 and q,fqujqjk =1, then (5-6) holds in ‘B.
(3) If V is standard and dim B (V) < oo, then (5-6) holds in B = B(V).
Proof. (1) (<) If (5-6) holds in B, then x,ijxkxj is a linear combination of greater
words. This follows from Remark 1.7, and
Lepxjxle = [0 e, [axsle], = [(ad xi)?x;, (ad xp)x;] -
=) If x,ijxkxj is a linear combination of greater words, then [x,ijxkxj]c is a
linear combination of hyperwords corresponding to words greater than x,ijxkxj
(of the same degree, because B is homogeneous).
First, there are no hyperwords whose corresponding words have factors x,?x j or
xksz, by (5-5). Since [x,%xjxkxj]c € ker D;, and
Dye(xj bt xj lexio) = x; g )es
Dy ([xix; 12xx) = [xiex; 12,
Dy (xj [xexj1ex) = (1 + quac) x; [xiex; lex
in that linear combination there are no hyperwords ending in x;, except szx,f if

qik € G3. We consider gj; # —1 if gix € 3, since otherwise x/.zxg = 0 by assump-
tion. Then there exist a, a’ € k such that

2 2 123 2 123
[xpxjxixile = alxixjxpxjle + o Xixp = alxpxjlelxixjle +a XX

We prove by direct calculation that Dj([x,ijxkxj]c) = 0. Applying D; to the
previous equality,

0=a'(1+ qjj)xjx,g + y(ex + e, 2e; + ej)a(adxk)z(xj)xk
+ (1= qijqi) (1 — qreqriqie) e (ad x) (x)xZ,
where we use that (ad xk)3(xj) =0 and

xi(ad x)" () = (ad x)™ ™ (x)) + gfrqr; (ad x)™ (x;)x.
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Since (1 — gxjqjx) (1 — qrqrjgjx) # 0 and (ad xz)*(x;)xx, (ad xi) (x))x7, X;x; are
linearly independent, it follows that & = o’ = 0.

(2) Using (ad xj)zxk =0 in the first equality and (ad xk)3xj =0 in the last expres-
sion,

2

xkxlxkx]—(l—i—q”) qjkl xzxk—l-(l—i-qu) q,kq”xkx

€ e (1+4) ™ 4@k x5k + KXo 2 -
Suppose that (3),, (1 + ¢j;) 'qrjqjeq;; = 1; that is, (3)4, = (1 + gj;). Then
4jj = qQkk + Qi SO
1 =qjjqkjqix = qrkqrjqjx + q;fqujqjk = qikqkjqjr + 1,
which is a contradiction since grqx;jq;r € k™. It follows that x,ijxkxj is a linear
combination of greater words, so (5-6) follows by previous item.

(3) If V is a standard braided vector space, and we consider V; as the braided vector
space obtained transforming by s;, then n1iy; = 2. Therefore, 3e;+e¢; ¢ AT(B(V)),
so s;(3ex+e;) =3er+2e; ¢ AT(B(V)). Since x,%xjxkxj is a Lyndon word of degree
3er + 2e¢; if x; < x;, then it is a linear combination of greater words. O

Lemma 5.6. Let [ € Jand B =T (V)/I. Assume that

o there exist different j, k,l €{1,...,0} such thatmy; =2, mjr =mj;; =m;; =1,
my = 0;

o there exist skew derivations in B as in Proposition 2.1,

o the following relations hold in B: (5-4), (5-6),

(adxk)3xj = (adxj)zxk = (ad xj)2x1 = (adxx)x; =0

3

(5-7)
Xk :x = ’f‘lkk—q]] =1

(1) If we order the letters xy, ..., xg So that xy < xj < x;, then x,%xjxlxkxj is a
linear combination of greater words modulo 1 if and only if, in B,

[(adxk)z(adxj)xl, (adxk)xj]c =0. (5-8)

(2) If V is a standard braided vector space and qii ¢ G3, q;j # —1, then (5-8)
holds in *B.
(3) If V is standard and dim B (V) < oo, then (5-8) holds in B(V).
Proof. (1) (<) As in the last two lemmas, if (5-8) is valid, then x,ijxlxkxj isa

linear combination of greater words, by Remark 1.7, and

[x,%xjxlxkxj]c = [(adxk)z(ad)q,)xl, (adxk)xj]c.
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(=) Suppose that x,ijxlxkxj is a linear combination of greater words. Then
[x,ijxlxkx i1c 1s alinear combination of hyperwords corresponding to words greater
than x,ijxlxkxj (of the same degree, because 8 is homogeneous). We discard
those words which have x;x;, x,?x i xksz, szxl, xix;jx;x; and x,%x i XkXj, in view of
our hypotheses about ‘B.

Since Dy, ([x,ijxlxkxj]c) = 0, the coefficients of hyperwords corresponding to
words ending in x; are 0, as in Lemma 5.5, except for [xjxl]cxjx,g’, xlszx,f, if
gk € Gs. Thus

2 2 2
Degxjxixexile = alxix;lelxgxjxle + Blax;xilelxi xjle

2 3 2.3

+yxilxexjlelxgxile + plxjxlexjxy + VXXX

By direct calculation, D; ([x,ijxlxkxj]c) =D; ([x,ijxl]c) = D;([xkxjx;]c) =0, so
applying D; to the previous equality we get

0 = aqiqjiqi% e xixile + B — qudr; i) (1 — die i) XX xilex;
+7 (1= greqry @) (= qiari g0 xlax;1ext + 7 45 xgxg1e
+ ,u[xjxl]cxf +v(l+ ij)xlxjxlg’

Note that v = 0 if g;; # —1; otherwise, sz = 0 by hypothesis, so we can discard
this last summand. The other hyperwords appearing in this expression are linearly
independent, since the corresponding words are linearly independent by Lemma
27. Thusa=p=y =u=0.
(2) If gk ¢ G3 and gj; # —1, then x,ijxlxkxj is a linear combination of greater
words, as can be seen using the quantum Serre relations in a way similar to that in
Lemma 5.6. Now apply part (1).
(3) I V is a standard braided vector space, consider Vj as the braided vector space
obtained transforming by s. Then 7i1y; = 2. Therefore, e, +2e; +e; ¢ AT (B(Vy))
by Lemma 5.5, so si (ex +2e; +e;) =3e;+2e; +e; ¢ AT(B(V)). Since x,ijxlxkxj
is a Lyndon word, it follows that it is a linear combination of greater words, and
we apply (1). O
We now give explicit formulas for the comultiplication of these hyperwords.
Lemma 5.7. Consider the structure of graded braided Hopf algebra of T (V') (see
Section 2A). For all k # |,

A((adxk)mkj+1xj) = (ad xk)mkj+1xj R1+1® (adxk)mijrlxj
ij+1
+ H (=gl ®x;. (59

1<t<my;
Proof. We have Fy((ad xk)’"kf“xj) = 0 by the definition of m;; and (2-5). Also,
Fi((ad xk)’"kf“xj) for [ # k by (2-6) and the properties of Fj, so
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6

Aty ((@dx)™ ) = D" 5 ® Fi((ad xe)™i x;) = 0
=1

Now Dy ([ xkx]]cxs Y = 0 from (2-3), and from (2-4)
ii+1
Dj(Ixixlexy ™y = [ (-auaagox™",
1<t<my;
so we deduce that
; ijt+1
A1 ((ad x)™H x)) = H (1 — ghraeigin)x, " ®x;.
1<r<my;

Since hyperwords form a basis of 7 (V'), we can write, for each 1 <s < my;,

i+1
Amkj-‘rl—s,s ((ad xk)mkj—‘r xj)

mpj+1—s
¢ myj+1—s—rt myj+1—s s—p p
= E est[xpxjlex, ®x;p + E PspXy ®[x, "xjlex;,
t=0
for some &, psp € k. Then, foreach 0 <t <my; +1—3,
my;i+1 mi+1-t
((adxk) AR { [xkxj]cx ! xk)

. +1-— .
= ((@dx0)™ ) ) | Depxlex, ™) ((ad )™ ) ) | xf)

myi+1—t—s .
| Depxlex ) (e 1xg)

= Sst(mkj +1—-s5— t)Qkk! (S)Qkk‘ ([xkxj]c | [xltcxj]c)’

myi+1—t—s
= &st ([xkx]]c !

where we have used that (ad x; )" +1x,- € I (V) for the first equality, (1-8) for the
second, (1-10) and the orthogonality between increasing products of hyperwords
for the third, and (5-2) for the last. Since

(mkj +1—s5— t)qkk! (s)qkk! ([x/tng]c“x]t(xj]c) 7& 09

we conclude that e, =0 for all 0 < ¢ < my; + 1 —s. In a similar way, p,, = 0 for
all 0 < p <s, so we obtain (5-9). O

Lemma 5.8. Let B be a braided graded Hopf algebra provided with an inclusion
of braided vector spaces V. < P(B). Assume that

e there exist 1 < j #k #1 <0 such thatmi; =my =1,m; =0;
. (adxk)zxj = (adxk)le = (adx;)x; =0in B;
o x2 =0 if quqrjqjx #1 or qrquqix # 1.

Then u := [(ad x;)(ad x)x;, xr]. € P(B).
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Proof. From (2-3), D;(u) = 0. Also, Dy ((ad x;)(ad x¢)x;) = 0, so

Di(w) = (1 — g2vqjxqrjququi) (ad x;) (ad x3)x; = 0.

From (2-4) and the properties of D; we have

Dy (u) = qic (1 — ququ)[xjxilexr — qjxqriqic (1 — qraque) xi[x; xi 1
= qi(1 — quqr)[[xjx1]e, x¢ ] = .
Then A3 (#) = 0. From (2-6) and the properties of Fj and F;, we have Fy(u) =
F;(u) = 0. Using (2-5), we have
Fj(u) = (1 — qjkqij) [xexi)exXe — qixqreqingii (1 — qjeqrg) X xexi]e
= (1 — quqr) (1 — quj g g i) [xixilexr = 0.
Thus A3(u) =0 as well.
Also, we have
A(u) = A((ad x;)(ad xg)x;) A(Xk) = Gey+e;+¢;.¢; A (i) A((ad x7) (ad xp) x; ),
and looking at the terms in 8% ® B2,
Az (u) = (1 — quegrn) [xjxi]e ® (Xixk — qujqirdiedicXex)
+ (1 — qijgj) qikqik (Xjxk — gjrxix;) ® [xexi]e
= (1 — gjgjx — (1 — qikqrr) 9k qkgx; ) Qikgriclxixele @ [xex]e.
Now a calculation shows that u € P (*8):
1= qijqik — (1 — queqi) qadingi = 1 — qiidjx — Qedindij + qz;
= 4 1+ a) (1 — gaagrjgin) =0. O

Lemma 5.9. Let B be a braided graded Hopf algebra provided with an inclusion
of braided vector spaces V < P(B). Assume that

o there exist 1 <k # j <0 such thatmyj =2, mj; =1;

o (adx,)™Htx, =0, forall 1 <s #t <0 inB;

mg+1
s

o X = 0 for each s such that qg" qs:q:s # 1, for some t # s.

(@) Ifv:= [(ad xk)zxj, (ad xk)xj]c, there exists b € k such that
A@)=0® 1+ 1®0+b(l - 4irdi;q79i)%i ® x; - (5-10)

(b) Assume there existl # j, k such that mj; = m;; =1, my = my, =0, and that
(5-4) is valid in B. Set

w := [(ad x)*(ad x;)x;, (ad x;)x; ]

c’
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Then there exist constants by, by € k such that

Aw)=w 1+ 1@ w+biv ®x;+ba(1 — qeqijqgi)xi ® ((ad x;)x;) x;. (5-11)
Proof. (a) F;(v) = 0 since v is a braided commutator of two elements in ker F;.

Using (1-4) we have [(adxk)zyg,, xile = qij(qj; — qkk)[xkxj]f, so we calculate

Fi(0) = (I+qi) (1= queqrj 501X ;=i ixdis (1= au i) % [xg x1e
+aidin(1=a4 40 1% 1e X —a0eas 474 (1) (=g 0 [xex; 1
= qieaicari (1= ajq;x) (qj; —qie)

+(1+Qkk)(1_QkaijCIjk)(l_qgkqgjqj'zkcﬂj)[xkxj]z’

which vanishes since the coefficient of [xkxj]f is zero for each possible braiding.
Thus
A1,4(0) =x; ® Fi(v) =0.

Also, Di(v) =0, and a calculation gives
D;(v) = (1 — qijqj) (Ixix;1xk + (1 — quieqijqix) 4k G X e 1e
— 4tk 9 (1 — Qe 0 XX 1ex; — Qi 436y xe ;1)
= (1+ (1 + qu) (1 — qriedij 46 aukdii 4k — Gedii4ixd;;)
(1 — qijqi) [xgx; 1%k,

where we have reordered the hyperwords and used that (ad x;)3x ;7 =0; also,
1+ (1 + i) (1= G 99k i 9k 57 — Dediidixd;; = 0s (5-12)
by calculation for each possible braiding. Thus
A4 1(v) =Dj(v) ®x; =0.
To finish, we use the fact that A (v) equals
A((ade x)x;) A((ade x0)x) — x (2ex + e, ex + ¢;) A((ade xi)x;) A((ade x0)2x;).

Looking at the terms in B° ® B2 and B2 ® B>, and using the definition of the
braided commutator, we obtain

A3 (v)
= (1 — 443, 43a;)[XE % 1e ® [xex; e
+ (14qi) (= qraqrj 4j1) Gk 9jx 9 (o X% )e— Graeq [xax;1exe) © [xex;le
+ (1= 140> (1 = g @) (1 — 4iadic; 47647 X; © X7
= (14 (14 qr) (1 — qriequi i) qrdr; ik dsi — iy died;;) X x e ® [xex;le
+b1(1 = qiqi973.97) % ® x5
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Also,

A3 () = (1 = queqriqin) (1 — qijgj)x;
® ((1 4 quo) qreqjelxex;lex; — (1+ qr)aiedi; 4.5 xex; e
+xj[0exle — gieag; a7 laaxi1ex;)
= (1 — g%a95ea; + A+ qu) (1 — Qeeqrj i) akkdii 4xd;;)
(1 = qreqi i) (1 — qrjqi) ¢ ® x;[xex;]e.
Using (5-12), we obtain (5-10).
(b) We set y = (adxk)Z(adxj)xl and z = (ad x;)x;. Note that A(w) = A(y)A(z) —
x (e +ej+e, e +e)A(z)A(y) and that
A =y®1+(1—qjq;)(adx)’x; ® x;
+ (1 — qrjqi) (1 — qreqij gjx) % ® (ad xj)x;
+ (14 gre) (1 — qrqr;qji)xx @ (ad xg) (ad xj)x; + 1 ® y,
AR)=z® 14+ (1 —qiqj) @ x; +1®z.
From (2-3) we have Dy (w) = 0, and from (2-4),

Dy(w) = (1 — qi;q;1)ququj [ (ad x¢)*x;, (ad xp)x;]. »
Dj(w) = —(1 — g qi) 95 di; 9i ' (@d x0)* (ad x))x)
= —(1 = qrjgi) 4 9 9 ' 1@d ) x;, x1]e = 0,
where in the last equality we used (1-4) and the vanishing of [xg, x;]. = 0. It
follows that
Asi(w) = (1 — qijq) g [ (@d xi)%x;, (ad x)x; ], ® x;.
Also, Fj(z) = Fj(y) = Fi(z) = F;(y) = 0 by (2-6) and the properties of these
skew derivations, so Fj(w) = F;(w) = 0. We now calculate
Fi(w)
= (1 + qi) (1 — qreqij 40 [xaxixile[xex; 1e + afeainqie (1 — qiiqii) [xx;xilex;
—x(2e;+e; +e, e +e)
((1=gqxjqji)xj [xExjxi e+ (i) (1—qrrgi; i) Gk gr X xi e [xex 1)
= qlgkCIijIk(l — qkjé]jk)[[x/%xsz]c, Xj]c
— (14 qu) (1 — qrrqij 98 9 dic; 4339500 Gk [ Leex i es [xaxixle]
= qikdki 919,900k
(1= qrjgjx — (1 + ) (0 = qrrqrj i) aeedri g ) [Dexjles Dexixle ],
=0,
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where we used (1-4) and (5-4) in the third equality, and we calculate that

1 —gijqjx — (1 + qric) (1 — qriqrjqjx)aikqijqix =0 (5-13)

for each possible standard braiding. It follows that A 5(w) = 0.
We find each of the other terms of A (w) by direct calculation. First,

Agp(w)
= (1—x(ec+ej+e,ex+e)y(ec+e,2e+e+e)) y®z
+ (1 = qrjqj) (1 — qijqj1)
(q;k [x,ij]cxk ®xixj — x(2er +e; + e, e+ ej)qukq]'jxk [xlij']c ®ij1)
+ (1 = qjqi) (1 — qrkqr;qj)
(x(ej +er, ex+e)xpz— x(2e, +e€ +e, e +€)zxp) ® [xjx]e
= (1 = qijgi)qu (1 — gjrgrj + U+ qr) (1 — qaqr; 45 grrr;djx )
[xpxlexk ® [xjx1]e,
which is seen to equal 0. In a similar way we calculate
Az3(w)
= (1—qgi)[xix;1® (xiz— x (2ex+e;+er, ec+e;) y (ex+ej, ex+e;+e)zx;)
+ (1+qir) (1 —qrkqrjqjx) x (ex+€j+e;, ex+€;) (xrz — qr i 2xk) @ [Xxxj X1 1
+ (1= g 9j1) (1 = G gjx) X7
® (x(ej+er, e)[xjxilex; — x (2ex+ej+ep, ex+e;) x (e, 2ex)x;[xjx]c)
= (M +qr) (1= qrrqujgjx) — qrcdnqaix i A —qiiqj1) )
x (e +ej+e, ex+e)[xpx; 1 ®[rexxi]e
+ (1= qukqriqi) (1= qrigj)* L — G qri i) X3 @ [ x11ex;

and the coefficient of [x,fx ile ® [xxxjx;]c is zero (we calculate it for each possible
standard braiding). Finally,

Ay (w)
= (1= qukqrjgjx) (1 — qrjgji) X7
® ((1+qik) x (ex+ej +er, ex) [xexjx;]ex;
—(I+qir) x (2ex +e€;+e;, ex+€;)qjrx; [xpx;x]c

—x Qe +ej+er, ec+e;) y (ex+ej, 2e0) [ xex;le, [xjxle],)

= (1 —qrxqrjqjx) (1 —qr;qjx) x (€ +er, ex+€;)qx;
(g (1 —qrqr;gin) — ;5 (1 —ququ;) ) xi ®x;j [xex;x1c

=0.

From these calculations, we obtain (5-11). Il
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5B. Presentation when the type is Ag. We now assume V is a standard braided
vector space of type Ag and B a Z?-graded algebra, provided with an inclusion
of vector spaces V «— B! = @15 <0 $B%. We can extend the braiding to B by
setting

cw®v)=y(o, HoQu, uecB* veB’ a, peN’.

We assume that on B8 we have
X =0 if g =1,
ade x;(xj)) =0 if [j—i|> 1,
(ade x;)>(x))e =0 if |j =il =1,
[(ade x;)(ade xi41)xig2, Xig1], =0 2<i<6O—1.
Using the same notation as in Section 4B,
Xe, = Xi, Xu;; =[x, xuy  le (<)),

Lemma 5.10. Let 1 <i < j < p <r <80. The following relations hold in ‘B:

[xl.l,‘j, xup,]c - 0; p _J 2 27 (5—14)
[xll,'j 5 xllj+1q,]c‘ = xu,-, . (5_15)
Proof. Note that xy, belongs to the subalgebra generated by xp, ..., x,, and

[Xu;;» Xs]e = 0, for each p <s <r. Equation (5-14) follows from this.

We prove (5-15) by induction on j —i: if i = j, it is exactly the definition of
xu;,. To prove the inductive step, we use the inductive hypothesis, (5-14) and (1-4)
(the braided Jacobi identity) to obtain

[Xus > Xuea, Je = [Py Xig1les xuj“,r]c = [xu;;» [Xit1s xum,,]c]c
= [xu;;» Xuyy, Je = Xuy,»

and (5-15) is also proved. O
Lemma 5.11. Ifi < p <r < j, the following relation holds in °B:

[Xus;» Xu,, le = 0. (5-16)
Proof. When p=r = j —1and i = j — 2, note that this is exactly

[(ad. x;)(ade xi41)Xi42, Xi41], =0.
Then, by (1-4),
[u;_y > Xj—1]e = [[xi—1, Xu; ;les Xj—1]e = [xi—1, [Xu; ;5 Xj—1]cle-

We assume that j —i > 2, so [x;_1, xj_1]c = 0 by the hypothesis on B. Now we
prove the case p =r = j — 1 by induction on p —i.
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Using (1-4) and (5-15), we also have
[-xll,',H_] 5 -xp](,‘ = [[-xll,',ja -xj+1]67 -xp]c = [xu,-,j, ['xj+1 ’ -xp]c]c
+Qj+1,p[xui,j; xj—l]ij+1 - X(ui,ja ej+1)xj+l[xu,-’j; xj—l]c:

so using that [x;41, x,]. = 0if j > p, by induction on j — p we prove (5-16) for
the case p =r.
For the general case, we use (1-4) one more time as follows

[xlll"j ’ xllp’rJrl]C = [xll,"j ) [xllpr ) xr+l]c]c - [[xll,'qj ) xllp,-]C9 xr+1]c
- X(upl’5 er+l)[-xuij 5 xr—t—l]cxupr + X(uij: upr)xup, [-xll,'j ) xr+l]ca

and we prove (5-16) by induction on r — p. U
Lemma 5.12. The following relations hold in B:

[-xuija-xll,'p](,‘:() lfl S] <p, (5-17)

[Xu;;» Xu,;le =0 if i <p=<j. (5-18)
Proof. To prove (5-17), note that if i = j = p — 1, we have

[xlli,'a xu,",ur]]c = [xia [xi9 xi+l]c]c = (adxl‘)le'+1 =0.

Since [x;, xu,,, ,]c =0 for each p > i +1 by (5-14), we use (1-4), the previous case
and (5-15) to obtain

[xui,- B xu,-p]c = [xll,',' B [-xu,",'+] B xu,-+2,p]c]c = 0
Now, if i < j < p, from (5-14) and the relations between the g,; we obtain
[xll,’+17ja xll,'p](] = _X(ulpa ui-‘,—l,j)[xu[]}a xll,'+1‘j]c = 0
Using (1-4) and the previous case we conclude
[xu,'ja xu,',,]c = [[xu,-,-a xui+1,/‘]01 xllip]c =0.
The proof of (5-18) is analogous. O
Lemma 5.13. Ifi < p <r < J, the following relation holds in B:
[xu,-r, xupj]c = X(uira upr)(l - Qr,r-i-lCIr-i-l,r)xup,xuij- (5-19)
Proof. We calculate
[-xl.l,'r ’ xl.lp_,' ]C — [xll[r B [xllpr B -xllr+1yj ]C]C
= ){(uir, upl’)xllprxll,'j —X (upr: ur—&—l,j)xu,‘jxup,
= (X (uir> upr) - X(uija upr)X(uprs ur+1,j)) 'xllp,xllij

— X(uira upr) (1 - X(uprs ur+1,j)){(ur+1,j, upr)) xl.lpr-xll,'_,'a
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where we have used (5-15) in the first equality, (1-4) in the second, (5-18) in the
third and the relation between the g;; in the last. O

We now prove the main theorem of this subsection, namely, the presentation by
generators and relations of the Nichols algebra associated to V.

Theorem 5.14. Let V be a standard braided vector space of type Ag, where 6 =
dim V, and let C = (a;})i, je(1,....0y be the corresponding Cartan matrix of type Ay.

The Nichols algebra 5(V) is presented by the generators x;, 1 <i <0, and the
relations

No _ +.
x, =0, aeA";

ade(xi)! () =0, i #j:
[(adxj,l)(adxj)xjﬂ, )Cj]c =0, 1<j<0, qjj = —1.

The following elements constitute a basis of B(V):
lelxzzz .. .xZ[’f, where 0 < hj < Ng, where p; € Sy, for 1 <j<P. (5-20)

Proof. From Corollary 4.2 and the definitions of the x,, we know that the last
statement about the PBW basis is true.

Let ‘B be the algebra presented by generators x, ..., xg and the relations in
the statement of the theorem. From Lemmas 5.3, 5.4 and Corollary 5.2 we have
a canonical epimorphism ¢ : B — B(V). The last relation also holds in B for
gjj # 1, by Lemma 5.4(2).

The rest is similar to the proofs of [Andruskiewitsch and Discélescu 2005,
Lemma 3.7] and [Andruskiewitsch and Schneider 2002b, Lemma 6.12]. Consider
the subspace $ of B generated by the elements in (5-20). Using Lemmas 5.10,
5.11, 5.12 and 5.13 we prove that $ is an ideal. But 1 € ¥, so $ = ‘B.

The images under ¢ of the elements in (5-20) form a basis of B(V), so ¢ is an
isomorphism. U

The presentation and dimension of 28(V') agree with the results presented in [An-
druskiewitsch and Dascalescu 2005] and [Andruskiewitsch and Schneider 2002b].

5C. Presentation when the type is By. We now assume V is a standard braided
vector space of type By and B is a Z?-graded algebra, provided with an inclusion
of vector spaces V <« B! = D j<o B. Then we can extend the braiding to B.
We assume the following relations in ‘B:

xP=0 ifgy;=-1,
x; =0 ifgy €Gs,
(ad. x;)x; =0 if |j—i| > 1,
(ad, x;))?x; =0 if [j—i|=1andi # 1,
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[(ad xi)(ade xiy1)xigo, xig1], =0 if2<i <0,
(adc x1)’x, =0,
[(adc x1)*x2, (ad, x1)x2], =0,
[(ad x1)*(ad x2)x3, (ad x1)x2 ], = 0.
Using the same notation as in Section 4B,
Xy = [y Yy les 1 <@ <j<6.

From the proof of the relations corresponding the Ay case, we know that (5-14),
(5-15), (5-16), (5-18) and (5-19) hold for i > 1, but for relation (5-17) we must
assume i > 1.

Lemma 5.15. Suppose 1 <s <t and 1 <k < j. The following relations hold in ‘B:

= ift+1 <k,

= Xy,; ift+1=k<j,
=0 ifs+1l<k<j<t,
= X Vs, W) (1 = Gr141G141,0)Xu, Xy, I s+ 1<k <t <],
=y (Wi, ugpq j)xy, ifs+1=k<j<t,

[Xvy, > xukj]c ! 2 . .

= (i, uep,) — (g, w))xy,  if s+1=k,j=1,
€ kxy,; + kxu,; Xu;, +kxu,, Xy, fs+1=k<t<j,
= 737 Xy Xy, ifk<s<j<t,

€ KXy, Xv,; + kXuy, Xuy; Xy, + KXy, Xv,; ifk<s<t<j,
(=0 fk<j<s,

ki
where ystj = X(ultr ukj)X (u1S9 uks)(l - QS,s+IQS+1,s)~

Proof. The first, third and last equalities follow from the vanishing of [xy,,, Xu,;]c
and [xy,,, Xu,;]c = 0, using (5-14), (5-16), (5-17) or (5-18) as the case maybe,
together with (1-4).

For the second case, we use that [xy,,, Xuy e = 0, (5-15) and (1-4) to obtain

XVS_,' == [xl.l1s bl xu|j]c == [-xll1s > [xl.l]l B xllH_]’_/' ]L‘]C == [[-xllls ’ xl.l]l ]Ca -xl.l,+|,_,‘]c == [-xVS/ ’ xu1+1,j]c~
For the fourth, we use (1-4) and the third case to calculate

[sz, s xukj]c = [xVSt B [xllkt B xutﬂ,j]c]c
=X (Vst, ukt)xuk,xv_;j - X(ukt, ut+1,j)xvs.,~xuk,

= (Vor, Wi ) (1 — y (ugy, Ut+1,j))((uz+1,j, ukt))xukzxv.v_j'
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For the fifth, note that y (uy;, us+1,j)*1 =y (Us41,;, u1;). Thenuse (5-15), (5-16)
and (1-4) to prove that
[Xv, > Xugpy ;le = [[xu“ > Xuy les xux+1‘./]c
= x (s, g1, ) Xuy ; Xuy, — X (W1, Uip) Xy, Xuy,
= X(ult, us+1,j)(xu1jxu1, - X(ulj, ult)xultxuls)-
The sixth case is similar.
For the seventh case, we use (1-4), (1-5) and the previous case to calculate
[xvsta xuﬁl,j]c = [xv”a [xusﬂ,,, xu,H,j]c]c
= (x (i, ugp1,) — x (g, wi))lxg, o Xu,, ]
+ 0 (Vs W 1,0) X0y Xvgy — X (W1, Wrpy )Xy Xugy
= (e, Uspr,r) — x (g, wi)) ((xy,; + x (@ir, U)X, Xu,,)
+ (Wi, W )Xy Xuy,) — X (Wst1,r5 Wrgn,j) Xy,
+ O (Vsrs Wsn,e) = 0 (@1, Weer, 1) X (Vsjs Ws 1)) Xug g, Xy -
We use the previous cases, (5-16) and (5-19) to calculate for the eighth case
[-xV”’ xukj]c = [[-xllh’ xul,]m xuk_/]c
= x @iz, ugy) O (g, Weg) (1 = G, 541G5+1,5) Xug, Xuy ;) Xy,
— x (i, Wy )xu;, O (s, W) (1 — G 541G5+1,5) Xug, Xy ;)
= ysk;ixuks (xuuxuu — x(uyj, ult)xul,xulj)-
To conclude, we prove the ninth case in a similar way:
[xv”a xukj]c = [xvs,a [xuk,, xu,+1,j]c]c

kt 2
= yS[ (1 - qut)[xuksxu” > x“t+1~j]

+ X(Vsla uk,t)xuk,xvsj - X(ukta ut—O—],j)xvijuk, O
We consider the remaining commutator [xvﬂ, xujk]c: when j = 1.
Lemma 5.16. Lets <t in{l,...,8}. The following relations hold in *5:

[xv,s Xuyle =0 if s <k =<t, (5-21)
[xlllxv xvst]c =0. (5-22)

Proof. By assumption we have

[xvlza xulz]c = [(adc xl)zx% (ad. xl)x2]c =0,

[xv13 s xulz]c = [(adC x1)2(adc x2)x39 (adC xl)x2]c = O
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For t > 4, [xy,,, Xu;,]c = 0 by (5-14), and using (1-4),

[xvltz xulz]c = [[xV137 xu4,]m xlllz]c =0.

For each k <t we have [xy,,, Xuy lc = [X1, Xuy lc =0, 50 [xy,,, Xuy, Jc = 0. Using
(1-4) and (5-15) we have

[xVh s xulk]c = [xv1, s [xlllza xllgk]c‘]c = 0

Now consider 2 < s < k. Since [xy,,, Xu; lc = [Xuy, > Xu,Jc = 0 by previous
results and (5-16), we conclude from (1-5) and Lemma 5.15 that (5-21) is valid in
the general case.

To prove (5-22), we have fors = 1,1 =2

[ruys v le = D, v le = (ade x1)*x2 = 0.
Using that [x1, xy;, ]c =01if # > 3 and (1-4), we deduce that
Drunys %v e = [%1, [ovigs g 1], = 0.
If 1 <s <t we have, by the previous case,
[Xuy,> Xvi, Je = =X (uyy Xvy ) Xy, Xuy e = 0.

By (5-18), [xu,,, Xuy, le = 0. Also, [xy,,, Xu, lc = y (1, W2g)xy,,, by Lemma 5.15.
Equation (5-22) follows by (1-4) and the last three equalities. Il

Lemma 5.17. Let s < k < t. The following relations hold in *5:
[Xvyes Xuy, Je = X (Vi W) (1 — G k+1Gk+1,6) Xy X, » (5-23)
(x> Xve Je = x Wis, i) (1 + Guy ) (1 = Grek+1Gk41,60) Xuy Xvy, - (5-24)
Proof. The proof follows by (1-4), the second case of Lemma 5.15 and (5-22):
[yyes X, Je = vy Doungs Xu i, 1e],

= X(Vsk: ulk)xulkas; - X(ulkv uk+l,t)xv”xu1k

= x Vs, wig) (1= x (e, W1 0) x (a1, Wik)) Xy Xy,

[xuls 5 ka,]c = [xuls 5 [xulks xul,]c]c
= [-xvska xul,]c + X(UIS, u]k)xu”(xvs, - X(ulka u]t)-xV_;,-xu]k

= x (W5, W) (Guy (1 — Grok+19k+1.6) + 1 — Gr k+1Gk+1.5) Xuy Xy, - O

We next deal with the expression of the commutator of two words of type xy,,.



90 Ivan Ezequiel Angiono

Lemma 5.18. Lets <tands <k < j,withk # s or j #t. The following relations
hold in *B:

(=0 ifk<j<t,
=0 fk=s,t<],
= x (Vsz, Vi) (1 — qt,t+lqt+1,l’)ka[xV5j fk<t<j,

['x xt’x ]
VTN — o (Ve )2 (1 = Gri1qie 1)

(1 _C]ulrC[t,t+le+1,z)X3],xvsj ifk=t <],
| € kxy, Xy, + KXy, Xy, + KXu Xy, Xy, ift <k <j.

Proof. The first and second equalities follow from (1-4) and (5-21), (5-22), respec-
tively. For the third, we use the previous one and (1-4):
[y > v, le
= [, [ Xuy; 1],
= 1 (Vsr, Wik ) Xuy, (X (Vs> up) (1 — qt,l—ﬁ—lqt-‘rl,t)xul,xvsj)
— x (i, wi) (1 (Vor, W) (1= G, p41G141,0) Xuy, Xy, ) Xy
= (1= qr,19r41,0) (X (Ve W1k) x (Vr, W) Xy Xy, Xy,
— x (@i, wij) g (Vs i) x (Vsj, Wige) Xuy, Xuyy Xy, )
= x (Vsr, up) x (v, wy ) (1 — Qt,H—lCIt—H,t) (xulkxulk — x (uy, ulr)xulkxulk)xvsj-
The fourth case is similar to the previous one.
To prove the last case we use (1-4) and Lemma 5.17:
vy > X le = [Xves [ouy Xuy;1e],
=[x (Vs W) (1 = Gre41G041,0) Xy Xy Xuy I
+ x (Vg ulk)xulk (Ve ap) (1 — ql‘,l+1q[+1,l)xU]t'xV3vj)
— x (@, ur) O (Vs> W) (1= Gre1G1041,0) Xuy, Xy ) Xuy, -
The proof is finished using (1-5) and the previous identities. U

Theorem 5.19. Let V be a standard braided vector space of type By, where 6 =
dim V, and let C = (a;})i, jeq1,....0) be the corresponding Cartan matrix of type By.
The Nichols algebra 6(V) is presented by the generators x;, 1 <i <0, and the

relations N
xye=0, ae€Atf;

ade(x)' " () =0, i #j;
[(adxj_l)(adxj)ijr],xj]C =0, 1<j<0,qj=-1;
[(adx1)*x2, (adxp)x2], =0,  gu €G3 orgmn=—1;
[(adx1)*(ad x2)x3, (adx1)x2], =0, g1 €G3 orgmn=—1.

c
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The following elements constitute a basis of B(V):
xﬂ:xﬂ2 . .xZ}’j, where 0 < h;j < Nﬁj—l if pjeSy, for 1 <j<P. (5-25)

Proof. The proof is analogous to that of Theorem 5.14, since by the previous
lemmas we can express the commutator of two generators x, < xz as a linear
combination of monotone hyperwords whose greater hyperletter is great or equal
to xp. g

5D. Presentation when the type is G;. We now consider standard braidings of
type Go, withmp =3, my; = 1.
Lemma 5.20. Let B :=T(V)/I, for some I € S, and suppose that

ord gy
X, =0,

x4 =0, (adxp)*xy = (ad x2)%x; =0 (5-26)
in B. Then
(a) [x13x2x1x2]c =0inB < 4de; +2er ¢ AT(B).
Assume further that the equivalent conditions in (a) hold. Then
(b) [(adx1)3x2, (adxl)zxz] =0inB & 5e;+2e; ¢ AT(B) and
© [[x7x2x122]e, [x1x2], ] =0inB < 4de; +3ex ¢ AT(B).
Assume also that the equivalent conditions in (b) and those in (c) hold. Then

(d) [[xlzxz]c, [x]zxlexz]c]C =0inB < 5e|+3er ¢ AT(B).

In particular, all these relations hold when V is a standard braiding and B =
B (V) is finite-dimensional.

Proof. Take the ordering x; < X2, and consider a PBW basis as in Theorem 1.12.
Define yy := [o< ;<1 (1 — q1,912921).

(a)If [x?xlexz]c =0, then 4e; +2e; ¢ AT (B) since there are no possible Lyndon
words in S;: xfxlexg is the unique Lyndon word such that x]3x2 and x1x§ are not
factors, and it is not in S; by assumption.

Conversely, if 4e; +2e; ¢ AT (B), then [xfxlexz]c is a linear combination of
greater hyperwords, and [xlxzxf x2]. and [xlzxfxz] are the only greater hyperwords
that are not in S; and do not end in x; (we discard words ending in x; since
[x13x2x1x2]c is in ker D). Taking their Shirshov decomposition, we see that there
exist a, f € k such that

[x{x2x1x2)e — alxixo)elx]xa]e — Blxixal; = 0. (5-27)
Note that [xfxlexz]c =adx; ([xlzxzx 1x2]c), so by direct calculation,

Dy ([x7x2x1x2]¢) =0
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Apply D» to both sides of equality (5-27) and express the result as a linear combi-
nation of [xfxz]cxl, [xlzxz]cxl2 and [xlxz]cxf. The coefficient of [xlxz]cxf is

a(l1—q12q21)(1 — q11912921),

so a = 0. Note also that Dsz([x,13x2x1x2]C) =0; but

DD ([x1x202) = (1 — g12g21) (1 — q1112G21) (1 + @11)(G2e1 46> + D[xTX2]c.
Looking at the proof of Proposition 4.7, we see that g2¢,+., # —1, s0 f =0.
(b) Assuming (5-26) and the condition in (a), the only possible Lyndon word of
degree Se; + 2e; is x;x2x7x2, and

[xtxox1x0x1x2]e = [(ad x1) x2, (ad x1)*x2

¢

Then we proceed as before. One implication is clear. For the other, if 5e; + 2¢; ¢
AT (B), there exists a € k such that

[(adx1)3x2, (adxl)zxz]c = a(adxl)zxz(adx1)3x2.

Now we apply D, and express the equality as a linear combination of (ad x1)3x2x12
and (adxl)zxzxf (using the hypothesis that (adx;)*x, = 0); the coefficient of

(adxl)zxle3 is ays, soa =0.

(c) The proof is similar. Since we are considering Lyndon words not having x13x2 or
xlxg as a factor, the only possible Lyndon word of degree 4e;+3e; is x%xlexle X2,
and
2 1.2
[xfxoxixox1 0] = [[x{x2x1x0]e, [X122]c ], -

If 4e; +3e¢; ¢ AT (B), there exist a; € k such that

2 2
[x{x2(x1x2)°],
_ 2 2r.2 2 2 3
= a1 [x1x2]c[x7x2x1x2]c Fan[x 10017 [x] X2]e Fazx2[ X7 X217 +asxz[x1x2]c[x] X2 ]c,s

since, as above, we are discarding words greater than xlzxlexlexg ending in x1;
we also discard words with factors x}x, x1x3, x3x2x2x5, by the assumption on B.
We apply D; to this equality. Using the definition of the braided commutator, we
express the hyperletter just considered as a linear combination of elements of the
PBW basis, having degree 4e; + 2e;.

The coefficient of )cz[x]xz]cxl3 is a4y3 since this PBW generator appears only
in the expression of Dg(xz[xlxz]c[xfxﬂc). Thus a4 = 0.

Using this fact, we see that the coefficient of xa[x7x2].x is

a3y2(1+ q11)q7191243, 922

since this term appears only in the expression of D; (x> [x%xz]g). Thus a3z = 0.
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Next, the coefficient of [xlxz]fxl2 is azy2, so ap = 0. Now we calculate the
coefficient of [xlzxz]2

C:
a1y2(x (e1, 5e1 +e2) — x(2e + e, € +€2)) = a172q11912 (47 — 422412921) -

Since q?l # 2412921 for each standard braiding, we conclude that a; = 0.

(d) If the conditions in (b) and (c) hold, the only possible Lyndon word of degree
Se1 + 3e; not having xi‘xz or x1x22 as factors is xlzxgxlzxlexz, and

2.2 2 2
[xTxoxixoxixale = [[x{xale, [xfxoxixale], -
This hyperword is not in S; if and only if there exist v; € k such that

2.2 2 2 2.2
[xi{xoxi{x2x1%2]c = vi[xjxox1x2]c[X7X2]c + v2lx1X2]c [X7 X217

+v3leixa 2l xole + vaxalxixalolxixal..  (5-28)

Apply D; and note that Dz([xlzxlezxlexz]c) = 0 under the hypotheses on B.
Then express the resulting sum as a linear combination of elements of the PBW
basis, which have degree Se; + 2e;.

The hyperword xz[xlzxz]xf appears only for Dz(xz[xlzxz]c[x?xz]c), and its co-
efficient is v4y3, and since y3 # 0 we conclude that v4 = 0.

Analogously, [x1x2]3x13 appears only for [xlxz]z[xfxz]c (due to v4 = 0). Its
coefficient is v3ys, so v3 = 0.

Note that D%Dg([xlzxlexz]c) = 0. We apply D%Dz to the expression (5-28),
and obtain

0 =v1y2(1 + gD xPxox1x2]le +v2y2(1 +q11) (1 4 @oey 1) [X1 %21 [XT %2 ]

The terms [xlzxzx 1x2]- and [x 1x2]c[x12x2]c are linearly independent, since they are
linearly independent in B(V), and we have a surjection 6 — B(V). Then

v172(1+¢q11) =vaya(1 +g11) (1 + G2e, +¢,) = 0.
But for standard braidings of type G, we note that q11, g2e,+e, 7 —1 and y2 # 0,

sov; =vy, =0.
The last statement is true since

AT (B(V)) = {e1, e1 + €2, 2e1 + €2, 3e1 + €2, 31 +2e2, €2},
if the braiding is standard of type G». g

Remark 5.21. Let V be a standard braided vector space of type G, and let B
be a braided graded Hopf algebra satisfying the hypotheses of Lemma 5.20. In a
similar way to Lemma 5.5, if g;| ¢ G4 and g2y # —1, then Se;+2e5, 4e +2er4e1 +
3es, 5e1 +3e; ¢ AT(B).
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This follows because xfxlezxz,xfxlexlexz, XIZX2)C12X2X1)C2 ¢ Sy, using the
quantum Serre relations as in the lemma cited.

Theorem 5.22. Let V be a standard braided vector space of type G,. The Nichols
algebra B(V) is presented by the generators x1, x and the relations

ad.(x))*(x2) = adc(22)?(x1) =0,  xN* =0, a € AT, (5-29)

and, if q11 € Gy or gy = —1,

[(adx1)’x2, (ad x1)%x2 ], =0, (5-30)
[x1, [xfaox1x2] ], =0, (5-31)
[[xtx2x1x2]e, [X1x2)e], =0, (5-32)
[[xx2)e, [xxox1x2]e ], = 0 (5-33)

The following elements constitute a basis of B(V):
2 e ] R T e, 0<hy < N, — 1.
(5-34)

Proof. The statement about the PBW basis follows from Corollary 4.2 and the
definitions of the x,.

Let ®B be the algebra presented by the generators x1, x; and the relations (5-29)—
(5-33). From Lemma 5.20 and Corollary 5.2, we have a canonical epimorphism of
algebras ¢ : B — B(V).

Consider the subspace $ of 8 generated by the elements in (5-34). We prove by
induction on the sum § of the A,’s of a such product M that x; M € $; moreover,
we prove that it is a linear combination of products whose first hyperletter is less
than or equal to the first hyperletter of M. If § =0, we have M = 1.

o If M =fo1, then x; M =va1+1, which is zero if Ny =ordx; — 1.

o If M = [xfxz]cM’, then we use that xl[xfxg]c = qflqlg[xfxz]cxl to prove that
x1 M lies in $ and either is zero or begins with [xfxz]c.

e If M = [xlzxz]cM/, we have

2 3 2 2
xi[xix2le = [x7x2]e + qi1q12[x7 x2]cx1.

We use the inductive step and relation (5-30) to prove that x; M lies in $ and
is either zero or a linear combination of hyperwords starting with a hyperletter
less than or equal to [xlzxz]c.

o If M = [xlzxlexz]cM’, we deduce from (5-31) that

2 2 .
xi[xyxox1x2]e = x (er, 3er +2ex) [x{x2x1x2]0X1;
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using also (5-32) and (5-33), we prove that x; M lies in $ and is either zero or
a linear combination of hyperwords that starting with a hyperletter less than or
equal to [xlzxlexz]c.

o If M = [x1x2].M’, observe that

xi[xixz]e = [X12X2]c +quiqialxix2]exy.

Using the inductive step together with (5-31), (5-32), and the equality

[xixalelxixale = [[x{x2le, [xix2le], + x (2e1 + €2, €1 + €2)[x1x2]e[x T X2l

by the definition of braided commutator, we prove that x; M lies in $ and is
either zero or a linear combination of hyperwords starting with a hyperletter
less than or equal to [x;x2]..

o If M =x,M’, we use the equalities x1xo = [x1x2].+¢q12x2x1 and [[x1x2]c, X2]c =
0 to prove that x; M lies in $ and is either zero or a linear combination of
hyperwords.

Now, x, M is a product of nonincreasing hyperwords or is zero, for each element
in (5-34), so ¥ is an ideal of B containing 1; hence $ = 8. Since the elements in
(5-34) are a basis of B(V), the map ¢ is an isomorphism. O

SE. Presentation when the braiding is of Cartan type. In this subsection, we
present the Nichols algebra of a diagonal braiding vector space of Cartan type with
matrix (g;;), by generators and relations. This was established in [Andruskiewitsch
and Schneider 2002a, Theorem 4.5] assuming that g;; has odd order and that order
is not divisible by 3 if i belongs to a component of type G». The proof in loc. cit.
combines a reduction to symmetric (g;;) by twisting, with results from [Andersen
et al. 1994] and [De Concini and Procesi 1993]. We also note that some particular
instances were already proved earlier in this section.

Fix a standard braided vector space V with connected Dynkin diagram and an
i €{l,...,60}. Suppose that B is a quotient by an ideal I € G of T (V). Assume
moreover that V is not of type G, and that

(5-3) holds in B if 1 <i #j <86, (5-35)
(5-4) holds in B if my; =my =1 and mj; = 0; (5-36)
(5-6) holds in B if mi; =2 and mj; = 1; (5-37)
(5-8) holds in B if my; =2, mjx =mj; =1 and my =0. (5-38)

Note that if (5-3) holds in an algebra with derivations Dy, then (2-11) holds also,
by Lemma 2.7. By Theorem 2.6, we have an algebra s; (*B) provided with skew
derivations D;. We set X; = (ad, x;)™*(xp)#1 € 5;(B), for k # i, and X; = 1#y.
The elements generate s; (%B)! as a vector space.
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Lemma 5.23. Conditions (5-35)—(5-38) are satisfied with s; (B) in lieu of B.

Proof of (5-35). Each me; + ¢;, 0 < m < my; is an element of A(B(V;)), so
si(meg +¢;) € A(B(V)). Since we have a surjective morphism of braided graded
Hopf algebras B — B(V), we have A(B(V)) € A(B).

From Lemma 5.3, (ad. xx)"x; =0 if and only if X;"X; is a linear combination of
greater words, for an order in which x; < X; (since we are considering the Cartan
case, the condition about the ordering of the X; is satisfied). Note that x;"X; is the
unique Lyndon word of degree me; +¢;. Then, by the relation (2-15) between the
Hilbert series of B and s; (28), the validity of (5-3) for s;(®8) is equivalent to the
condition

si((mij + Deg +¢;) ¢ AT (B).
(a) When k =i # j, this says that —e; +e; ¢ AT(%B), so (5-3) holds.
(b) To prove (5-3) for s;(®8) when j =i, we show case by case that
(mii + Dex + ((mgi + Dmig — De; ¢ AT (B).
If my; = m;, =0, we have e, —e; ¢ AT(B).

If my; =my = 1, then 2¢; +e; ¢ AT(B), because (ad x;)%x; = 0.

If my; = 1 and m;; = 2, then 2e; + 3e; ¢ AT (B), since we can apply Lemma
5.5 to ‘B, which satisfies (5-6) by assumption.

e If my; =2 and m;; = 1, then 3e; +2e; ¢ AT (B), as before.
Thus (5-3) holds for each k #i.

(c) Now consider 8 > 3 and k, j #i.
o If mjx =m;; =0, then s; (mey +€;) = mey +e;, and (my; + ey +e¢; ¢ AT(B),
since the quantum Serre relation holds in ‘B.

o If myx =1 and m;; = 0, then s;(me; + ;) = me; + me; + e;. If we assume
Xj < x; < x¢ and look at the possible Lyndon words in Sy, from (5-3), these
words have no factors xl.zxk, x;jx;, so the only possibility is x; (xzx;)™.

- If Mmy; = 0, then XjXpXi = qjkXkXjXi, SO XjXX; ¢ Sy.
- If my; =1, then x;x;x;x, ¢ S; when my; = 1, since (5-4) is valid in 5;
while if my; = 2 we have gy # —1 and

X Cox) = (L4 qu) ' ai ' xpxixd + L+ qre) ™ qridige Xjxixexi
112 11 -2 -2
= da 9 9 xixjxex? + (U +qu) ™ gy Dxj ik xpxjx}
+(1 +(Ikk)_1QkiCII§kq1’i xixjx/%xi.

In both cases, x; (xxx;)> ¢ S;.
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- If my; =2, then my; =mj, =1 and ggr # —1. The proof is similar to the
previous case.

o If mjx = 2,m;; =0, then s;(me; + ;) = 2me; + mey +¢; and my; = 0, 1.
When m;; = 0, the proof is clear as above. When m;; =1, for j <k <i and
considering only the quantum Serre relations, the only possible Lyndon word is
X; (xkxl.z)z. But since [[xl.zxk]c, [xixk]c]c = 0, we deduce that such a word is not
n S].

o If myy =0, m;; =1, then s; (me; +e;) =e; +me;+e;. If k <i < j, note that from
XeXi, X0 ij ¢ Sy, there are no Lyndon words of degree e; + (my; + 1)ex +€;
in S[.

o If mj; =0, m;; =2, then s; (me; +e;) = 2e; +me; +e;, and the proof is analogous
to the previous case.

o If mjx =m;; =1, then my; =0, and s; (e; + €;) = 2e; + €; + €;, which is not in
AT (B) from Lemma 5.4.

o If myx =2,m;; =1 (it is analogous to m;; = 1, m;; = 2), then my; = 0 and
si(ex +e;) = 3e; +e; +e;. In this way we get ¢;; # —1, and if x; <x; < x; the
unique Lyndon word without xl.zx j or xkx? as factors is

xixixixi = (1 +qi) " g xx)xy + (L4 qi0) ™ giqipxexixx}
€ k(xl-xkxl-zxj) + k(x,-zxkxl-xj) + k(x?xkxj) + k(xkxixjxl-z),

using the quantum Serre relations; hence there are no Lyndon words of degree
3e; +e;+e;in S;.

So, (5-3) holds, foreach k, j i,k # j. O

Proof of (5-36). Assume my; =my = 1. We prove case by case that
si(2er +e; +e) ¢ AT (B).

o If m;j =m;x =m;; =0, then s; (2e; +e; +¢;) = 2e; +¢; +¢;, so it follows from
Lemma 5.4, because 2e; +€; +¢€; ¢ AT (B).

e If m;; # 0 (analogously, if m;; # 0), then m;; = m;; = 0, because there are no
cycles in the Dynkin diagram. Then s; (2¢; +€; +¢;) = 2e; +e; +¢; +m;;e;. If
we consider x; <x; <Xx;j <Xx;, using the equalities xix; = qx; X; Xk, XjX| =qj1X;X;
and x;x; = gj;x;x;, and also that x,%xl, x,ij ¢ Sy, we conclude that no possible
Lyndon words of degree 2e¢; + ¢ + ¢; +m;;e; can be an element of S;, except
Xk X[ X[ X x;n” ; but this, too, is not an element of Sy, because x;x;x,x; ¢ S;. Hence
2e; +ej + € +m,-je,- ¢ A+(%).

e If m;; =1, and therefore m;; =m;; =0, then s; (2e; +e; +¢€) =2e; +e¢; +¢€ +
2m;re;. If we consider x; < x; < x; < x;, using the equalities x;x; = g;;x;x;,
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xjx; = qjx;xj and x;x; = q;;x;x;, and also that x,%xl,x,ij ¢ Sy, we discard
as before all possible Lyndon words of degree 2e; + e; + €, + 2m;€;, except
x;xkxjxkxizm"f; but this is not an element of S;, because xix;xxx; ¢ S;. Thus
2e;+e; +e +2m;je; ¢ AT (%B).

o If i = j (analogously, if i =1), then s5; (2e; +€; +€/) = 2e; +¢; +¢; ¢ AT(B) if
mjx =1by Lemma 5.4, or 5;(2ex +e€; +e€;) =2e;+3e;+e; ¢ AT(B) if mj; =2
by Lemma 5.5.

o If i =k, then sy (2ex + ¢ +€) =¢; +e ¢ AT(B), since mj; = 0.

Also, ifu e {ey+e;, e, +e;, e, e;, ¢}, thenuec A(B(V;)),sos;(u) € ACB(V)).
The canonical surjective algebra morphisms from 7' (V) to B and B(V) induce a
surjective algebra morphism B — B(V), so A(2B(V)) C A(28); in particular, each
s; () lies in A(®B).

Consider a basis as in Proposition 1.11 for an order such that x; < x; <x;. From
Lemma 2.7, x;xi, xix;, Xjxcx; are elements of this basis, since they are not linear
combinations of greater words modulo I;, the ideal of 7' (V;) such that s;(B) =
T (V;)/1;. Inthe same way, (xgx;) (xjxi), xpx (X Xk ), Ocrxr)xx;, xp (xjxxx7), xlx,%xj
af x,f = 0) are elements of this basis, where the parenthesis indicates the Lyndon
decomposition as nonincreasing products of Lyndon words. Also, x;x;, xjx,f, x,%xl
are not in this basis, by (5-3). By the relation (2-15) between Hilbert series and
the fact that 2e; +e; +€; ¢ s; (AT(B)), we note that x;x;x;x is not an element
of the basis. Thus this word is a linear combination of greater words. By Lemma
5.4, this implies that (5-4) holds in s; (B). O
Proof of (5-37). As before, we prove first that s; (3ex +2e¢;) ¢ AT (B) case by case:

o If mjx =m;; =0, then s; (3e, + 2¢;) = 3e; +2e; ¢ AT (B) by assumption.

o If mix =0, m;; =1, then 5; (3e; +2e;) = 2e; +-3e; +2e;. If we consider an order
such that x; <Xx; <x;, aLyndon word of degree 2e; +3e; +2e; in S; begins with
Xk, and xix; is not a factor, because x;x; = gy, x;x;. Thus the possible Lyndon
words with these conditions are x,ijxixkxjxi and x,%xjxkxjxiz; the first is not in
S; because from (5-4) for j, k, i we can express x;x;x;X; as a linear combination
of greater words, and the second is not in S; because x2x;xcx; ¢ ;.

e If myr =1,m;; =0, then s;(3ex + 2¢;) = 3e; + 3¢, + 2e¢;. If we consider an
order such that x; < x; < x;, a Lyndon word of degree 3e; + 3¢, + 2¢; in §;
begins with x;, and x;x; is not a factor. Using that also xl.zxk, szxk ¢ Sy, the
possible Lyndon word under these conditions is x;xx; x; x;x; x¢x; . But from the
condition on the m,g, we are in cases Cy or Fy, and we use that (ad xi)zxk =0,
gii # —1 to replace x;x;x; by a linear combination of xl.zxk and xkxiz, and also
use x;x; = q;; X;Xj, so we conclude that x;xix;x;xix;xix; ¢ Sy.

o If i = j, then s;(3e; +2e;) = 3ex +€; ¢ AT(B), since my; = 2.
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o If i =k, then sy (3ex + 2e;) = e +2e; ¢ AT (B), since mj = 1.

If vel{e+ej,2e+e;, e e}, thenve ACB(V;)), sos;(v) € ACB(V)). Since
A(B(V)) € A(®B); in particular, each v lies in s; (A (*8)).

As in (a), consider a basis as in Proposition 1.11 for an order such that x; <x;. In
a similar way, x;.x;, x2x; are elements of this basis, but x?x; and xksz are not in this
basis by (5-3). By Lemma 2.7, (xxx;)(x2x;), Xj (x2x;) Xk, (XXj)? Xk, Xj ()%,
szx,? (the last if sz, x,? = 0) are not linear combinations of greater words modulo
I;, so they are elements of the chosen basis. By the relation (2-15) between Hilbert
series and the fact that 3e; + 2e; ¢ s; (A+ (%)), the Lyndon word x,fx,-xkxj is not
an element of the basis. Thus this word is a linear combination of greater words,
and by Lemma 5.5, this implies that (5-6) holds in s; (8). Il

Proof of (5-38). We prove case by case that
si(3ex +2e; +€/) ¢ AT(B).

o If mjx =m;j =m;; =0, then s; (3e; + 2e; + ;) = 3e; + 2e; 4 ¢€;, and this is not
in AT(®8) by Lemma 5.6.

o Ifi # j, k, [ and m;; # 0, the only possibility is m;; = my; =1, so V is of type
Fy. Thus s5; (3e;+-2e; +e;) = 3e; +3e; +2e; +e;. For the order x; < x; <x; <x;,
the only possible Lyndon word without the factors xlsz, XXk, XX, szxk, XjXi,
xkxl.z, x,fx,- 18 xyxjxex; Xjxpx; xx;. Using the quantum Serre relations and the
fact that g;; = qxk # —1, we see that this Lyndon word is not in S;. Thus

3e; +3e; +2e; +e ¢ AT(B).

e i # j,k,l and m;; # 0: there are no standard braided vector spaces with these
values.

o If i # j, k,l and m;; # 0, the unique possibility is m;; = m;; = 1. In this case
si(3ex +2e; 4+ e;) = 3e; +2e; +e; +e;. If we consider x; < x; < x; < x;, the
only possible Lyndon word of this degree without the factors xix;, xix;, x;x;,
x,f’xj, xksz 18 x,%xjxlx,-xkxi. But by assumption,

[xxixe, [oxjle], = [xi, Bexj1e], =0,
SO [x,%xjxlxixkxi]c = [[x,%xjxlxi]c, [xkxj]c]c =0, and x,%xjxlxixkxi ¢ Sy.
o If i =k, then s;(3e; + 2¢; +€/) = €; +2¢; +¢; ¢ AT(B), by Lemma 5.4.
o If i = j, then s; (3e; + 2e; +¢;) = 3¢, +2¢; +¢ ¢ AT(B), by Lemma 5.6.
o If i =k, then 5; 3ex +2e; +€;) = e, + 2e; +e; ¢ AT (B), as before.

Now, if w € {e;, ¢;, €/, e, +€;, e, +e;+e;, 2e,+e;, 2e,+e; +e;, 2e,+2e; +e},
then w € A(B(V;)), so s;(w) € A(B(V)), hence s;(w) € A(B).
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Consider a basis as in Proposition 1.11 for an order such that x; < x; < x;.
Then x;jx; and x;x; are elements of this basis. We know that xx;, x,ij, xkxj2,
XkXj XXk, x,ijxkxj are not elements of the basis, since (5-3), (5-4) and (5-6) hold
in 2B. By Lemma 2.7, the relation (2-15) between Hilbert series and the fact that
e +2e +e &s; (AT (%8)), the Lyndon word x,fx i X1X,X; 18 not an element of the
basis. Thus this word is a linear combination of greater words. By Lemma 5.6,
this implies that (5-8) holds in s; (25). Il

This concludes the proof of Lemma 5.23. Note also that s;($8) is of the same
type as B.

Let V be of a type different from G,. We define the algebra %(V) =T(V)/3(V),
where J(V) is the two-sided ideal of T (V) generated by

o (ade x)"9 7 xj, k # s

o [(ade xj)(ade xp)xp, xi ] o L # K # o que = =1 myg =my = 1;
[(ad x)? xj, (ad. xk)x,] k#j, qu € Gzorgjj=—1,m;=2,mj, =1,

o [(ade x)*(ade x;)x1, (ade x0)xj] 0 k # j # L que € G or gjj = —1, my; =2,
mjx =mj; = 1.

(Compare with the definitions in Section 4 of [Andruskiewitsch and Schneider
2002a].) Since V is of Cartan type, J(V) is a Hopf ideal, by Lemmas 5.7-5.9.
Since J(V) also is Z?-homogeneous, we have J(V) € &.

By Lemmas 5.4-5.6, the canonical epimorphism 7 (V) — B(V) induces an
epimorphism of braided graded Hopf algebras

Ty B(V) = B(V). (5-39)

Also, s3(V) satisfies the conditions in Theorem 2.6 for each i € {1, ..., 8}, so
we can transform it.

Lemma 5.24. With the notation above, s; (%(V)) = ‘g(V,)

Proof. By Lemma 5.23, the relations defining J(V) are satisfied in s; (‘B(V))
Thus the canonical pr0]ect10ns from T(V) onto SB(V) and s; (SB(V)) induce a
surjective algebra map %(V,) — 8 (%(V)). Conversely, each relation defining
J(V) is satisfied in s; (%(Vi)), so we have the following situation:

B(V) si(B(V)))

l\\_,\

R
si(B(V)).

B(V;)
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From the relation (2-15) between Hilbert series, we have, for each u € N?,

dim s; (‘%(V))“ = Z dim%(V)Si(“_kei)’

keN:u—ke;eN?
si (u—ke;)eN?

and a analogous relation for dim s; (B (Vi))". Butin view of the previous surjections
we have

dims; (B(V)" < dimB(V)",  dims; (B(V)" < dim B(V)",
for each u € N’. Since si2 =1id, each of these inequalities is in fact an equality, and
5i(B(V)) =B(Vi). O
We are now able to prove one of the main results of this paper.

Theorem 5.25. Let V be a braided vector space of Cartan type, of dimension 0,
and C = (a;})i,jeqn,...,
The Nichols algebra 5(V) is presented by the generators x;, for 1 <i <8, and

0y the corresponding finite Cartan matrix, where a;j := —m;;.

the relations
xNe=0, aeA", (5-40)
ad(xp)' "% (x;)) =0, k# j. (5-41)

If there exist j # k # | such that m; =my =1, qix = —1, then

[(adxk)xj, (adxk)xl]c =0. (5-42)
If there exist k # j such that my; =2, mj, =1, qix € G3 or qj; = —1, then
[(ad x¢)%x;, (ad xi)x;], = 0. (5-43)
If there exist k # j # 1 such that my; =2, mjx =mj; =1, qix € G3 or q;; = —1,
then
[(ad x¢)*(ad x))x;, (ad xp)x; ], = 0. (5-44)
If0 =2,V ifof type G, and q11 € Gy or gy» = —1, then
[(adx1)’x2, (ad x1)%x2], =0, (5-45)
[xl, [xfxlexz]c]c =0, (5-46)
[[xlzxlexg]c , [xlxz]c]c =0, (5-47)
[[xlzxz]c R [xlzxlexz]c]c =0. (5-48)

The following elements constitute a basis of B(V):

lelxzzz...xgl’:, where 0 < hj < Ng, — 1, if i €Sy, for 1 <j<P.
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Proof. We may assume that C is connected. For V of type G, the result was
proved in Theorem 5.22. So we can assume my; # 3, k # j.

The statement about the PBW basis was proved in Corollary 4.2; see the defi-
nition of the x, in Section 4B.

Consider the images of the x, in slAB(V); they correspond in B(V) with the x,,
and are PBW generators for a basis constructed as in Theorem 1.12, considering
the same order in the letters. As we observed in (5-39), there exists a surjective
morphism of braided Hopf algebras %(V) — B(V), so

A(B(V)) € A(B(V)).

Also, %(V) satisfies the conditions in Theorem 2.6 foreachi € {1, ..., 8}, sowe
can transform it. By Lemma 5.24, the new algebra is B(V;), so we can continue.
Consider the sets

A:=U{AGs,...5,B): keN, 1 <ip,...,ix<6}, At:=ANN;

A

A is invariant by the s;. Also, A(%B(V)) C A, and
AGsiy. .. 5i,B(V)) =si,...5, ACB(V)).

Consider a € A* \ AT(®B(V)). Suppose that o is not of the form ma; for
meNandi €{l,...,80}, and that it is of minimal height among such roots. For
each s;, since a is not a multiple of a;, we have s;(a) € AT\ A" (B(V)); hence
degs;(a) —dega > 0. But a = Z?:l bie;, so Z?:l bia;; < 0, and since b; > 0,
we have Z? j=1 bia;jb; <0. This contradicts the fact that (a;;) is definite positive,
and (b;) > 0, (b;) #0.

Also, me; € AT (5%) &= m = N, or m =1, since xl.Ne" # 0. Hence

A(B(V)) = A(B(V))U{N,a :a € A(B(V))).
This follows since by Corollary 4.2 each a € AT (B(V)) is of the form
a=s;--5,€), ii,....im, jE{l,...,0}.
Now, Ne,e; € A(%(V)), SO
Ngo = Ne;o = si,. .. 51, (Ne, €)) € A(@(V)).

Also, each degree N,a has multiplicity one in A(%(V)).
Suppose there exist Lyndon words of degree N, a, and consider one such word
u of minimal height. Let u = vw be a Shirshov decomposition thereof, and put

Bi=degv, y:=degw € AT(B(V)).
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By the preceding assumption, 8, y € AT(B(V)). Write

0 0 0
o= ae, P= b, =2 cre,
k=1 k=1 k=1
s0 Nyay =bp+c, foreach k € {1, ..., 0}. We can assume, by taking a subdiagram

if necessary, that a;, agp # 0.
Now, if V is of type F4 and f = 2e; + 3e; + 4e3 + 3e4, then ¢y =0, a; = 1,
N,=2,0ora;=c;=1,N, =3,since a, y # f.

o If N, =3, then 3ap =3+ ¢». Hence ¢c; =0, 50 ¢3 =c¢c4 =0, or ¢ = 3, and
c3 =4, c4 = 2. But in both cases we have a contradiction to a € N*.

o If N, =2, ¢; =0, then ¢; and ¢4 are odd, and c3 is even and nonzero. The only
possibility is y = e> 4 2e3 +e4, so a = e; +2e; +3e3 +2e4. But g, =g # —1,
so N, # 2, which is a contradiction.

Thus we can assume by, c; <l orby,cop <1,s0a;=by=ci=1orag=by =
cg = 1; in both cases, N, = 2. For each possible § with b; # 0 (by the assumption
that a; # 0, we have b; # 0 or ¢; # 0), we look for y such that § + y has even
coordinates. In types A, D and E there are no such pairs of roots. As for the other

types:

* By: f =vVip, y = W419. Then a = uyp, but g, = g1 # —1, which is a
contradiction.

e Cyp: f=Wwi1,y =e€y. Then a =uyy, but g, = gpy # —1, which is a contradiction.
o Fy: f=e +e+2e3+2e, 7 =€ +e,or f=e+2e+2e;+2e4, )y =e.
In both cases, o = e + e, + e3 + e4, but g, = g # —1, which is a contradiction.

Ny
o

Thus each root N,a corresponds to x
before. The elements

and each x, has infinite height, as

le'xzzz...xz}’f, where 0 <h; < oo, if f; €S, for 1 <j<P,
form a basis of ‘B(V) as a vector space.
Now let 7(V) be the ideal of T (V) generated by the relations (5-41)—(5-44) and
(5-40). We have J3(V) C I(V) C I(V), so the corresponding projections induce a
surjective morphism of algebras ¢ : B — B(V), where B := T (V)/I(V):

T(V) —= B(V)

e

B(V) «T B
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Also, the elements

lelxzzz...lef, where 0 <h; < Ng,, if ;€ Sy, for 1 <j <P,
generate ‘B as a vector space, because they correspond to images of generators of
%(V) and are nonzero (as before, each nonincreasing product of hyperwords such
that hj > Npg, is zero in B). But ¢ is surjective, and the corresponding images of
these elements form a basis of B(V), so ¢ is an isomorphism. U
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