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The class of standard braided vector spaces, introduced by Andruskiewitsch and

the author in 2007 to understand the proof of a theorem of Heckenberger, is

slightly more general than the class of braided vector spaces of Cartan type.

In the present paper, we classify standard braided vector spaces with finite-

dimensional Nichols algebra. For any such braided vector space, we give a PBW

basis, a closed formula of the dimension and a presentation by generators and

relations of the associated Nichols algebra.
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Introduction

A breakthrough in the development of the theory of Hopf algebras occurred with

the discovery of quantized enveloping algebras [Drinfel’d 1987; Jimbo 1985]. This

special class of Hopf algebras has been intensively studied by many authors and

from many points of view. In particular, finite-dimensional analogues of quantized

enveloping algebras were introduced and investigated by Lusztig [1990a; 1990b].

About ten year ago, a classification program of pointed Hopf algebras was

launched by Andruskiewitsch and Schneider [1998] (see also [Andruskiewitsch

and Schneider 2002b]). The success of this program depends on finding solutions

to several questions, among them:

MSC2000: primary 17B37; secondary 16W20, 16W30.

Keywords: quantized enveloping algebras, Nichols algebras, automorphisms of noncommutative

algebras, pointed Hopf algebras.
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Question 1 [Andruskiewitsch 2002, Question 5.9]. Given a braided vector space

of diagonal type V , such that the entries of its matrix are roots of unity, compute

the dimension of the associated Nichols algebra B(V ). If it is finite, give a nice

presentation of B(V ).

Partial answers to this question were given in [Andruskiewitsch and Schneider

2000; Heckenberger 2006b] for the class of braided vector spaces of Cartan type.

These answers were already crucial to proving a classification theorem for finite-

dimensional Hopf algebras whose group is abelian with prime divisors of the order

great than 7 [Andruskiewitsch and Schneider 2005]. Later, a complete answer to

the first part of Question 1 was given in [Heckenberger 2006a].

The notion of a standard braided vector space, a special kind of diagonal braided

vector space, was introduced in [Andruskiewitsch and Angiono 2008], and is re-

viewed in Definition 3.5 below. This class includes properly the class of braided

vector spaces of Cartan type.

The purpose of this paper is to develop from scratch the theory of standard

braided vector spaces. Here are our main contributions:

• We give a complete classification of standard braided vector spaces with finite-

dimensional Nichols algebras. As usual, we may assume the connectedness of

the corresponding braiding. It turns out that standard braided vector spaces are

of Cartan type when the associated Cartan matrix is of type C , D, E or F , see

Proposition 3.8. For types A, B, G there are standard braided vector spaces not

of Cartan type; these are listed in Propositions 3.9, 3.10 and 3.11. Those of type

A2 and B2 appeared already in [Graña 2000]. Our classification does not rely

on [Heckenberger 2006a], but we can identify our examples in the tables of that

reference.

• We describe a concrete PBW (Poincaré–Birkhoff–Witt) basis of the Nichols

algebra of a standard braided vector space as in the previous point; this follows

from the general theory of Kharchenko [1999] together with [Heckenberger

2006b, Theorem 1]. As an application, we give closed formulas for the di-

mension of these Nichols algebras.

• We present a concrete set of defining relations of the Nichols algebras of stan-

dard braided vector spaces as in the previous points. This is an answer to the

second part of Question 1 in the standard case. We note that this seems to be

new even for Cartan type, for some values of the roots of unity appearing in the

picture. Essentially, these relations are either quantum Serre relations or powers

of root vectors; but in some cases, there are some substitutes of the quantum

Serre relations due to the smallness of the intervening root vectors. Some of

these substitutes can be recognized already in the relations in [Andruskiewitsch

and Dăscălescu 2005].
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Here is the plan of this article. We start by collecting necessary tools. Namely,

we recall the definition of Lyndon words and give some properties about them, such

as the Shirshov decomposition, in Section 1A. Next, in Section 1B, we discuss

the notions of hyperletter and hyperword, following [Kharchenko 1999] (where

they are called superletter and superword); these are certain iterations of braided

commutators applied to Lyndon words. In Section 1C, a PBW basis is given for

any quotient of the tensor algebra of a diagonal braided vector space V by a Hopf

ideal using these hyperwords. This applies in particular to Nichols algebras.

In Section 2, after some technical preparations, we present a transformation of a

braided graded Hopf algebra into another, with different space of degree one. This

generalizes an analogous transformation for Nichols algebras given in [Hecken-

berger 2006b, Proposition 1]; see Section 2C.

In Section 3 we classify standard braided vector spaces with finite-dimensional

Nichols algebra. In Section 3A, we prove that if the set of PBW generators is

finite, the associated generalized Cartan matrix is of finite type. So in Section

3B we obtain all the standard braidings associated to Nichols algebras of finite

dimension.

Section 4 is devoted to PBW bases of Nichols algebras of standard braided vector

spaces with finite Cartan matrix. In Section 4A we prove that there is exactly one

PBW generator whose degree corresponds to each positive root associated to the

finite Cartan matrix. We give a set of PBW generators in Section 4B, following a

nice presentation from [Lalonde and Ram 1995]. As a consequence, we compute

the dimension in Section 4C.

The main result of this paper is the explicit presentation by generators and re-

lations of Nichols algebras of standard braided vector spaces with finite Cartan

matrix, given in Section 5. It relies on the explicit PBW basis and transformation

described in Section 2C. Section 5A states some relations for Nichols algebras of

standard braidings and proves facts about the coproduct. Sections 5B–5D contain

the explicit presentation for types Aθ , Bθ and G2, respectively. For this, we estab-

lish relations among the elements of the PBW basis, inspired in [Andruskiewitsch

and Dăscălescu 2005] and [Graña 2000]. We finally prove the presentation in the

case of Cartan type in Section 5E. To our knowledge, this is the first self-contained

exposition of Nichols algebras of braided vector spaces of Cartan type.

Notation. We fix an algebraically closed field k of characteristic 0; all vector

spaces, Hopf algebras and tensor products are considered over k.

For each N > 0, GN denotes the set of primitive N -th roots of unity in k.

Given n ∈ N and q ∈ k, q /∈
⋃

0≤ j≤n Gj , we define
(n

j

)
q

=
(n)q !

(k)q ! (n − k)q !
, where (n)q ! =

n∏

j=1

(k)q , and (k)q =

k−1∑

j=0

q j .
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We define

qh(t) :=
th − 1

t − 1
∈ k[t], h ∈ N; q∞(t) :=

1

1 − t
=

∞∑

s=0

t s ∈ k[[t]].

For each θ ∈ N and each n = (n1, . . . , nθ ) ∈ Z
θ , we set xn = xn1

1 · · · xnθ

θ ∈

k[[x±1
1 , . . . , x±1

θ ]]. For each Z
θ -graded vector spaces B, we denote by HB =∑

n∈ Zθ dim Bnxn the Hilbert series associated to B.

Let C =
⊕

n∈N0
Ci+ j be a N0-graded coalgebra, with projections πn : C → Cn .

Given i, j ≥ 0, we denote by

1i, j := (πi ⊗ πj ) ◦ 1 : Ci+ j → Ci ⊗ C j ,

the (i, j)-th component of the comultiplication.

1. PBW bases

Let A be an algebra, P, S ⊂ A and h : S 7→ N ∪ {∞}. Let also < be a linear order

on S. Let us denote by B(P, S, <, h) the set

{
p se1

1 . . . set
t : t ∈ N0, s1 > · · · > st , si ∈ S, 0 < ei < h(si ), p ∈ P

}
.

If B(P, S, <, h) is a linear basis of A, then we say that (P, S, <, h) is a set

of PBW generators with height h, and that B(P, S, <, h) is a PBW basis of A.

Occasionally, we shall simply say that S is a PBW basis of A.

In this section, following [Kharchenko 1999], we describe an appropriate PBW

basis of a braided graded Hopf algebra B =
⊕

n∈N
Bn such that B1 ∼= V , where V

is a braided vector space of diagonal type. This applies in particular, to the Nichols

algebra B(V ). In Section 1A we recall the classical construction of Lyndon words.

Let V be a vector space together with a fixed basis. Then there is a basis of the

tensor algebra T (V ) by certain words satisfying a special condition, called Lyndon

words. Each Lyndon word has a canonical decomposition as a product of a pair of

smaller Lyndon words, called the Shirshov decomposition.

We briefly recall the notions of a braided vector space (V, c) of diagonal type

and of a Nichols algebra in Section 1B. In Section 1C we recall the definition of

the hyperletter [l]c, for any Lyndon word l; this is the braided commutator of the

hyperletters corresponding to the words in the Shirshov decomposition. Hyperlet-

ters are a set of generators for a PBW basis of T (V ) and their classes form a PBW

basis of B.

1A. Lyndon words. Let θ ∈ N. Let X be a set with θ elements and fix an enumer-

ation x1, . . . , xθ of X ; this induces a total order on X . Let X be the corresponding

vocabulary (the set of words with letters in X ) and consider the lexicographical

order on X.
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Definition 1.1. An element u ∈ X, u 6= 1, is called a Lyndon word if u is smaller

than any of its proper ends; that is, if u = vw, v, w ∈ X −{1}, then u < w. The set

of Lyndon words is denoted by L .

We shall need the following properties of Lyndon words.

(1) Let u ∈X−X . Then u is Lyndon if and only if for any representation u =u1u2,

with u1, u2 ∈ X not empty, one has u1u2 = u < u2u1.

(2) Any Lyndon word begins by its smallest letter.

(3) If u1, u2 ∈ L , u1 < u2, then u1u2 ∈ L .

The basic Theorem about Lyndon words, due to Lyndon, says that any word

u ∈ X has a unique decomposition

u = l1l2 . . . lr , (1-1)

with li ∈ L , lr ≤· · ·≤ l1, as a product of nonincreasing Lyndon words. This is called

the Lyndon decomposition of u ∈X; the li ∈ L appearing in the decomposition (1-1)

are called the Lyndon letters of u.

The lexicographical order of X turns out to be the same as the lexicographical

order in the Lyndon letters. Namely, if v = l1 . . . lr is the Lyndon decomposition

of v , then u < v if and only if

(i) the Lyndon decomposition of u is u = l1 . . . li , for some 1 ≤ i < r , or

(ii) the Lyndon decomposition of u is u = l1 . . . li−1ll ′i+1 . . . l ′s , for some 1 ≤ i < r ,

s ∈ N and l, l ′i+1, . . . , l ′s in L , with l < li .

Here is another useful characterization of Lyndon words.

Lemma 1.2 [Kharchenko 1999, p. 6]. Let u ∈ X − X. Then u ∈ L if and only if
there exist u1, u2 ∈ L with u1 < u2 such that u = u1u2.

Definition 1.3. Let u ∈ L − X . A decomposition u = u1u2, with u1, u2 ∈ L such

that u2 is the smallest end among those proper nonempty ends of u is called the

Shirshov decomposition of u.

Let u, v, w∈ L be such that u = vw. Then u = vw is the Shirshov decomposition

of u if and only if either v ∈ X , or else if v = v1v2 is the Shirshov decomposition

of v , then w ≤ v2.

1B. Braided vector spaces of diagonal type and Nichols algebras. A braided vec-

tor space is a pair (V, c), where V is a vector space and c ∈Aut(V ⊗V ) is a solution

of the braid equation

(c ⊗ id)(id ⊗ c)(c ⊗ id) = (id ⊗ c)(c ⊗ id)(id ⊗ c).
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We extend the braiding to c : T (V )⊗T (V ) → T (V )⊗T (V ) in the usual way. If

x, y ∈ T (V ), the braided commutator is

[x, y]c := multiplication ◦ (id − c) (x⊗ y) . (1-2)

Assume that dim V < ∞ and pick a basis X = {x1, . . . , xθ } of V ; we may then

identify kX with T (V ). We consider the following gradings of the algebra T (V ):

(i) The usual N0-grading T (V )=
⊕

n≥0 T n(V ). If ℓ denotes the length of a word

in X, then T n(V ) =
⊕

x∈X, ℓ(x)=n kx .

(ii) Let e1, . . . , eθ be the canonical basis of Z
θ . Then T (V ) is also Z

θ -graded,

where the degree is determined by deg xi = ei , 1 ≤ i ≤ θ .

A braided vector space (V, c) is of diagonal type with respect to the basis

x1, . . . xθ if there exist qi j ∈ k
× such that c(xi ⊗x j ) = qi j x j ⊗xi , 1 ≤ i, j ≤ θ . Let

χ : Z
θ ×Z

θ → k
× be the bilinear form determined by χ(ei , ej ) = qi j , 1 ≤ i, j ≤ θ .

Then

c(u⊗v) = χ(deg u, deg v)v⊗u (1-3)

for any u, v ∈ X, where qu,v = χ(deg u, deg v) ∈ k
×. In this case, the braided com-

mutator satisfies a “braided” Jacobi identity as well as braided derivation properties,

namely

[
[u, v]c , w

]
c =

[
u, [v, w]c

]
c − χ(α, β)v [u, w]c + χ(β, γ ) [u, w]c v, (1-4)

[u, v w]c = [u, v]cw + χ(α, β)v [u, w]c, (1-5)

[u v, w]c = χ(β, γ )[u, w]c v + u [v, w]c, (1-6)

for any homogeneous u, v, w ∈ T (V ), of degrees α, β, γ ∈ N
θ , respectively.

We denote by H
HYD the category of Yetter–Drinfeld module over H , where H

is a Hopf algebra with bijective antipode. Any V ∈ H
HYD becomes a braided

vector space [Montgomery 1993]. If H is the group algebra of a finite abelian

group, then any V ∈ H
HYD is a braided vector space of diagonal type. Indeed,

V =
⊕

g∈Ŵ,χ∈Ŵ̂ V χ
g , where V χ

g = V χ ∩ Vg with Vg = {v ∈ V | δ(v) = g ⊗ v}

and V χ = {v ∈ V | g · v = χ(g)v for all g ∈ Ŵ}. The braiding is given by

c(x ⊗ y) = χ(g)y ⊗ x , for all x ∈ Vg, g ∈ Ŵ, y ∈ V χ , χ ∈ Ŵ̂.

Reciprocally, any braided vector space of diagonal type can be realized as a

Yetter–Drinfeld module over the group algebra of an abelian group.

If V ∈ H
HYD, the tensor algebra T (V ) admits a unique structure of graded

braided Hopf algebra in H
HYD such that V ⊆ P(V ). Following [Andruskiewitsch

and Schneider 2002b], we consider the class S of all the homogeneous two-sided

ideals I ⊆ T (V ) such that

• I is generated by homogeneous elements of degree ≥ 2,
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• I is a Yetter–Drinfeld submodule of T (V ), and

• I is a Hopf ideal: 1(I ) ⊂ I ⊗T (V ) + T (V )⊗ I .

The Nichols algebra B(V ) associated to V is the quotient of T (V ) by the max-

imal element I (V ) of S.

Let (V, c) be a braided vector space of diagonal type, and assume that qi j = qj i

for all i, j . Let Ŵ be the free abelian group of rank θ , with basis g1, . . . , gθ , and

define the characters χ1, . . . , χθ of Ŵ by

χj (gi ) = qi j , 1 ≤ i, j ≤ θ.

Consider V as a Yetter–Drinfeld module over kŴ by defining xi ∈ V χi
gi .

Proposition 1.4 [Lusztig 1993, Proposition 1.2.3; Andruskiewitsch and Schneider

2002b, Proposition 2.10]. Let a1, . . . , aθ ∈ k
×. There is a unique bilinear form

( | ) : T (V ) × T (V ) → k such that (1|1) = 1,

(xi |x j ) = δi j ai for all i, j, (1-7)

(x |yy′) = (x(1)|y)(x(2)|y
′) for all x, y, y′ ∈ T (V ) (1-8)

(xx ′|y) = (x |y(1))(x ′|y(2)) for all x, x ′, y ∈ T (V ). (1-9)

This form is symmetric and also satisfies

(x |y) = 0 for all x ∈ T (V )g, y ∈ T (V )h, g, h ∈ Ŵ, g 6= h. (1-10)

The quotient T (V )/I (V ), where

I (V ) := {x ∈ T (V ) : (x |y) = 0 for all y ∈ T (V )}

is the radical of the form, is canonically isomorphic to the Nichols algebra of V .
Thus, ( | ) induces a nondegenerate bilinear form on B(V ) denoted by the same
name. �

If (V, c) is of diagonal type, the ideal I (V ) is Z
θ -homogeneous, since it is the

radical of a bilinear form in which the different Z
θ -homogeneous components are

orthogonal; see [Andruskiewitsch and Schneider 2004, Proposition 2.10]. Hence

B(V ) is Z
θ -graded. The following statement, that we include for later reference,

is well-known.

Lemma 1.5. Let V be a braided vector space of diagonal type, and consider its
Nichols algebra B(V ).

(a) If qi i is a root of unity of order N > 1, then x N
i = 0.

(b) If i 6= j , then (adc xi )
r (x j ) = 0 if and only if

(r)qi i !
∏

0≤k≤r−1

(1 − qk
ii qi j qj i ) = 0.
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(c) If i 6= j and qi j qj i = qr
ii , for some r ≤ 0, then (adc xi )

1−r (x j ) = 0. �

1C. PBW basis of a quotient of the tensor algebra by a Hopf ideal. Let (V, c)
be a braided vector space with a basis X = {x1, . . . , xθ }; identify T (V ) with kX.

There is an important graded endomorphism []]c of kX given by

[u]c :=





u if u = 1 or u ∈ X;[
[v]c, [w]c

]
c if u ∈ L , ℓ(u) > 1

and u = vw is the Shirshov decomposition;

[u1]c . . . [ut ]c if u ∈ X − L with Lyndon decomposition u = u1 . . . ut .

Now assume that (V, c) is of diagonal type with respect to the basis x1, . . . , xθ ,

with matrix (qi j ).

Definition 1.6. The hyperletter corresponding to l ∈ L is the element [l]c. A

hyperword is a word in hyperletters, and a monotone hyperword is a hyperword of

the form W = [u1]
k1
c . . . [um]

km
c , where u1 > · · · > um .

Remark 1.7. If u ∈ L , then [u]c is a homogeneous polynomial with coefficients

in Z
[
qi j

]
and [u]c ∈ u + kX

ℓ(u)
>u .

The hyperletters inherit the order from the Lyndon words; this induces in turn an

ordering in the hyperwords (the lexicographical order on the hyperletters). Now,

given monotone hyperwords W, V , it can be shown that

W = [w1]c . . . [wm]c > V = [v1]c . . . [vt ]c,

where w1 ≥ · · · ≥ wr , v1 ≥ · · · ≥ vs , if and only if

w = w1 . . . wm > v = v1 . . . vt .

Furthermore, the principal word of the polynomial W , when decomposed as sum

of monomials, is w with coefficient 1.

Theorem 1.8 [Rosso 1999]. Let m, n ∈ L , with m < n. Then the braided commuta-
tor [[m]c, [n]c]c is a Z[qi j ]-linear combination of monotone hyperwords [l1]c, . . . ,

[lr ]c, li ∈ L , such that

• the hyperletters of those hyperwords satisfy n > li ≥ mn,

• [mn]c appears in the expansion with a nonzero coefficient, and

• any hyperword appearing in this decomposition satisfies

deg(l1 . . . lr ) = deg(mn). �

A crucial result of Rosso describes the behavior of the coproduct of T (V ) in the

basis of hyperwords.
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Lemma 1.9 [Rosso 1999]. Let u ∈ X, and u = u1 . . . urv
m, v, ui ∈ L , v < ur ≤

· · · ≤ u1 the Lyndon decomposition of u. Then

1 ([u]c) = 1⊗[u]c +

m∑

i=0

(
m

i

)

qv,v

[u1]c . . . [ur ]c[v]i
c⊗[v]m−i

c

+
∑

l1≥···≥lp>v, li ∈L
0≤ j≤m

x ( j)
l1,...,lp

⊗[l1]c . . . [lp]c[v] j
c ,

where each x ( j)
l1,...,lp

is Z
θ -homogeneous and

deg(x ( j)
l1,...,lp

) + deg(l1 . . . lpv
j ) = deg(u). �

As in [Ufer 2004], we consider another order in X; it is implicit in [Kharchenko

1999].

Definition 1.10. Let u, v ∈ X. We say that u ≻ v if and only if either ℓ(u) < ℓ(v),

or else ℓ(u)= ℓ(v) and u >v (lexicographical order). This ≻ is a total order, called

the deg-lex order.

Note that the empty word 1 is the maximal element for ≻. Also, this order is

invariant by right and left multiplication.

Let now I be a proper ideal of T (V ), and set R = T (V )/I . Let π : T (V ) → R
be the canonical projection. Consider the subset of X given by

G I := {u ∈ X : u /∈ kX≻u + I } .

(a) If u ∈ G I and u = vw, then v, w ∈ G I .

(b) Any word u ∈ G I factorizes uniquely as a nonincreasing product of Lyndon

words in G I .

Proposition 1.11 ([Kharchenko 1999]; see also [Rosso 1999]). The set π(G I ) is a
basis of R. �

In what follows, I is a Hopf ideal. We seek to find a PBW basis by hyperwords

of the quotient R of T (V ). For this, we look at the set

SI := G I ∩ L . (1-11)

We then define the function h I : SI → {2, 3, . . . } ∪ {∞} by

h I (u) := min
{
t ∈ N : ut ∈ kX≻ut + I

}
. (1-12)

The next result plays a fundamental role in this paper.
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Theorem 1.12 [Kharchenko 1999]. Keep the notation above. Then

B ′
I := B ({1 + I } , [SI ]c + I, <, h I )

is a PBW basis of H = T (V )/I . �

The next three results are consequences of Theorem 1.12; see [Kharchenko

1999] for their proofs.

Corollary 1.13. A word u belongs to G I if and only if the corresponding hyperlet-
ter [u]c is not a linear combination, modulo I , of hyperwords [w]c, w ≻ u, where
all the hyperwords have their hyperletters in SI . �

Proposition 1.14. In the conditions of the Theorem 1.12, if v ∈ SI is such that
h I (v) < ∞, then qv,v is a root of unity. In this case, if t is the order of qv,v , then
h I (v) = t . �

Corollary 1.15. If h I (v) := h < ∞, then [v]h is a linear combination of hyper-
words [w]c, w ≻ vh . �

2. Transformations of braided graded Hopf algebras

In Section 2C, we shall introduce a transformation over certain graded braided Hopf

algebras, generalizing [Heckenberger 2006b, Proposition 1]. It is an instrumental

step in the proof of Theorem 5.25, one of the main results of this article.

2A. Preliminaries on braided graded Hopf algebras. Let H be the group algebra

of an abelian group Ŵ. Let V ∈ H
HYD with a basis X = {x1, . . . , xθ } such that

xi ∈ V χi
gi , 1 ≤ i ≤ θ . Let qi j = χj (gi ), so that c(xi ⊗x j ) = qi j x j ⊗xi , 1 ≤ i, j ≤ θ .

We fix an ideal I in the class S; we assume that I is Z
θ -homogeneous. Let

B := T (V )/I : this is a braided graded Hopf algebra, B0 = k1 and B1 = V . By

definition of I (V ), there exists a canonical epimorphism of braided graded Hopf

algebras π : B → B(V ). Let σi : B → B be the algebra automorphism given by

the action of gi .

For the proof of the next result, see [Andruskiewitsch and Schneider 2002b,

2.8], for example.

Proposition 2.1. (1) For each 1 ≤ i ≤ θ , there exists a uniquely determined
(id, σi )-derivation Di : B → B with Di (x j ) = δi, j for all j .

(2) I = I (V ) if and only if
⋂θ

i=1 ker Di = k1. �

These operators are defined for each x ∈ Bk , k ≥ 1 by the formula

1n−1,1(x) =

θ∑

i=1

Di (x)⊗xi .
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Analogously, we can define operators Fi : B → B by Fi (1) = 0 and

11,n−1(x) =

θ∑

i=1

xi ⊗ Fi (x) for all x ∈
⊕

k>0

Bk .

Let χ be as in Section 1B. Consider the action ⊲ of kZ
θ on B given by

ei ⊲ b = χ(u, ei )b, b homogeneous of degree u ∈ Z
θ . (2-1)

Such operators Fi satisfy Fi (x j ) = δi, j for all j , and

Fi (b1b2) = Fi (b1)b2 + (ei ⊲ b1)Fi (b2), b1, b2 ∈ B.

Let z(i j)
r := (adc xi )

r (x j ), i, j ∈ {1, . . . , θ} , i 6= j and r ∈ N0.

Remark 2.2. The operators Di , Fi satisfy

Di (xn
i ) = (n)qi i x

n−1
i , (2-2)

Di
(
(adc xi )

r (x j1 . . . x js )
)
= 0 for r, s ≥ 0, jk 6= i, (2-3)

Dj (z
(i j)
r ) =

r−1∏
k=0

(1 − qk
ii qi j qj i )xr

i for r ≥ 0, (2-4)

Fi (z
(i j)
m ) = (m)qi i (1 − qm−1

i i qi j qj i )z
(i j)
m−1, (2-5)

Fj (z
(i j)
m ) = 0, m ≥ 1. (2-6)

The proof of the first three identities is as in [Andruskiewitsch and Schneider 2004,

Lemma 3.7]; the proof of the last two is by induction on m.

For each pair 1 ≤ i, j ≤ θ, i 6= j , we define

Mi, j (B) :=
{
(adc xi )

m(x j ) : m ∈ N
}
; (2-7)

mi j := min
{
m ∈ N0 : (m + 1)qi i (1 − qm

ii qi j qj i ) = 0
}
. (2-8)

Then either q
mi j

i i qi j qj i = 1, or q
mi j +1

i i = 1, if qm
ii qi j qj i 6= 1 for all m = 0, 1, . . . , mi j ,

or such mi j does not exist, in which case we consider mi j = ∞.

If B=B(V ), we write simply Mi, j = Mi, j (B(V )). Note that (adc xi )
mi j +1x j =0

and (adc xi )
mi j x j 6= 0, by Lemma 1.5, so

∣∣Mi, j

∣∣ = mi j + 1.

By Theorem 1.12, the braided graded Hopf algebra B has a PBW basis con-

sisting of homogeneous elements (with respect to the Z
θ -grading). As in [Hecken-

berger 2006b], we can even assume that

⊛ The height of a PBW generator [u] , deg(u) = d , is finite if and only if 2 ≤

ord(qu,u) < ∞, and in such case, h I (V )(u) = ord(qu,u).
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This is possible because if the height of [u], deg(u) = d , is finite, then 2 ≤

ord(qu,u) = m < ∞, by Proposition 1.14. And if 2 ≤ ord(qu,u) = m < ∞, but

h I (V )(u) is infinite, we can add [u]m to the PBW basis: in this case, h I (V )(u) =

ord(qu,u), and qum ,um = qm2

u,u = 1.

Let 1+(B) ⊆ N
n be the set of degrees of the generators of the PBW ba-

sis, counted with their multiplicities and let also 1(B) = 1+(B) ∪
(
−1+(B)

)
:

1+(B) is independent of the choice of the PBW basis with the property ⊛ (see

[Andruskiewitsch and Angiono 2008, Lemma 2.18] for a proof of this statement).

In what follows, we write

qα := χ(α, α), Nα := ord qα, α ∈ 1+(B).

2B. Auxiliary results. Let I be Z
θ -homogeneous ideal in S and B = T (V )/I as

in Section 2A. We shall use repeatedly the following fact.

In what follows, we use the convention ord 1 = 1.

Remark 2.3. If x N
i = 0 in B with N minimal (this is called the order of nilpotency

of xi ), then qi i is a root of 1 of order N . Hence (adc xi )
N x j = 0.

The following result extends (18) in the proof of [Heckenberger 2006b, Propo-

sition 1].

Lemma 2.4. For i∈{1, . . . , θ}, let Ki be the subalgebra generated by
⋃

j 6=i Mi, j (B)

and denote by ni the order of qi i . Then there are isomorphisms of graded vector
spaces

• ker(Di ) ∼= Ki ⊗ k
[
xni

i

]
, if 1 < ord qi i < ∞ but xi is not nilpotent, or

• ker(Di ) ∼= Ki , if ord qi i is the order of nilpotency of xi or qi i = 1.

Moreover,

B ∼= Ki ⊗ k[xi ]. (2-9)

Proof. We assume for simplicity i = 1 and consider the PBW basis obtained in the

Theorem 1.12. Now x1 ∈ SI , and it is the least element of SI , so each element of

B ′
I is of the form [u1]

s1 . . . [uk]
sk x s

1, with uk < · · · < u1, ui ∈ SI \ {x1} , 0 < si <

h I (ui ), 0 ≤ s < h I (x1). Call S′ = SI \ {x1}, and

B2 := B
(
1 + I, [S′]c + I, <, h I |S′

)
,

that is, the PBW set generated by [S′]c + I , whose height is the restriction of the

height of the PBW basis corresponding to S′. We have

B ∼= kB2 ⊗ k [x1] .

By (2-3), any (adc x1)
r (x j ) ∈ ker(D1); as D1 is a skew-derivation, we have

K1 ⊆ ker(D1).
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Also, adc x1 is a (σ1, id)-derivation of B. This derivation restricts to an endo-

morphism of the algebra K1, because if we apply adc x1 to the generators of K1,

we obtain another generators (or 0).

We shall prove by induction on the length of u that [u]c ∈K1 for each u ∈ L\{x1}.

If u = x j , j > 1, then [u]c = x j ∈ K1. Now let u ∈ L \ {x1} be of length greater

than 1, and (v, w) its Lyndon decomposition. Then:

• If v 6= x1, then [v]c, [w]c ∈ K1 by induction hypothesis, so

[u]c = [v]c[w]c − χ(deg v, deg w)[w]c[v]c ∈ K1,

because K1 is a subalgebra.

• If v = x1, then [u]c = adc x1([w]c) ⊂ adc x1(K1) ⊆ K1, because by induction

hypothesis [w]c ∈ K1.

Then we prove that [L]c \ {x1} ⊆ K1, and B2 is generated by [L]c \ {x1}; that is,

kB2 ⊆ K1, and D1(B2) = 0.

If u ∈ ker(D1), we can write [u]c =
∑

w∈B ′
I
αw[w]c. If w does not end with x1,

then w ∈ B2, and D1([w]c) = 0. But if w = uwx tw
1 , [uw]c ∈ B2, 0 < tw < h I (x1),

we have

D1 ([w]c) = (tw)q−1
11

[uw]cx tw−1
1 ,

where (tw)q−1
11

6= 0 if ni does not divide tw. Then

0 = D1([u]c) =
∑

w∈B ′
I /tw>0

αw(tw)q−1
11

[uw]cx tw−1
1 ,

But [uw]cx tw−1
1 ∈ B2, and B2 is a basis, so αw = 0 for each w such that ni does

not divide tw. Then ker(D1) = K1k[x
ni
i ], so ker(D1) ≃ K1 ⊗ k[xni

i ] as k-vector

spaces. This fact and the first part conclude the proof. �

2C. Transformations of certain braided graded Hopf algebras. Let I be Z
θ -

homogeneous ideal in S and B = T (V )/I as in the previous subsections. We
fix i ∈ {1, . . . , θ}.

Remark 2.5. ord qi i = min{k ∈ N : Fk
i = 0}, if qi i 6= 1.

Proof. If k ∈ N, then Fi (xk
i ) = (k)qi i x

k−1
i , and for all k ∈ N,

Fk
i (xk

i ) = (k)q−1
i i

!.

That is, if Fk
i = 0, then (k)q−1

i i
! = 0. Hence ord qi i ≤ min{k ∈ N : Fk

i = 0}.

Reciprocally, if qi i is a root of unity of order k, then Fk
i (x t

i ) = 0 for all t ≥ k by the

previous claim, and Fk
i (x t

i )= 0 for all t < k by degree arguments. Since Fi (x j )= 0

for j 6= i , Fk
i = 0. �
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We now extend some considerations in [Heckenberger 2006b, p. 180]. We con-

sider the Hopf algebra defined by

Hi :=





k〈y, ei , e−1
i |ei y − q−1

i i yei , yNi 〉 where Ni is the order of nilpotency
of xi in B, if xi is nilpotent,

k〈y, ei , e−1
i |ei y − q−1

i i yei 〉 if xi is not nilpotent,

together with 1(ei ) = ei ⊗ ei , 1(y) = ei ⊗ y + y ⊗ 1.

Notice that 1 is well-defined by Remark 2.3. We also consider the action ⊲ of

Hi on B given by

ei ⊲ b = χ(u, ei )b, y ⊲ b = Fi (b),

if b is homogeneous of degree u ∈ N
θ , extending the previous one defined in (2-1).

The action is well-defined by Remark 2.3 and because

(ei y) ⊲ b = ei ⊲ (Fi (b)) = q−1
i i Fi (ei ⊲ b) = (q−1

i i yei ) ⊲ b for b ∈ B.

It is easy to see that B is an Hi -module algebra; hence we can form

Ai := B# Hi .

Also, if we denote explicitly by · the multiplication in Ai , we have

(1#y) · (b#1) = (ei ⊲ b#1) · (1#y) + Fi (b)#1 for all b ∈ B. (2-10)

As in [Heckenberger 2006b], Ai is a left Yetter–Drinfeld module over kŴ, where

the action and the coaction are given by

gk ·x j #1 = qk j x j #1, gk ·1#y = q−1
ki 1#y, gk ·1#ei = 1#ei ,

δ(x j #1) = gj ⊗x j #1, δ(1#y) = g−1
i ⊗1#y, δ(1#ei ) = 1⊗1#ei ,

for each pair k, j ∈ {1, . . . , θ}. Also, Ai is a kŴ-module algebra.

We now prove a generalization of [Heckenberger 2006b, Proposition 1] in the

more general context of our braided Hopf algebras B. Although the general strat-

egy of the proof is similar as in loc. cit., many points need slightly different

argumentations here.

Theorem 2.6. Keep the notation above. Assume that Mi, j (B) is finite and
∣∣Mi, j (B)

∣∣ = mi j + 1, j ∈ {1, . . . , θ} , j 6= i. (2-11)

(1) Let Vi be the vector subspace of Ai generated by
{
(adc xi )

mi j (x j )#1 : j 6= i
}
∪ {1#y} .
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The subalgebra si (B) of Ai generated by Vi is a graded algebra such that
si (B)1 ∼= Vi . There exist skew derivations Yi : si (B) → si (B) such that, for
all b1, b2 ∈ si (B), and l, j ∈ {1, . . . , θ} , j 6= i ,

Yj (b1b2) = b1Yj (b2) + Yj (b2)
(
g

−mi j

i g−1
j · b2

)
, (2-12)

Yi (b1b2) = b1Yi (b2) + Yi (b1)
(
g−1

i · b1

)
, (2-13)

Yl((adc xi )
mi j (x j )#1) = δl j , Yl(1#y) = δli . (2-14)

(2) Set Ni := {n ∈ N : nei ∈ 1(B)} (by the previous remarks, Ni = {1} or Ni =

{1, hi }). The Hilbert series of si (B) satisfies

Hsi (B) =

( ∏

α∈1+(B)\Ni ei

qhα
(X si (α))

)( ∏

s∈Ni

qhsei
(x s

i )

)
. (2-15)

Therefore, if si (B) is a graded braided Hopf algebra,

1+(si (B)) =
{
si

(
1+ (B)

)
\ −Ni ei

}
∪ Ni ei .

(3) If B = B(V ), the algebra si (B) is isomorphic to the Nichols algebra B(Vi ).

Proof. (i) Note that Vi is a Yetter–Drinfeld submodule over kŴ of Ai . Now,

Ai
∼= B ⊗ Hi as graded vector spaces. Let Ki be the subalgebra generated by⋃

j 6=i Mi, j (B), as in Lemma 2.4. Then si (B) ⊆ Ki ⊗ k[y], since Fi is a skew-

derivation and Fi
(
z(i j)

k

)
= (k)qi i (1 − qk−1

i i qi j qj i )z
(i j)
k−1, by (2-5). From (2-10),

(1#y) ·
(
z(i j)

mi j
#1

)
=

(
z(i j)

mi j
#1

)
· (1#y) + Fi

(
z(i j)

mi j

)
#1.

Also, since mi j+1=
∣∣Mi, j (B)

∣∣, we have (mi j )qi i (1−q
mi j −1

i i qi j qj i ) 6=0, so z(i j)
mi j −1#1

lies in si (B), and by induction each z(i j)
k #1, for k = 0, . . . , mi j − 1, is an element

of si (B). Then Ki ⊗ k[y] ⊆ si (B), and therefore

si (B) = Ki ⊗ k[y]. (2-16)

Thus, si (B) is a graded algebra in kŴ
kŴYD with si (B)1 = Vi . We have to find the

skew derivations Yl ∈ End(si (B)), l = 1, . . . , θ . Set Yi := g−1
i ◦ ad(xi #1)|si (B).

Then, for each b ∈ Ki and each j 6= i ,

ad(xi #1)(b#1) = (adc xi )(b)#1,

ad(xi #1)
(
(adc xi )

mi j (x j )#1
)
= (adc xi )

mi j +1(x j )#1 = 0.

Also,

Yi (1#y) = g−1
i ·

(
(xi #1) · (1#y) − (gi · (1#y)) · (xi #1)

)

= g−1
i ·

(
xi #y + 1 − qi i (q

−1
i i xi #y)

)
= 1.

Thus Yi ∈ End(si (B)) satisfies (2-14).
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Therefore, ad(xi #1)(b1b2) = ad(xi #1)(b1)b2 + (gi · b1) ad(xi #1)(b2), for each

pair b1, b2 ∈ si (B), so we conclude that ad(xi #1)(si (B)) ⊆ si (B), and Yi ∈

End(si (B)) satisfies (2-13).

Before proving that Yi satisfies (2-12), we need to establish some preliminary

facts. Let us fix j 6= i , and let z(i j)
k = (adc xi )

k(x j ) as before. We define inductively

ẑ(i j)
0 := Dj , ẑ(i j)

k+1 := Di ẑ
(i j)
k − qk

ii qi j ẑ
(i j)
k+1 Di ∈ End(B).

We calculate

λi j := ẑ(i j)
mi j

(
z(i j)

mi j

)
=

mi j∑

s=0

as D
mi j −s
i Dj Ds

i

(
z(i j)

mi j

)

= (Di )
mi j (Dj )

(
z(i j)

mi j

)
= αmi j (mi j )qi i! ∈ k

×,

where as = (−1)k
(m

k

)
qi i

qk(k−1)/2
i i qk

i j .

Note that (Di )
mi j +1 Dj (b) = 0 for all b ∈ Mi,k, k 6= i, j , and that

(Di )
mi j +1 Dj (z

(i j)
r ) = (Di )

mi j +1
(
q−r

ji αr xr
i

)
= 0 for all r ≤ mi j ,

so (Di )
mi j +1 Dj (Ki ) = 0. This implies that ẑ(i j)

mi j (b) ∈ Ki , for each b ∈ Ki . Now

define Yj ∈ End(si (B)) by

Yj (b#ym) := q
mmi j

i i qm
ji λ

−1
i j ẑ(i j)

mi j
(b)#ym for b ∈ Ki , m ∈ N.

We have Yj (1# y) = 0, and moreover Yj ((adc xi )
mil (xl)#1) = 0 if l 6= i, j . By the

choice of λi j , Yj ((adc xi )
mi j (x j )#1) = 1.

Now, using that Dk(gl ·b) = qkl gl ·(Dk(b)) for each b ∈ B and k, l ∈ {1, . . . , θ},

we prove inductively that for b1, b2 ∈ Ki ,

ẑ(i j)
k (b1b2) = b1 ẑ(i j)

k (b2) + ẑ(i j)
k (b1)(g

k
i gj · b2).

Hence,

Yj (b1#1 · b2#1) = Yj (b1b2#1) = λ−1
i j ẑmi j (b1b2)#1

= b2#1 · Yj (b2#1) + Yj (b1#1) ·
(
g

mi j

i gj · (b2#1)
)
.

By induction on the degree we prove that Fi commutes with Di , Dj , so

ẑ(i j)
mi j

(Fi (b)) = Fi
(
ẑ(i j)

mi j
(b)

)
for all b ∈ B.

Consider b ∈ Ki ⊆ ker(Di ),

Yj (b#1 · 1#y) = Yj (b#y) = q
mi j

i i qj i ẑ
(i j)
mi j

(b)#y

= b#1 · Yj (1#y) + Yj (b#1) ·
(
g

mi j

i gj · (1#y)
)
,
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where we use that Yj (1#y) = 0. Since,

b1#1 · b2#yt = b1#1 · b2#1 · (1#y)t ,

(2-12) is valid for products of this form. To prove it in the general case, note that

(b1#yt) · (b2#ys) = (b1#1) · (1#y)t · (b2#ys).

At this point, we have to prove (2-12) for b ∈ Ki ker(Di ), s ∈ N:

Yj (1#y · b#ys)

= Yj
(
Fi (b)#ys + (ei ⊲ b#y) · 1#y

)

= q
mi j s
ii qs

jiλ
−1
i j ẑ(i j)

mi j
(Fi (b))#ys + q

mi j (s+1)

i i qs+1
j i λ−1

i j · ẑ(i j)
mi j

(ei ⊲ b)#ys+1

= Fi
(
q

mi j (s+1)

i i qs+1
j i λ−1

i j ẑ(i j)
mi j

(b)
)
#ys + q

mi j

i i qj i
(
ei ⊲

(
q

mi j s
ii qs

jiλ
−1
i j ẑ(i j)

mi j
(b)

)
#ys)

= (1#y) · Yj (b#ys)

= 1#y · Yj
(
b#ys) + Yj (1#y) ·

(
g

mi j

i gj · b#ys),

where we use that ẑ(i j)
mi j (ei ⊲ b) = q

mi j

i i qj i ei ⊲ (ẑ(i j)
mi j (b)).

(ii) The algebra Hi is Z
θ -graded, with

deg y = −ei , deg e±1
i = 0.

Since B and Hi are graded and (2-10) holds, the algebra Ai is Z
θ -graded.

Consider the abstract basis {u j }j∈{1,...,θ} of Vi . With the grading deg u j = ej ,

the algebra B(Vi ) is Z
θ -graded. Consider also the algebra homomorphism � :

T (Vi ) → si (B) given by

�(u j ) :=

{
(adc xi )

mi j (x j ) if j 6= i,
y if j = i.

By part (i) of the theorem, � is an epimorphism, so it induces an isomorphism

between si (B)′ := T (Vi )/ ker � and si (B), which we also denote by �. We have

deg �(u j ) = deg
(
(adc xi )

mi j (x j )
)
= ej + mi j ei = si (deg uj ) if j 6= i,

deg �(ui ) = deg(y) = −ei = si (deg ui ).

Since � is an algebra homomorphism, we have deg(�(u)) = si (deg(u)) for all

u ∈ si (B)′. Since s2
i = id, si (deg(�(u))) = deg(u) for all u ∈ si (B)′, and Hsi (B)′ =

si (Hsi (B)).

From this point on, the proof goes exactly as in [Andruskiewitsch and Angiono

2008, Theorem 3.2].
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(iii) This is Proposition 1 in [Heckenberger 2006b]. �

By Theorem 2.6, the initial braided vector space with matrix (qk j )1≤k, j≤θ is

transformed into another braided vector space of diagonal type Vi , with matrix

(q̃k j )1≤k, j≤θ , where q̃jk = q
mi j mik

i i q
mi j

ik qmik
j i qjk for j, k ∈ {1, . . . , θ}.

If j 6= i , then m̃i j = min
{
m ∈ N : (m + 1)q̃i i

(
q̃m

ii q̃i j q̃j i = 0
)}

= mi j .

For later use in Section 5, we recall a result from [Andruskiewitsch et al. 2008],

adapted to diagonal braided vector spaces.

Lemma 2.7 [Andruskiewitsch et al. 2008, Lemma 2.8(ii)]. Let V be a diagonal
braided vector space and I a Z

θ -homogeneous ideal of T (V ). Set B := T (V )/I
and assume that for all i ∈ {1, . . . , θ} there exist (id, σi )-derivations Di : B → B

with Di (x j ) = δi, j for all j . Then I ⊆ I (V ). �

That is, the canonical surjective algebra morphisms from T (V ) onto B and

B(V ) induce a surjective algebra morphism B → B(V ).

3. Standard braidings

Heckenberger [2006a] has classified diagonal braidings whose set of PBW genera-

tors is finite. Standard braidings form an special subclass, which includes properly

braidings of Cartan type.

We first recall the definition of a standard braiding from [Andruskiewitsch and

Angiono 2008], and the notion of a Weyl groupoid, introduced in [Heckenberger

2006b]. Then we present the classification of standard braidings, and compare

them with [Heckenberger 2006a].

Like Heckenberger, we use the generalized Dynkin diagram associated to a

braided vector space of diagonal type, with matrix (qi j )1≤i, j≤θ : this is a graph

with θ vertices, each labeled with the corresponding qi i , and an edge between two

vertices i, j labeled with qi j qj i if this scalar is different from 1. So two braided

vector spaces of diagonal type have the same generalized Dynkin diagram if and

only if they are twist equivalent. We shall assume that the generalized Dynkin

diagram is connected, by [Andruskiewitsch and Schneider 2000, Lemma 4.2].

Summarizing, the main result of this section says:

Theorem 3.1. Any standard braiding is twist equivalent with one or more of

• a braiding of Cartan type,

• a braiding of type Aθ listed in Proposition 3.9,

• a braiding of type Bθ listed in Proposition 3.10, or

• a braiding of type G2 listed in Proposition 3.11.
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The generalized Dynkin diagrams appearing in Propositions 3.9 and 3.10 cor-

respond to rows 1, 2, 3, 4, 5, 6 in [Heckenberger 2006a, Table C]. The generalized

Dynkin diagrams in Proposition 3.11 are (T8) in [Heckenberger 2008, Section 3].

However, our classification does not rely on Heckenberger’s papers.

3A. The Weyl groupoid and standard braidings. Let E = (e1, . . . , eθ ) be the

canonical basis of Z
θ . Consider an arbitrary matrix (qi j )1≤i, j≤θ ∈ (k×)θ×θ , and

fix once and for all the bilinear form χ : Z
θ × Z

θ → k
× determined by

χ(ei , ej ) = qi j , 1 ≤ i, j ≤ θ. (3-1)

If F = (f1, . . . , fθ ) is another ordered basis of Z
θ , then we set q̃i j = χ(fi , fj ),

1 ≤ i, j ≤ θ . We call (q̃i j ) the braiding matrix with respect to the basis F . Fix

i ∈ {1, . . . , θ}. If 1 ≤ i, j ≤ θ , we consider the set

M̃i j := {m ∈ N0 : (m + 1)q̃i i (q̃
m
ii q̃i j q̃j i − 1) = 0}.

If this set is nonempty, its minimal element is denoted m̃i j (which of course

depends on the basis F). Define also m̃i i = 2. Let si,F ∈ GL(Zθ ) be the pseudo-

reflection given by si,F (fj ) := fj + m̃i j fi , for j ∈ {1, . . . , θ}.

Let G be a group acting on a set X . We define the transformation groupoid as

G×X with the operation given by (g, x)(h, y)= (gh, y) if x = h(y), but undefined

otherwise.

Definition 3.2. Consider the set X of all ordered bases of Z
θ , and the canonical

action of GL(Zθ ) over X. The Weyl groupoid W (χ) of the bilinear form χ is

the smallest subgroupoid of the transformation groupoid GL(Zθ )×X that satisfies

following properties:

• (id, E) ∈ W (χ),

• if (id, F) ∈ W (χ) and si,F is defined, then (si,F , F) ∈ W (χ).

Let P(χ) = {F : (id, F) ∈ W (χ)} be the set of points of the groupoid W (χ).

The set

1(χ) =
⋃

F∈P(χ)

F. (3-2)

is called the generalized root system1 associated to χ .

We record for later use the following evident facts.

Remark 3.3. Take i ∈ {1, . . . , θ} such that si,E is defined. Set F = si,E(E) and let

(q̃i j ) be the braiding matrix with respect to the basis F . Assume that

1Following the traditional notation in the theory of Lie algebras, we should speak about systems

of real roots, since in the case of braidings of symmetrizable Cartan type one would get just the real

roots. But we prefer to follow the denomination in [Andruskiewitsch and Angiono 2008]
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• qi i = −1 (so mik = 0 if qikqki = 1 or mik = 1, for each k 6= i);

• there exists j 6= i such that qj j qj i qi j = 1 (that is, mi j = m j i = 1).

Then q̃j j = −1.

Proof. Simply, q̃j j = qi i qi j qj i qj j = qi i = −1. �

Remark 3.4. If the mi j satisfy q
mi j

i i qi j qj i = 1 for all j 6= i , the braiding of Vi is

twist equivalent with the corresponding to V .

Define α : W (χ) → GL(θ, Z) by α(s, F) = s if (s, F) ∈ W (χ), and denote by

W0(χ) the subgroup generated by the image of α.

Definition 3.5. [Andruskiewitsch and Angiono 2008] We say that χ is standard
if for any F ∈ P(χ), the integers mr j are defined, for all 1 ≤ r, j ≤ θ , and the

integers mr j for the bases si,F (F) coincide with those for F for all i, r, j . Clearly

it is enough to assume this for the canonical basis E .

We now assume that χ is standard. We set C := (ai j )∈ Z
θ×θ , where ai j =−mi j ;

this is a generalized Cartan matrix.

Proposition 3.6 [Andruskiewitsch and Angiono 2008]. W0(χ) = 〈si,E : 1 ≤ i ≤ θ〉.
Furthermore W0(χ) acts freely and transitively on P(χ). �

Hence, W0(χ) is a Coxeter group, and W0(χ) and P(χ) have the same cardi-

nality.

Lemma 3.7 [Andruskiewitsch and Angiono 2008]. The following are equivalent:

(1) The groupoid W (χ) is finite.

(2) The set P(χ) is finite.

(3) The generalized root system 1(χ) is finite.

(4) The group W0(χ) is finite.

(5) The Cartan matrix C is symmetrizable and of finite type. �

We shall prove in Theorem 4.1, that if 1(χ) is finite, the matrix C is sym-

metrizable, hence of finite type. Thus B(V ) is of finite dimension if and only if

the Cartan matrix C is of finite type.

3B. Classification of standard braidings. We now classify standard braidings such

that the Cartan matrix is of finite type. We begin with types Cθ , Dθ , El (l = 6, 7, 8)

and F4: these standard braidings are necessarily of Cartan type.

Proposition 3.8. Let V be a braided vector space of standard type, set θ = dim V ,

and let C = (ai j )i, j∈{1,...,θ} be the corresponding Cartan matrix, of type Cθ , Dθ ,

El (l = 6, 7, 8) or F4. Then V is of Cartan type (associated to the corresponding
matrix of finite type).
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Proof. Let V be standard of type Cθ , θ ≥ 3.

◦1 ◦2 ◦3
· · · ◦θ−2 ◦θ−1 ◦θks (3-3)

Note that qθ−1,θ−1 6= −1 by Remark 3.3 and the assumption mθ−1,θ = 2. Since

mθ−1,θ−2 = 1, qθ−1,θ−1qθ−1,θ−2qθ−2,θ−1 = 1. Using Remark 3.3 when i = θ −

2, j = θ − 1, since q̃θ−1,θ−1 6= −1 when we transform by sθ−2 (since the new

braided vector space is also standard), we have qθ−2,θ−2 6= −1, so

qθ−2,θ−2qθ−2,θ−1qθ−1,θ−2 = qθ−2,θ−2qθ−2,θ−3qθ−3,θ−2 = 1,

and qθ−1,θ−1 = qθ−2,θ−2. Inductively,

qkkqk,k−1qk−1,k = qkkqk,k+1qk+1,k = q11q12q21 = 1, k = 2, . . . , θ − 1

and q11 = q22 = . . . = qθ−1,θ−1. So we look at qθθ : since mθ,θ−1 = 1, we have

qθθ = −1 or qθθqθ,θ−1qθ−1,θ = 1. If qθθ = −1, transforming by sθ , we have

q̃θ−1,θ−1 = −q−1, q̃θ−1,θ q̃θ,θ−1 = q2,

and q2 = −1 since mθ−1,θ−2 = 1. Then

qθθqθ,θ−1qθ−1,θ = 1, qθθ = q2,

and the braiding is of Cartan type in both cases.

Let V be standard of type Dθ , θ ≥ 4.

We prove the statement by induction on θ . Let V be standard of type D4, and

suppose that q22 = −1. Let (q̃i j ) the braiding matrix with respect to F = s2,E(E).

We calculate for each pair j 6= k ∈ {1, 3, 4}:

q̃jk q̃k j =
(
(−1)q2kqj2qjk

) (
(−1)q2 j qk2qk j

)
= (q2kqk2)

(
q2 j qj2

)
,

where we use that qjkqk j = 1. Since also q̃jk q̃k j = 1, we have q2kqk2 = (q2 j qj2)
−1

for j 6= k, so q2kqk2 =−1, k = 1, 3, 4, since q2kqk2 6= 1. In this case, the braiding is

of Cartan type, with q = −1. Suppose then q22 6= −1. From the fact that m2 j = 1,

we have

q22q2 j qj2 = 1, j = 1, 3, 4.

For each j , applying Remark 3.3, we see that qj j 6= −1 (since q̃22 6= −1), so

qj j q2 j qj2 = 1, for j = 1, 3, 4, and the braiding is of Cartan type.

◦1 ◦2 ◦3
· · · ◦θ−2 ◦θ

◦θ−1

(3-4)



56 Iván Ezequiel Angiono

We now suppose the statement valid for θ . Let V be a standard braided vector

space of type Dθ+1. The subspace generated by x2, . . . , xθ+1 is a standard braided

vector space associated to the matrix (qi j )i, j=2,...,θ+1, of type Dθ , so it is of Cartan

type. To finish, apply Remark 3.3 with i = 1, j = 2, to conclude that V is of Cartan

type with q = −1, or, if q22 6= −1, we have q11 6= −1 and q11q12q21 = 1, and in

this case it is of Cartan type too (because also q1kqk1 = 1 when k > 2).

Let V be standard of type E6. Note that 1, 2, 3, 4, 5 determine a braided vector

subspace, which is standard of type D5, hence of Cartan type. To prove that

q66q65q56 = 1, we use Remark 3.3 as above.

◦1 ◦2 ◦3 ◦5 ◦6

◦4

(3-5)

If V is standard of type E7 or E8, we proceed similarly by reduction to E6 or E7,

respectively.

◦1 ◦2 ◦3 ◦4 ◦6 ◦7

◦5

(3-6)

◦1 ◦2 ◦3 ◦4 ◦5 ◦7 ◦8

◦6

(3-7)

Let V be standard of type F4. Vertices 2, 3, 4 determine a braided subspace, which

is standard of type C3, so the qi j satisfy the corresponding relations. Let (q̃i j ) the

braiding matrix with respect to F = s2,E(E). Since q̃13q̃31 = 1 and q22q23q32 = 1,

we have q22q12q21 = 1.

◦1 ◦2 +3 ◦3 ◦4 (3-8)

Now, if we suppose q11 =−1, applying Remark 3.3 we have q22 =−1 = q21q12,

and the corresponding vector space is of Cartan type F4, associated to q ∈ G4.

If q11 6= −1, then q11q12q21 = 1, and the space it again is of Cartan type. �

To finish the classification of standard braidings, we describe the standard braid-

ings that are not of Cartan type. They are associated to Cartan matrices of type

Aθ , Bθ or G2.
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We use a notation similar to the one in [Heckenberger 2006a] for a special

kind of braiding of type Aθ (here we emphasize the positions where qi i = −1,

which we use to compute the dimension of the corresponding Nichols algebra);

C(θ, q; i1, . . . , i j ) corresponds to the generalized Dynkin diagram

◦1 ◦2 ◦3
· · · ◦θ−1 ◦θ (3-9)

where the following equations hold:

• q = qθ−1,θqθ,θ−1q2
θθ ,

• (qθθ + 1)(qθθqθ−1,θqθ,θ−1 − 1) = (q11 + 1)(q11q12q21 − 1) = 0;

• −qi i = qi−1,i qi,i−1qi+1,i qi,i+1 = 1 if i ∈ {i1, . . . , i j }.

• qi i qi−1,i qi,i−1 = qi i qi+1,i qi,i+1 = 1, otherwise.

Then qi i = −1 if and only if qi−1,i qi,i−1 = (qi+1,i qi,i+1)
−1.

Proposition 3.9. Let V be a braided vector space of diagonal type. Then V is
standard of type Aθ if and only if its generalized Dynkin diagram is of the form

C(θ, q; i1, . . . , i j ). (3-10)

This braiding is of Cartan type if and only if j = 0, or j = n with q = −1.

Proof. Let V be a braided vector space of standard Aθ type. For each vertex i , with

1 < i < θ , we have qi i = −1 or qi i qi,i−1qi−1,i = qi i qi,i+1qi+1,i = 1, and similar

formulas hold for i = 1, θ . So suppose that 1 < i < θ and qi i = −1. We transform

by si and obtain

q̃i−1,i+1 = −qi,i+1qi−1,i qi−1,i+1, q̃i+1,i−1 = −qi,i−1qi+1,i qi+1,i−1,

and using that mi−1,i+1 = m̃i−1,i+1 = 0, we have

qi−1,i+1qi+1,i−1 = 1, q̃i−1,i+1q̃i+1,i−1 = 1,

so we deduce that qi,i+1qi+1,i = (qi,i−1qi−1,i )
−1. Then the corresponding matrix

(qi j ) is of the form (3-10).

Now consider V of the form (3-10). Assume qi i = q±1; if we transform by

si , the braided vector space Vi is twist equivalent with V by Remark 3.4. Thus,

m̃i j = mi j .

Assume qi i = −1. We transform by si and calculate

q̃j j = (−1)m2
i j (qi j qj i )

mi j qj j =





qj j if | j − i | > 1,

(−1)q∓1q±1 = −1 if j = i ± 1, qj j = q±1,

(−1)q±1(−1) = q±1 if j = i ± 1, qj j = −1.
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Also, q̃i j q̃j i = qi j qj i if | j − i | > 1 and q̃i j q̃j i = q−1
i j q−1

j i if | j − i | = 1; moreover

q̃k j q̃jk = (qikqki )
mi j (qi j qj i )

mik qk j qjk =

{
qk j qjk if | j − i | or |k − i | > 1,

1 if j = i − 1, k = i + 1.

Then Vi has a braiding of the above form too, and (−mi j ) corresponds to the

finite Cartan matrix of type Aθ , so it is a standard braiding of type Aθ . Thus this

is the complete family of standard braidings of type Aθ . �

Proposition 3.10. Let V a diagonal braided vector space. Then V is standard of
type Bθ if and only if its generalized Dynkin diagram is of one of these forms:

(a) ❡ ❡
ζ q−1 q

with ζ ∈ G3, q 6= ζ (θ = 2);

(b)
✎
✍

☞
✌C(θ−1,q2;i1, . . . , i j ) ❡q−2 q

with q 6= 0, −1, 0 ≤ j ≤ θ − 1;

(c)
✎
✍

☞
✌C(θ−1,−ζ−1;i1, . . . , i j ) ❡−ζ ζ

with ζ ∈ G3, 0 ≤ j ≤ θ − 1.

This braiding is of Cartan type if and only if it is as in (b) and j = 0.

Proof. First we analyze the case θ = 2. Let V a standard braided vector space of

type B2. There are several possibilities:

• q2
11q12q21 = q22q21q12 = 1: this braiding is of Cartan type, with q = q11. Note

that q 6= −1. This braiding has the form (b) with θ = 2, j = 0.

• q2
11q12q21 = 1, q22 = −1. We transform by s2, obtaining

q̃11 = −q−1
11 , q̃12q̃21 = q−1

12 q−1
21 .

Thus q̃2
11q̃12q̃21 = 1. It has the form (b) with j = 1.

• q11 ∈ G3, q22q21q12 = 1. We transform by s1, obtaining

q̃22 = q11q12q21, q̃12q̃21 = q2
11q−1

12 q−1
21 .

So q̃22q̃21q̃12 = 1, which is the case (a).

• q11 ∈ G3, q22 = −1: we transform by s1, obtaining

q̃22 = −q2
12q2

21q11, q̃12q̃21 = q2
11q−1

12 q−1
21 .

If we transform by s2,

q̃11 = −q12q21q11, q̃12q̃21 = q−1
12 q−1

21 .

So q12q21 = ±q11, and we discard the case q12q21 = q11 because it has been

considered before. The braiding has the form (c) with j = 0, and is standard.
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Conversely, all braidings (a), (b) and (c) are standard of type B2.

Now let V be of type Bθ , with θ ≥3. The first θ−1 vertices determine a braiding

of standard type Aθ−1, and the last two determine a braiding of standard type B2;

so we have to glue the possible such braidings. The possible cases are the two

presented in Proposition 3.10, plus

✎
✍

☞
✌C(θ−2,q;i1,...,i j ) ❡ ❡q−1 q q−1 ζ

.

But if we transform by sθ , we obtain

q̃θ−1,θ−1 = ζq−1, q̃θ−1,θ−2q̃θ−2,θ−1 = q−1,

so 1 = q̃θ−1,θ−1q̃θ−1,θ−2q̃θ−2,θ−1 and we obtain q =±ζ−1, or q̃θ−1,θ−1 =−1. Then

q = −ζ−1 or q = −1, so it is of some of the above forms.

To prove that (b) and (c) are standard braidings, we use the following fact: if

mi j = 0 (that is, qi j qj i = 1) and we transform by si , then

q̃j j = qj j and q̃jk q̃jk = qjkqk j for k 6= i.

In this case, mi j = 0 if |i − j | > 1; if, on the contrary, j = i ±1, we use the fact that

the subdiagram determined by these two vertices is standard of type B2 or type A2.

So this is the complete family of all twist equivalence classes of standard braidings

of type Bθ . �

Proposition 3.11. Let V a braided vector space of diagonal type. Then V is
standard of type G2 if and only if its generalized Dynkin diagram is one of the
following:

(a) ❡ ❡
q q−3 q3

with ord q ≥ 4;

(b) ❡ ❡
ζ 2

ζ ζ−1

or ❡ ❡
ζ 2

ζ 3 −1 or ❡ ❡
ζ ζ 5 −1 with ζ ∈ G8.

This braiding is of Cartan type if and only if it is as in (a).

Proof. Let V be a standard braiding of type G2. There are four possible cases:

• q3
11q12q21 = 1, q22q21q12 = 1: this braiding is of Cartan type, as in (a), with

q = q11. If q is a root of unity, then ord q ≥ 4 because m12 = 3.

• q3
11q12q21 = 1, q22 = −1: we transform by s2, obtaining

q̃11 = −q−2
11 , q̃12q̃21 = q−1

12 q−1
21 .

If 1 = q̃3
11q̃12q̃21 = −q−3

11 , then q12q21 = −1, and the braiding is of Cartan type

with q11 ∈ G6. If not, 1 = q̃4
11 = q−8

11 and ord q̃11 = 4, so ord q11 = 8. Then we

can express the braiding in the form of the third diagram in (b).
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• q11 ∈ G4, q22q21q12 = 1: we transform by s1, obtaining

q̃22 = q11q2
12q2

21, q̃12q̃21 = −q−1
12 q−1

21 .

If 1 = q̃22q̃21q̃12 = −q11q12q21, we have q3
11q12q21 = 1 because q2

11 = −1, and

this is a braiding of Cartan type. So consider now the case −1= q̃22 =q11q2
12q2

21,

from which q2
22 = q−1

11 and q22 ∈ G8. Then we obtain a braiding of the form of

the first diagram in (b).

• q11 ∈ G4, q22 = −1: we transform by s2, obtaining

q̃11 = −q12q21q11, q̃12q̃21 = q−1
12 q−1

21 .

If q̃11 ∈ G4, then (q12q21)
4 = 1. Moreover q12q21 6= 1 and q12q21 6= q−1

11 because

m12 = 3. So q12q21 = −1 or q12q21 = q11 = q−3
11 ; but these cases have been

considered already. There remains to analyze the case

1 = q̃3
11q̃12q̃21 = q11q2

12q2
21,

which we can express in the form of the second diagram in (b), for some ζ ∈ G8.

A simple calculation proves that these braidings are of standard type, so they are

all the standard braidings of type G2. �

4. Nichols algebras of standard braided vector spaces

In this section we study Nichols algebras associated to standard braidings. We

assume that the Dynkin diagram is connected, as in Section 3. In Section 4A

we prove that the set 1+(B(V )) is in bijection with 1+
C , the set of positive roots

associated with the finite Cartan matrix C .

We describe an explicit set of generators in Section 4B, following [Lalonde

and Ram 1995]. We adapt their proof since they work on enveloping algebras of

simple Lie algebras. In Section 4C, we calculate the dimension of Nichols algebra

associated to a standard braided vector space, type by type.

4A. PBW bases of Nichols algebras. We start with a result analogous to [Hecken-

berger 2006b, Theorem 1], but for braidings of standard type.

Theorem 4.1. Let V be a braided vector space of standard type with Cartan matrix
C. Then the set 1(B(V )) is finite if and only if the Cartan matrix C is symmetriz-
able and of finite type.

Proof. Since we assume V of standard type, 1(B(V )) coincides with the set of

real roots corresponding to the matrix C by [Heckenberger 2006b, Proposition 1],

where we identify corresponding simple roots. Hence, if C is not symmetrizable

or not of finite type, the set of real roots is infinite by the classification of finite

Coxeter groups, and hence 1(B(V )) is infinite.
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Conversely, let C be symmetrizable and of finite type. Then the set of real roots

is finite. Take α ∈ 1(B(V )) and let k ∈ N, i1, . . . , ik ∈ {1, . . . , θ} be a sequence

of integers such that si1
· · · sik is a longest element in W0(χ). Since all roots are

positive or negative, there exists l ∈ {1, . . . , k} such that β = sil+1
· · · sik (α) is

positive and sil (β) is negative. But then β = αil , and α = sik · · · sil+1
(αil ) is a real

root. Thus 1(B(V )) is finite. �

Corollary 4.2. Let V be a braided vector space of standard type, set θ = dim V ,

and let C = (ai j )i, j∈{1,...,θ} be the corresponding generalized Cartan matrix of finite
type.

(a) φ(1C) = 1 (B(V )), where as before φ : Zπ → Z
θ is the Z-linear map deter-

mined by φ(αi ) := ei .

(b) The multiplicity of each root in 1(B(V )) is one.

Proof. Statement (a) follows from the proof of Theorem 4.1.

Using this condition, since each root is of the form β = w(αi ) for some w ∈ W
and i ∈ {1, . . . , θ}, we conclude by applying a certain sequence of transformations

si that this is the degree corresponding to a generator of the corresponding Nichols

algebra, so the multiplicity (which is invariant under these transformations) is 1. �

4B. Explicit generators for a PBW basis. In view of Corollary 4.2, we restrict

our attention to finding one Lyndon word for each positive root of the root system

associated with the corresponding finite Cartan matrix.

Proposition 4.3 [Lalonde and Ram 1995, Proposition 2.9]. Let l be an element of
SI . Then l is of the form l = l1 . . . lka, for some k ∈ N0, where

• li ∈ SI for each i = 1, . . . , k;

• li is a beginning of li−1 for each i > 1; and

• a is a letter.

Also, if l = uv is the Shirshov decomposition, then u, v ∈ SI . �

In what follows, we describe a set of Lyndon words for each Cartan matrix of finite

type C .

Consider α =
∑θ

j=1 ajαj ∈ 1+ and let lα ∈ SI be such that deg lα = α. Let

lα = lβ1
. . . lβk xs be a decomposition as above, where s ∈{1, . . . , θ} and deg lβj =βj .

Since each lβj is a beginning of lβj−1
, all the words begin with the same letter x ′,

which satisfies x ′ < xs because l is a Lyndon word. Therefore x ′ is the least letter

of l, so

x ′ = xi , i = min{ j : aj 6= 0} H⇒ α =

θ∑

j=i

ajαj .



62 Iván Ezequiel Angiono

Then k ≤ ai ≤ 3, for the order given in (3-9), (3-4), (3-5), (3-6), (3-7), (3-8) (the

value ai = 3 appears only when C is of type G2).

Now, each lβj lies in SI , so βj ∈ 1+; i.e., it corresponds to a term of the PBW

basis. Also
∑k

j=1 βj +αs = α. If k = 2, we have β1 −β2 =
∑θ

j=1 bjαj and bj ≥ 0,

because β2 is a beginning of β1 (an analogous claim is valid when the matrix is of

type G2 and k = 3). With these rules we define inductively Lyndon words for a

PBW basis corresponding with a standard braiding for a fixed order on the letters.

This is done as in [Lalonde and Ram 1995], but taking care that in that reference

Serre relations are used; here we have quantum Serre relations, and some quantum

binomial coefficients may be zero.

Type Aθ : In this case, the roots are of the form

ui, j :=

j∑

k=i

αk, 1 ≤ i ≤ j ≤ θ.

By induction on s = j − i , we have

lui, j = xi xi+1 . . . x j .

This is because when s = 0 we have i = j , and the unique possibility is lui,i = xi .

If we remove the last letter (when j − i > 0), we must obtain a Lyndon word, so

the last letter must be x j .

Type Bθ : For convenience, we use the following vertex numbering:

◦1 ks ◦2 ◦3
· · · ◦θ−1 ◦θ . (4-1)

The roots are of the form ui, j :=
∑ j

k=i αk , or

vi, j := 2

i∑

k=1

αk +

j∑

k=i+1

αk .

In the first case we have lui, j = xi xi+1 . . . x j , as above. In the second case, if

j = i + 1, we must have xi+1 as the last letter to obtain a decomposition in two

words x1 · · · xi ; if j > i + 1, the last letter must be x j , so we obtain

lvi, j = x1x2 . . . xi x1x2 . . . x j .

Type Cθ : The roots are of the form ui, j :=
∑ j

k=i αk , or

wi, j :=

j−1∑

k=i

αk + 2

θ−1∑

k= j

αk + αθ , i ≤ j < θ.



Nichols algebras with standard braiding 63

As before, lui, j = xi xi+1 . . . x j . Now, if i < j , the least letter xi has degree 1, so if

we remove the last letter, we obtain a Lyndon word; that is, wi, j − xs is a root, and

then xs = x j , so

lwi, j = xi xi+1 . . . xθ−1xθ xθ−1 . . . x j .

When i = j , ai =2, so there are one or two Lyndon words βj as before. Since w−xs

is not a root, for s = i + 1, . . . , θ , and i < s, there are two Lyndon words β1 ≥ β2,

and β1 +β2 = 2
∑θ−1

k=i αk . The only possibility is β1 = β2 = xi xi+1 . . . xθ−1; that is,

lwi,i = xi xi+1 . . . xθ−1xi xi+1 . . . xθ−1xθ .

Type Dθ : the roots are of the form ui, j :=
∑ j

k=i αk, 1 ≤ i ≤ j ≤ θ , or

zi, j :=

j−1∑

k=i

αk + 2

θ−2∑

k= j

αk + αθ−1 + αθ , i < j ≤ θ − 2,

z̄i :=

θ−2∑

k=i

αk + αθ , 1 ≤ i ≤ θ − 2.

As above, lui, j = xi xi+1 . . . x j if j ≤ n − 1. When the roots are of type z̄i , we have

s = θ , since z̄i −xs must be a root (if xs is the last letter); thus lz̄i = xi xi+1 . . . xθ−2xθ

is the unique possibility.

Now, when α = ui,θ , the last letter is xθ−1 or xθ : if it is xθ , we have lui,θ =

xi xi+1 . . . xθ−1xθ . Since mθ−1,θ = 0, we have xθ−1xθ = qθ−1,θ xθ xθ−1, so

xi xi+1 . . . xθ−1xθ ≡ xi xi+1 . . . xθ−2xθ xθ−1 mod I,

and then xi xi+1 . . . xθ−1xθ /∈ SI . So, lui,θ = xi . . . xθ−2xθ xθ−1.

In the last case, note that if j = n − 2, the unique possibility is βt as before,

because the least letter xi has degree 1 and xs = xθ−2 (since α−αs is a root). Hence

lzi,θ−2
= xi . . . xθ−2xθ xθ−1xθ−2, and inductively,

lzi, j = xi . . . xθ−2xθ xθ−1xθ−2 . . . x j .

Type E6: Let α =
∑6

j=1 ajαj . If a6 = 0, α corresponds to the Dynkin subdiagram

of type D5 determined by 1, 2, 3, 4, 5, and we obtain lα as above. If a1 = 0 then α

corresponds to the Dynkin subdiagram of type D5 determined by 2, 3, 4, 5, 6; the

numbering is different from the one given in (3-4). Anyway, the roots are defined

in a similar way, and we obtain the same list as in [Lalonde and Ram 1995, Fig.1].

If a4 = 0, then α corresponds to the Dynkin subdiagram of type A5 determined by

1, 2, 3, 5, 6.

So we restrict our attention to the case ai 6= 0, i = 1, 2, 3, 4, 5, 6. We consider

each case in turn:
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• α =α1+α2+α3+α4+α5+α6: since a1 =1, α−αs =β1 is a root, where αs is the

last letter. Then s = 2 or s = 6. In the second case, lβ1
= x1x2x3x4x5, but using

that x2x3 = q23x3x2, we have x1x2x3x4x5 /∈ SI . So s = 2, and lα = x1x3x4x5x6x2.

• α = α1 + α2 + α3 + 2α4 + α5 + α6: from a1 = 1, we note that α − αs = β1 is a

root. Then s = 4, and lα = x1x3x4x5x6x2x4.

• α = α1 + α2 + 2α3 + 2α4 + α5 + α6: since a1 = 1, α − αs = β1 is a root. So

s = 3, and lα = x1x3x4x5x6x2x4x3.

• α = α1 + α2 + α3 + 2α4 + 2α5 + α6: since a1 = 1, α − αs = β1 is a root. The

only possibility is s = 5, and lα = x1x3x4x5x6x2x4x5.

• α = α1 +α2 +2α3 +2α4 +2α5 +α6: as above a1 = 1, and α−αs = β1 is a root.

So s = 3, and lα = x1x3x4x5x6x2x4x5x3.

• α = α1 +α2 + 2α3 + 3α4 + 2α5 +α6: since a1 = 1, α −αs = β1 is a root. Then

s = 4 and lα = x1x3x4x5x6x2x4x5x3x4.

• α = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6: since a1 = 1, α − αs = β1 is a root. So

s = 2, and lα = x1x3x4x5x6x2x4x5x3x4.

Type E7: If α =
∑7

j=1 ajαj and a7 = 0, the root corresponds to the subdiagram

of type D6 determined by 1, 2, 3, 4, 5, 6, and we obtain lα as above. If a1 = 0, it

corresponds to the subdiagram of type E6 determined by 2, 3, 4, 5, 6, 7. If a5 = 0,

then α corresponds to the subdiagram of type A6 determined by 1, 2, 3, 4, 6, 7.

As above, consider each case where ai 6= 0, i = 1, 2, 3, 4, 5, 6, 7:

• α = α1 +α2 +α3 +α4 +α5 +α6 +α7: since a1 = 1, α −αs = β1 is a root, if αs

is the last letter. Then s = 2 or s = 7. In the second case, lβ1
= x1x2x3x4x5x6,

but from x2x3 = q23x3x2, we have x1x2x3x4x5x6x7 /∈ SI . So s = 2, and lα =

x1x3x4x5x6x7x2.

• α = α1 +α2 +α3 +2α4 +α5 +α6 +α7: now s = 4, 7. We discard the case s = 7

since m47 = 0; for the case s = 4 we have lα = x1x3x4x5x6x7x2x4.

• α = α1 +α2 +2α3 +2α4 +α5 +α6 +α7: as above, s = 3, 7, but we discard s = 7

since m37 = 0, so lα = x1x3x4x5x6x7x2x4x3.

• α = α1 +α2 +α3 +2α4 +2α5 +α6 +α7: now s = 5, 7, and we discard the case

s = 7 because m57 = 0, so lα = x1x3x4x5x6x7x2x4x5.

• α = α1 +α2 +2α3 +2α4 +2α5 +α6 +α7: now s = 3, 7, and as above we discard

the case s = 7, so lα = x1x3x4x5x6x7x2x4x5x3.

• α = α1 + α2 + 2α3 + 3α4 + 2α5 + α6 + α7: now s = 4, and therefore we have

lα = x1x3x4x5x6x7x2x4x5x3x4.

• α = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6 + α7: now s = 2, as above, and lα =

x1x3x4x5x6x7x2x4x5x3x4x2.
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• α = α1 + α2 + α3 + 2α4 + 2α5 + 2α6 + α7: as above, the unique possibility is

s = 6, so lα = x1x3x4x5x6x7x2x4x5x6.

• α = α1 +α2 +2α3 +2α4 +2α5 +2α6 +α7: s = 3, lα = x1x3x4x5x6x7x2x4x5x6x3.

• α =α1+α2+2α3+3α4+2α5+2α6+α7: s =4, lα = x1x3x4x5x6x7x2x4x5x6x3x4.

• α = α1 + 2α2 + 2α3 + 3α4 + 2α5 + 2α6 + α7: s = 2, and in this case we obtain

lα = x1x3x4x5x6x7x2x4x5x6x3x4x2.

• α = α1 + α2 + 2α3 + 3α4 + 3α5 + 2α6 + α7: s = 5, and in this case we obtain

lα = x1x3x4x5x6x7x2x4x5x6x3x4x5.

• α = α1 + 2α2 + 2α3 + 3α4 + 3α5 + 2α6 + α7: as above, s = 2, and we get

lα = x1x3x4x5x6x7x2x4x5x6x3x4x5x2.

• α = α1 + 2α2 + 2α3 + 4α4 + 3α5 + 2α6 + α7: s = 4, and in this case we obtain

lα = x1x3x4x5x6x7x2x4x5x6x3x4x5x2x4.

• α = α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7: s = 3, and in this case we obtain

lα = x1x3x4x5x6x7x2x4x5x6x3x4x5x2x4x3.

• α = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7: now there are one or two words

βj . Since α − αs ∈ 1+ if and only if s = 1 and x1 is not the last letter (because

it is the least letter), there are two words βj . So looking at the roots we obtain

s = 7, and lα = (x1x3x4x5x6x2x4x5x3x4x2)(x1x3x4x5x6)x7

Type E8: Consider α =
∑8

j=1 ajαj ; if a8 = 0, the root corresponds to the sub-

diagram of type D7 determined by 1, 2, 3, 4, 5, 6, 7, and we obtain lα as in that

case. If a1 = 0, it corresponds to the subdiagram of type E7 determined by

2, 3, 4, 5, 6, 7, 8. If a6 = 0, then α corresponds to a subdiagram of type A7 de-

termined by 1, 2, 3, 4, 5, 7, 8.

So, we consider the case ai 6= 0, i = 1, 2, 3, 4, 5, 6, 7, 8, and solve it case by

case in a similar way as for E7, by induction on the height.

Type F4: Now α =
∑4

j=1 ajαj . If a4 = 0, then it corresponds to the subdiagram of

type B3 determined by 1, 2, 3, so we obtain lα as before. If a1 = 0, α corresponds

to the subdiagram of type C3 determined by 2, 3, 4.

So consider the case ai 6= 0, i = 1, 2, 3, 4:

• α = α1 + α2 + α3 + α4: a1 = 1, so α − αs = β1 is a root, where αs is the last

letter. Then s = 4, and lα = x1x2x3x4.

• α = α1 + α2 + 2α3 + α4: a1 = 1, so α − αs = β1 is a root. Now s = 3 or s = 4.

If s = 4, then lα = x1x2x2
3 x4. But m34 = 2, so

x2
3 x4 ≡ q34(1 + q33)x3x4x3 − q33q34x4x2

3 mod I,

and x1x2x2
3 x4 /∈ SI , a contradiction. So s = 3, and we have lα = x1x2x3x4x3.
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• α = α1 + 2α2 + 2α3 + α4: a1 = 1, and as above, s = 2 or s = 4: if s = 4, then

lα = x1x2x2
3 x2x4, but it is not an element of SI , because x2x4 ≡ q24x2x4 mod I .

Then s = 2, and lα = x1x2x3x4x3x2.

• α = α1 + 2α2 + 3α3 + α4: a1 = 1, so s = 3, and we have lα = x1x2x3x4x3x2x3.

• α = α1 + α2 + 2α3 + 2α4: a1 = 1, so s = 4, and lα = x1x2x3x4x3x4.

• α = α1 + 2α2 + 2α3 + 2α4: a1 = 1, so s = 2 or s = 4, but we discard the case

s = 4 since x2x4 ≡ q24x2x4 mod I . So, lα = x1x2x3x4x3x4x2.

• α = α1 + 2α2 + 3α3 + 2α4: a1 = 1, so s = 3, and lα = x1x2x3x4x3x4x2x3.

• α = α1 + 2α2 + 4α3 + 2α4: a1 = 1, so s = 3, and lα = x1x2x3x4x3x4x2x2
3 .

• α = α1 + 3α2 + 4α3 + 2α4: a1 = 1, so s = 2, and lα = x1x2x3x4x3x4x2x2
3 x2.

• α = 2α1+3α2+4α3+2α4: a1 = 2, and there are one or two Lyndon words βj . If

there is only one, β1 =α−αs ∈1+. The only possibility is s =1, but it contradicts

that lα is a Lyndon word. Hence there exist β1, β2 ∈1+ such that β1+β2 =α−αs ,

and β2 is a beginning of β1. So s = 2 and β1 = β2 = α1 + α2 + 2α3 + α4, i.e.,

lα = x1x2x3x4x3x1x2x3x4x3x2.

Type G2: the roots are α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2:

lα1
= x1, lα2

= x2, lmα1+α2
= xm

1 x2, m = 1, 2, 3.

If α = 3α1 +2α2, the last letter is x2. If we suppose β1 = 3α1 +α2, then lα = x3
1 x2

2 ,

but

(ad x2)
2x1 = x2

2 x1 − q21(1 + q22)x2x1x2 + q22q21x1x2
2 ≡ 0 mod I,

so we have

x3
1 x2

2 ≡ (q−1
22 + 1)x2

1 x2x1x2 − q−1
22 q−1

21 x2
1 x2

2 x1 mod I,

and then lα = x3
1 x2

2 /∈ SI because q−1
22 q−1

21 6= 0, so there are at least two words βj .

Analogously, if we suppose that there are three words βj , we obtain lβ1
= lβ2

=

x1 > lβ3
= x1x2 since β1 ≥ β2 ≥ β3 and β1 + β2 + β3 = 3α1 + α2; moreover

lα = x3
1 x2

2 /∈ SI . So there are two Lyndon words of degree β1 ≥ β2, and the unique

possibility is β1 = 2α1 + α2, β2 = α1; that is, lα = x2
1 x2x1x2.

4C. Dimensions of Nichols algebras of standard braidings. We begin with the

standard braidings of types Cθ , Dθ , E6, E7, E8, F4, which are of Cartan type.

Proposition 4.4. Let V a braided vector space of Cartan type, with q44 ∈ GN if V
is of type F4 and q11 ∈ GN otherwise, in each case for some N ∈ N. The dimension
of the associated Nichols algebra B(V ) is as follows:

Type Cθ : dim B(V ) =

{
N θ2

for N odd,
N θ2

/2θ for N even;
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Type F4: dim B(V ) =

{
N 24 for N odd,
N 24/212 for N even;

Types Dθ , E6, E7, E8: dim B(V ) = N |1+|.

The last case corresponds to simply laced Dynkin diagrams.

Proof. If N is odd, then ord q2 =ord q = N , but if N is even, we have ord q2 = N/2.

Since the braiding is of Cartan type,

qsi (α) = χ (si (α), si (α)) = χ̃(α, α) = χ(α, α) = qα.

Using this, we just have to determine how many roots there are in the orbit of each

simply root.

When V is of type Cθ , we have qi i = q , except for qθθ = q2. The roots in the

orbit of αθ by the action of the Weyl group are qwi i for 1 ≤ i < θ , and the others

are in the orbit of αj , for some j < θ . Hence there are θ roots such that qα = q2,

and qα = q for the rest.

When V is of type F4, we have q11 = q22 = q2 and q33 = q44 = q . There are

exactly 12 roots in the union of orbits corresponding to α1 and α2, and the other

12 are in the union of orbits corresponding to α3 and α4. So

∣∣{α ∈ 1+ : qα = q}
∣∣ =

∣∣{α ∈ 1+ : qα = q2}
∣∣ = 12.

When V is of type D or E , all the qα equal q because qi i = q , for all 1 ≤ i ≤ θ .

The formula for the dimension follows from Theorem 2.6(ii) and Corollary 4.2.

�

Now we treat the types Aθ , Bθ and G2.

Proposition 4.5. Let V be a standard braided vector space of type Aθ as in Propo-
sition 3.9. The associated Nichols algebra B(V ) is of finite dimension if and only
if q is a root of unity of order N ≥ 2. In this case,

dim B(V ) = 2

(
θ+1

2

)
−

(t
2

)
−

(
θ+1−t

2

)
N

(t
2

)
+

(
θ+1−t

2

)
, (4-2)

where t = θ + 1 −
∑ j

k=1(−1) j−kik .

Proof. First, q is a root of unity of order N ≥ 2 because the height of each PBW

generator is finite. To calculate the dimension, recall that from Corollary 4.2, we

have to determine qα for α ∈ 1C . As before, ui j =
∑ j

k=i ek, i ≤ j , and we have

1(B(V )) = {ui j : 1 ≤ i ≤ j ≤ θ}.

If 1 ≤ i ≤ j ≤ θ , we define

κi j := card
{
k ∈ {i, . . . , j} : qkk = −1

}
.
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We prove by induction on j − i that

• if κi j is odd, then qui j = −1;

• if κi j is even, then qui j = q−1
j, j+1q−1

j+1, j .

Here qθ,θ+1qθ+1,θ = q−2
θθ q−1

θ,θ−1q−1
θ−1,θ .

If j − i = 0, then qui i = qi i ; in this case, κi i = 1 if qi i = −1 or κi i = 0 if

qi i = (qi,i+1qi+1,i )
−1 6= −1. Now assume this is valid for a certain j , and calculate

it for j + 1:

qui, j+1
=χ(ui j + ej+1, ui j + ej+1) = qui j χ(ui j , ej+1)χ(ej+1, ui j )qj+1, j+1

= qui j qj, j+1qj+1, j qj+1, j+1

=





qui j if qj+1, j+1 6= −1 (κi, j+1 = κi j ),

(−1)qq−1 = −1 if qj+1, j+1 = −1, κi j even,

(−1)q(−1) = q if qj+1, j+1 = −1, κi j odd.

This proves the inductive step; to calculate the dimension of B(V ) we have to

calculate the number of ui j such that

qui j = q−1
i,i+1q−1

i+1,i = q±1,

that is, card{κi j : i ≤ j, κi j even}.

We consider an 1 × (θ + 1) board, numbered from 1 to θ + 1, and recursively

paint its squares white or black: square θ + 1 is white, and square i has the same

color as square i + 1 if and only if qi i 6= −1. The possible colorings of this board

are in bijective correspondence with the choices of 1 ≤ i1 < · · · < i j ≤ θ for all j
(the positions where we put a −1 in the corresponding qi i of the braiding), and the

number of white squares is

t = 1 + (θ − i j ) + (i j−1 − i j−2) + · · · = θ + 1 −

j∑

k=1

(−1) j−kik

Thus card{κi j : i ≤ j, κi j even} is the number of pairs (a, b) (where a = i and

b = j + 1) such that 1 ≤ a < b ≤ θ + 1 and the squares in positions a and b are of

the same color; this number is
(t

2

)
+

(
θ+1−t

2

)
. This yields (4-2). �

Proposition 4.6. Let V be a standard braided vector space of type Bθ as in Propo-
sition 3.10. If the braiding is as in cases (a) or (b) of that proposition, the associ-
ated Nichols algebra B(V ) has finite dimension if and only if q is a root of unity
of order N ≥ 2 in case (a), or N > 2 in case (b).

When finite, the dimension of B(V ) is as follows, where t =θ−
∑ j

k=1(−1) j−kik :
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• If the braiding is as in (a) of Proposition 3.10,

dim B(V ) =





33 N 2 if 3 does not divide N ,

32 N 2 if 3 divides both N and ord(ζ−1q),

3N 2 if 3 divides N but not ord(ζ−1q).

• If the braiding is as in (b), then 0 ≤ j ≤ d − 1 and

dim B(V ) =

{
22t (θ−t)+θkθ2−2tθ+2t2

if N = 2k,

2(2t+1)(θ−t)+1 N θ2−2tθ+2t2

if N is odd.

• If the braiding is as in (c), then

dim B(V ) = 2θ(θ−1)3θ2−2tθ+2t2

.

Proof. It is clear that q should be a root of unity if dim B(V ) is finite.

We now calculate dim B(V ). From Corollary 4.2, we have to determine the qα

for α ∈ 1C , and multiply their orders. As before, ui j =
∑ j

k=i ek for 1 ≤ i ≤ j ≤ θ

and vi j = 2
∑i

k=1 ek +
∑ j

k=i+1 ek = 2e1,i + ei+1, j for 1 ≤ i < j ; hence

1(B(V )) = {ui j : 1 ≤ i ≤ j ≤ θ} ∪ {vi j : 1 ≤ i < j ≤ θ}.

We calculate qui j , 1 < i ≤ j ≤ θ as above, because they correspond to a braiding

of standard Aθ−1 type. We also calculate

qvi j = χ(vi j , vi j ) = χ(u1i , u1i )
4χ(u1i , ui+1, j )

2χ(ui+1, j , u1i )
2qui+1, j

= q4
11q2

12q2
21

( i∏

k=2

q2
kkqk−1,kqk−1,kqk+1,kqk+1,k

)2

qui+1, j = qui+1, j ,

where we have used the equalities qi j qj i = 1 if |i − j | > 1, q4
11q2

12q2
21 = 1, and

q2
kkqk−1,kqk−1,kqk+1,kqk+1,k = 1 if 2 ≤ k ≤ θ − 1. To calculate the other qα’s, we

analyze each case:

(a) Note that qe1
=ζ, qe1+e2

=ζ, q2e1+e2
=ζq−1, qe2

=q . Setting N ′ =ord(ζ−1q),

we have N ′ = 3N if 3 does not divide N ; N ′ = N if 3 divides both N and N ′; and

N ′ = N/3 if 3 divides N but not N ′ (since q = ζρ, with ρ ∈ GN ′).

(b) We have qu1k = q−1qu2k . This equals q2q−1 = q if κ2k is even, and −q−1 if

κ2k is odd; moreover q11 = q . Also, κ2k is even if and only if j ∈ {i j + 1, θ}, or

i ∈ {i j−2 + 1, i j−1}, and so on. Then, with

t = (θ − i j ) + (i j−1 − i j−2) + · · · = θ −

j∑

k=1

(−1) j−kik

as in the statement of the proposition, there are t numbers such that κi,θ−1 is even.

There are 2
((t

2

)
+

(
θ−t

2

))
roots such that qα = q2, 2

((
θ
2

)
−

(t
2

)
−

(
θ−t

2

))
roots such
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that qα = −1, t +1 roots such that qα = q and θ −1− t roots such that qα = −q−1.

If N = 2k, then ord(−q−1) = 2k and ord(q2) = k, so

dim B(V ) = 2(θ−1)θ−t (t−1)−(θ−t)(θ−t−1)kt (t−1)+(θ−t)(θ−t−1)(2k)θ

= 22t (θ−t)+θkθ2−2tθ+2t2

.

If N is odd, then ord(−q−1) = 2N and ord(q2) = N , so

dim B(V ) = 2θ(θ−1)−t (t−1)−(θ−t)(θ−1−t)N t (t−1)+(θ−t)(θ−1−t)+t+1

(2N )θ−1−t = 2(2t+1)(θ−t)+1 N θ2−2tθ+2t2

.

(c) In a similar way, we have qu1i = (−ζ 2)qu2i , which equals (−ζ 2)2 = ζ if κ2i is

even, and (−1)(−ζ 2)= ζ 2 if κ2i is odd; moreover q11 = ζ . There are 2
((t

2

)
+

(
θ−t

2

))

roots such that qα = −ζ 2, 2
((

θ
2

)
−

(t
2

)
−

(
θ−t

2

))
roots such that qα = −1, t +1 roots

such that qα = ζ and θ − 1 − t roots such that qα = ζ 2. Since ord ζ = ord ζ 2 = 3

and ord(−ζ 2) = 6, we have

dim B(V ) = 2θ(θ−1)−t (t−1)−(θ−t)(θ−1−t)6t (t−1)+(θ−t)(θ−1−t)3θ

= 2θ(θ−1)3θ2−2tθ+2t2

. �

Proposition 4.7. Let V be a standard braided vector space of type G2 as in Propo-
sition 3.11. If the braiding is as in case (a) of that proposition, the associated
Nichols algebra B(V ) is of finite dimension if and only if q is a root of unity of
order N ≥ 4.

When finite, the dimension of B(V ) is as follows:

• In case (a) of Proposition 3.11,

dim B(V ) =

{
N 6 if 3 does not divide N ,

N 6/27 if 3 divides N .

• In case (b), dim B(V ) = 212.

Proof. For (a) note that q is a root of unity because x1 has finite height, and qα = q
if α ∈ {e1, e1 + e2, 2e1 + e2}, while qα = q3 if α ∈ {e2, 3e1 + e2, 3e1 + 2e2}.

Case (b) can be checked as follows:

type qx2
qx1x2

qx3
1 x2

2
qx2

1 x2
qx3

1 x2
qx1

dim B(V )

❡ ❡
ζ 2

ζ ζ−1

8 4 2 8 2 4 212

❡ ❡
ζ 2

ζ 3 −1
2 8 2 4 8 4 212

❡ ❡
ζ ζ 5 −1

2 4 8 4 2 8 212

This completes the proof. �
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5. Presentation by generators and relations of Nichols algebras of standard

braided vector spaces

In this section we give presentations for the Nichols algebras of standard braided

vector spaces. We start with some technical results about relations and PBW bases

in Section 5A; also we calculate the coproduct of some hyperwords in T (V ). In

Sections 5B, 5C and 5D we express the braided commutator of two PBW generators

as a combination of elements of the PBW basis under some assumptions. Then we

obtain the desired presentation with a proof similar to the ones in [Andruskiewitsch

and Dăscălescu 2005] and [Andruskiewitsch and Schneider 2002b]. In Section 5E

we solve the problem when the braiding is of Cartan type using the transformation

in Section 2C.

For rank two, a set of (not necessarily minimal) relations is given in Theorem 4

of [Heckenberger 2007].

5A. Some general relations. Let V be a standard braided vector space with con-

nected Dynkin diagram and let C be the corresponding Cartan matrix. In what

follows we assume that C is symmetrizable and of finite type. Let x1, . . . , xθ be

an ordered basis of V and {xα : α ∈ 1+(B(V ))} a set of PBW generators as in

the previous section. Here xα ∈ B(V ) is, by abuse of notation, the image by the

canonical projection of xα ∈ T (V ), the hyperword corresponding to a Lyndon word

lα. As before, we write

qα := χ(α, α) and Nα := ord qα for α ∈ 1+(B(V )).

Each xα is homogeneous and has the same degree as lα. Also,

xα ∈ T (V )χα
gα

, (5-1)

where gα = gb1

1 . . . gbθ

θ and χα = χ
b1

1 . . . χ
bθ

θ if α = b1e1 + · · · + bθeθ .

Proposition 5.1. If the matrix of the braiding is symmetric, the PBW basis is or-
thogonal with respect to the bilinear form in Proposition 1.4.

Proof. We must prove that (u|v) = 0, where u 6= v are ordered products of PBW

generators (we also allow powers greater than the corresponding heights). We

argue by induction on k := max{ℓ(u), ℓ(v)}. If k = 1, then v is some x j and u is

either 1 or xi ; since (xi |x j ) = δi j for all i, j ∈ {1, . . . , θ}, the proposition holds in

this case.

Suppose the statement is valid when the length of both words is less than k, and

let u, v ∈ BI (V ) be distinct hyperwords such that one (or both) has length k. If both

are hyperletters, they have different degrees α 6= β ∈ Z
θ , so u = xα, v = xβ , and

(xα|xβ) = 0, since the homogeneous components are orthogonal for ( | ).
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Suppose that u = xα and v = xh1

β1
. . . xhm

βm
, for some xβ1

> · · ·> xβm . If u and v have

different Z
θ -degrees, they are orthogonal. Hence we assume that α =

∑m
j=1 hmβm .

By [Bourbaki 1968, VI, Proposition 19], we can reorder the βi ’s, using hi copies of

βi , in such a way that each partial sum is a root. By [Rosso 1999, Proposition 21],

the order induced by the Lyndon words lα is convex (the order on Lyndon words

used there is the same as ours). Therefore βm < α. Using Lemma 1.9 and (1-8),

(u|v)= (xα|w)(1|xβm )+ (1|w)(xαn |xβm )+
∑

l1≥···≥lp>α
li ∈L

(xl1,...,lp |w)([l1]c · · · [lp]c|xβm ),

where v = wxβn . Note that (1|xβm ) = (1|w) = 0. Also, [l1]c · · · [lp]c is a linear

combination of greater hyperwords of the same degree and an element of I (V ).

From the inductive hypothesis and the fact that I (V ) is the radical of the bilinear

form, we see that ([l1]c · · · [lp]c|xβm ) = 0.

Now consider

u = x j1
α1

. . . x jn
αn

with xα1
> . . . > xαn ,

v = xh1

β1
. . . xhm

βm
with xβ1

> · · · > xβm .

Since the bilinear form is symmetric, we may as well assume that xαn ≤ xβm . Using

Lemma 1.9 and (1-8), we obtain

(u|v) = (w|1)(xαn |v) +

hm∑

i=0

(
hm

i

)

qβm

(w|xh1

β1
. . . xhm−1

βm−1
x i
βm

)(xαn |x
hm−i
βm

)

+
∑

l1≥···≥lp>l,li ∈L
0≤ j≤m

(w|x ( j)
l1,...,lp

)(xαn |[l1]c . . . [lp]c
[
xβm

] j
c ),

where w= xh1
α1

. . . xhm−1
αm

. Note that in the first summand, (w|1)=0. In the last sum,

(xαn |[l1]c . . . [lp]c[xβm ]
j
c ) vanishes, because by earlier results [l1]c . . . [lp]c[xβm ]

j
c is

a combination of hyperwords of the PBW basis greater or equal than it and an

element of I (V ), then we use induction hypothesis and the fact that I (V ) is the

radical of this bilinear form. Since xαn , xhm−i
βm

are different elements of the PBW

basis for hm − i 6= 1, we have

(u|v) = (hm)qβm
(w|xh1

β1
. . . xhm−1

βm−1
xhm−1
βm

)(xαn |xβm ).

This is clearly zero if αn 6= βm . To see that it is zero also if αn = βm , note that in

that case w and xh1

β1
. . . xhm−1

βm−1
xhm−1
βm

are different products of PBW generators, and

use the induction hypothesis. �

Corollary 5.2. If α ∈ 1+(B(V )), then x Nα
α = 0.
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Proof. Let (qi j ) be symmetric. If u = x j1
α1 . . . x jn

αn , xα1
> · · · > xαn , then

(u|u) =

n∏

i=1

( ji )qαi
! (xαi |xαi )

ji , (5-2)

where (xα|xα) 6= 0 for all α ∈ 1+(B(V )).

If we consider u = x Nα
α , we have (u|v)=0 for each v in the PBW basis (because v

is an ordered product of xβ’s different from u), and (u|u)= 0 since qα ∈ GNα
. Also,

(I (V )|x Nα
α ) = 0, because it is the radical of this bilinear form, so (T (V )|x Nα

α ) = 0,

and then x Nα
α ∈ I (V ). That is, we have x Nα

α = 0 in B(V ).

For the general case, recall that a diagonal braiding is twist equivalent to a braid-

ing with a symmetric matrix [Andruskiewitsch and Schneider 2002a, Theorem

4.5]. Also, there exists a linear isomorphism between the corresponding Nichols

algebras. The corresponding xα are related by a nonzero scalar, because they are

an iteration of braided commutators between the hyperwords. �

In what follows, J denotes the family of Z
θ -graded (hence N-graded) ideals

of T (V ) that are generated by their components of degree > 1. For each I ∈ J,

B = T (V )/I is a Z
θ -graded algebra such that B0 = k1 and B1 ≃ V .

We shall need some technical results about graded algebras between T (V ) and

B(V ). We start with three lemmas dealing with the presence of some important

roots in 1(B). Remember that a Lyndon word is a PBW generator in B= T (V )/I
if it is not a linear combination of greater words modulo I in T (V ). We shall

relate the absence of some roots in 1(B) (meaning that the Lyndon words of such

degrees are linear combinations of greater words modulo I ) with the validity of

certain relations in B.

Lemma 5.3. Let i, j ∈ {1, . . . , θ} be distinct, and consider I ∈ J, B = T (V )/I .
Let Dk , k = 1, . . . , θ , be skew derivations of B as in Proposition 2.1, and assume
that x N

i = 0 if qn
ii qi j qj i 6= 1 for all n ∈ N0 (where N = ord qi i ).

There exists m ∈ N such that xm
i x j is a linear combination of greater hyperwords

(for a fixed order such that xi < x j ) modulo I if and only if , in B.

(adc xi )
mi j +1x j = 0. (5-3)

Proof. If (adc xi )
m x j = 0, there exist ak ∈ k such that

0 = [xm
i x j ]c = (adc xi )

m x j = xm
i x j +

m−1∑

k=0

ak xk
i x j x

m−k
i .

Conversely, suppose there exists m ∈ N such that xm
i x j is a linear combination

of greater hyperwords modulo I . Let

n = min{m ∈ N : xm
i x j is a linear combination of greater hyperwords}.
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If xn
i = 0, then qi i is a root of unity. In this case, if N is the order of qi i , then

x N
i = 0 and x N−1

i 6= 0. Also,

(adc xi )
N x j = x N

i x j +

N−1∑

s=1

(
N

s

)

qi i

+ x j x
N
i = 0,

because
(N

s

)
qi i

= 0 for 0 < s < N . Hence, we can assume xn
i 6= 0 and (n)qi i! 6= 0.

Note that [xn−k
i x j xk

i ]c = [xn−k
i x j ]cxk

i . Since B is graded, xn
i x j is a linear com-

bination of terms xn−k
i x j xk

i , 0 ≤ k < n. Hence there exist αk ∈ k such that

[xn
i x j ]c =

n∑

k=1

αk[x
n−k
i x j ]cxk

i .

Applying Di we obtain

0 = Di
(
[xn

i x j ]c
)
=

n∑

k=1

αk Di
(
[xn−k

i x j ]cxk
i

)
=

n∑

k=1

αk(k)qi i [x
n−k
i x j ]cxk

i .

By the hypothesis about n, α1 = 0. Since (n)qi i! 6= 0, applying Di several times we

conclude that αk = 0 for k = 2, . . . , n. Hence [xn
i x j ]c = 0. �

Recall that (5-3) holds in B(V ), for 1 ≤ i 6= j ≤ θ .

The second lemma is related to Dynkin diagrams of a standard braiding which

have two consecutive simple edges.

Lemma 5.4. Let I ∈ J and B = T (V )/I . Assume that

• there exist skew derivations Dk in B as in Proposition 2.1;

• there exist different j, k, l ∈ {1, . . . , θ} such that mk j = mkl = 1, m jl = 0;

• (ad xk)
2x j = (ad xk)

2xl = (ad x j )xl = 0 hold in B;

• x2
k = 0 if qkkqk j qjk 6= 1 or qkkqklqlk 6= 1.

(1) If we order the letters x1, . . . , xθ such that x j < xk < xl , then x j xk xl xk is a
linear combination of greater words modulo I if and only if , in B,

[
(ad x j )(ad xk)xl, xk

]
c = 0. (5-4)

(2) If V is standard and qkk 6= −1, then (5-4) holds in B.

(3) If V is standard and dim B(V ) < ∞, then (5-4) holds in B = B(V ).

Proof. (1) (⇐) If (5-4) holds, then x j xk xl xk is a linear combination of greater

words, by Remark 1.7, and

[x j xk xl xk]c =
[
[x j xk xl]c, xk

]
c =

[
(ad x j )(ad xk)xl, xk

]
c .
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(⇒) If x j xk xl xk is a linear combination of greater words, then the hyperword[
x j xk xl xk

]
c is a linear combination of hyperwords corresponding to words greater

than x j xk xl xk (of the same degree, because B is homogeneous); this follows from

Remark 1.7. Since (ad xk)
2x j = (ad xk)

2xl = (ad x j )xl = 0, we do not consider

hyperwords with x j x2
k , x2

k xl and x j xl as factors of the corresponding words. Then

[x j xk xl xk]c is a linear combination of

[xk xl xk x j ]c = [xk xl]cxk x j , [xl xk x j xk]c = xl xk[x j xk]c,

[xk x j xk xl]c = xk[x j xk xl]c, [xl x
2
k x j ]c = xl x

2
k x j .

Since Dj ([x j xk xl xk]c) = Dj (xk[x j xk xl]c) = Dj (xl xk[x j xk]c) = 0, in that linear

combination there are no hyperwords ending in x j ; indeed,

Dj ([xk xl]cxk x j ) = [xk xl]cxk, Dj (xl x
2
k x j ) = xl x

2
k ,

and [xk xl]cxk , xl x2
k are linearly independent. Therefore, there exist α, β ∈ k such

that

[x j xk xl xk]c = αxl xk[x j xk]c + βxk[x j xk xl]c.

Applying Dl , we have

0 =αqk j qkk xl[x j xk]c + α(1 − qk j qjk)xl xk x j + βqkkqk j qkl[x j xk xl]c.

Now xl[x j xk]c, xl xk x j and [x j xk xl]c are linearly independent by Lemma 2.7, so

α = β = 0.

(2) We assume that some quantum Serre relations hold in B; using them we get

x j xk xl xk = q−1
kl (1 + qkk)

−1x j x
2
k xl + qkkqk j (1 + qkk)

−1x j xl x
2
k

= q−1
kk q−1

k j q−1
kl xk x j xk xl + q−1

kk q−1
k j q−1

kl (1 + qkk)
−1x2

k x j xl

+ qkkqklqjk(1 + qkk)
−1xl x j x

2
k .

It follows that xk x j xk xl /∈ G I for an order such that x j < xk < xl . Also, x j xl x2
k /∈ G I ,

since (adc x j )xl = 0 and (5-4) is valid by part (1).

(3) If V is a standard braided vector space satisfying the conditions of the lemma,

consider Vk as the braided vector space obtained transforming by sk . Then m̃ jl = 0.

Therefore ej + el /∈ 1+(B(Vk)), so sk(ej + el) = 2ek + ej + el /∈ 1+(B(V )). It

follows that x j xk xl xk is a linear combination of greater words, since it is a Lyndon

word when we consider an order such that x j < xk < xl . �

We now prove two relations involving the double edge in the Dynkin diagram

of a standard braiding of type Bθ .

Lemma 5.5. Let I ∈ J and B = T (V )/I . Assume that

• there exist j 6= k ∈ {1, . . . , θ} such that mk j = 2, m jk = 1;
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• there exist skew derivations as in Proposition 2.1;

• the following relations hold in B:

( ad xk)
3x j = (ad x j )

2xk = 0; (5-5)

x3
k = x2

j = 0 if q3
kk = q2

j j = 1.

(1) If we order the letters x1, . . . , xθ such that xk < x j , then x2
k x j xk x j is a linear

combination of greater words modulo I if and only if , in B,

[
(ad xk)

2x j , (ad xk)x j
]

c = 0. (5-6)

(2) If V is standard, qj j 6= −1 and q2
kkqk j qjk = 1, then (5-6) holds in B.

(3) If V is standard and dim B(V ) < ∞, then (5-6) holds in B = B(V ).

Proof. (1) (⇐) If (5-6) holds in B, then x2
k x j xk x j is a linear combination of greater

words. This follows from Remark 1.7, and

[x2
k x j xk x j ]c =

[
[x2

k x j ]c, [xk x j ]c
]

c =
[
(ad xk)

2x j , (ad xk)x j
]

c .

(⇒) If x2
k x j xk x j is a linear combination of greater words, then [x2

k x j xk x j ]c is a

linear combination of hyperwords corresponding to words greater than x2
k x j xk x j

(of the same degree, because B is homogeneous).

First, there are no hyperwords whose corresponding words have factors x3
k x j or

xk x2
j , by (5-5). Since [x2

k x j xk x j ]c ∈ ker Dk and

Dk(x j [x
2
k x j ]cxk) = x j [x

2
k x j ]c,

Dk([xk x j ]
2
c xk) = [xk x j ]

2
c,

Dk(x j [xk x j ]cx2
k ) = (1 + qkk)x j [xk x j ]cxk,

in that linear combination there are no hyperwords ending in xk , except x2
j x3

k if

qkk ∈ G3. We consider qj j 6= −1 if qkk ∈ G3, since otherwise x2
j x3

k = 0 by assump-

tion. Then there exist α, α′ ∈ k such that

[x2
k x j xk x j ]c = α[xk x j x

2
k x j ]c + α′x2

j x3
k = α[xk x j ]c[x

2
k x j ]c + α′x2

j x3
k .

We prove by direct calculation that Dj ([x2
k x j xk x j ]c) = 0. Applying Dj to the

previous equality,

0 =α′(1 + qj j )x j x
3
k + χ(ek + ej , 2ek + ej )α(ad xk)

2(x j )xk

+ (1 − qk j qjk)(1 − qkkqk j qjk)α(ad xk)(x j )x2
k ,

where we use that (ad xk)
3(x j ) = 0 and

xk(ad xk)
m(x j ) = (ad xk)

m+1(x j ) + qm
kkqk j (ad xk)

m(x j )xk .
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Since (1 − qk j qjk)(1 − qkkqk j qjk) 6= 0 and (ad xk)
2(x j )xk , (ad xk)(x j )x2

k , x j x3
k are

linearly independent, it follows that α = α′ = 0.

(2) Using (ad x j )
2xk = 0 in the first equality and (ad xk)

3x j = 0 in the last expres-

sion,

x2
k x j xk x j = (1 + qj j )

−1q−1
jk x2

k x2
j xk + (1 + qj j )

−1qjkqj j x
3
k x2

j

∈ (3)qkk (1 + qj j )
−1qk j qjkqj j x

2
k x j xk x j + kX>x2

k x j xk x j
.

Suppose that (3)qkk (1 + qj j )
−1qk j qjkqj j = 1; that is, (3)qkk = (1 + qj j ). Then

qj j = qkk + q2
kk , so

1 = qj j qk j qjk = qkkqk j qjk + q2
kkqk j qjk = qkkqk j qjk + 1,

which is a contradiction since qkkqk j qjk ∈ k
×. It follows that x2

k x j xk x j is a linear

combination of greater words, so (5-6) follows by previous item.

(3) If V is a standard braided vector space, and we consider Vj as the braided vector

space obtained transforming by sj , then m̃k j = 2. Therefore, 3ek +ej /∈1+(B(Vk)),

so sj (3ek+ej )=3ek+2ej /∈1+(B(V )). Since x2
k x j xk x j is a Lyndon word of degree

3ek + 2ej if xk < x j , then it is a linear combination of greater words. �

Lemma 5.6. Let I ∈ J and B = T (V )/I . Assume that

• there exist different j, k, l ∈ {1, . . . , θ} such that mk j = 2, m jk = m jl = ml j = 1,

mkl = 0;

• there exist skew derivations in B as in Proposition 2.1;

• the following relations hold in B: (5-4), (5-6),

( ad xk)
3x j = (ad x j )

2xk = (ad x j )
2xl = (ad xk)xl = 0,

x3
k = x2

j = 0 if q3
kk = q2

j j = 1.
(5-7)

(1) If we order the letters x1, . . . , xθ so that xk < x j < xl , then x2
k x j xl xk x j is a

linear combination of greater words modulo I if and only if , in B,

[
(ad xk)

2(ad x j )xl, (ad xk)x j
]

c = 0. (5-8)

(2) If V is a standard braided vector space and qkk /∈ G3, qj j 6= −1, then (5-8)

holds in B.

(3) If V is standard and dim B(V ) < ∞, then (5-8) holds in B(V ).

Proof. (1) (⇐) As in the last two lemmas, if (5-8) is valid, then x2
k x j xl xk x j is a

linear combination of greater words, by Remark 1.7, and

[x2
k x j xl xk x j ]c =

[
(ad xk)

2(ad x j )xl, (ad xk)x j
]

c .
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(⇒) Suppose that x2
k x j xl xk x j is a linear combination of greater words. Then

[x2
k x j xl xk x j ]c is a linear combination of hyperwords corresponding to words greater

than x2
k x j xl xk x j (of the same degree, because B is homogeneous). We discard

those words which have xk xl , x3
k x j , xk x2

j , x2
j xl , xk x j xl x j and x2

k x j xk x j , in view of

our hypotheses about B.

Since Dk([x2
k x j xl xk x j ]c) = 0, the coefficients of hyperwords corresponding to

words ending in xk are 0, as in Lemma 5.5, except for [x j xl]cx j x3
k , xl x2

j x3
k , if

qkk ∈ G3. Thus

[x2
k x j xl xk x j ]c = α[xk x j ]c[x

2
k x j xl]c + β[xk x j xl]c[x

2
k x j ]c

+ γ xl[xk x j ]c[x
2
k x j ]c + µ[x j xl]cx j x

3
k + νxl x

2
j x3

k .

By direct calculation, Dj ([x2
k x j xl xk x j ]c) = Dj ([x2

k x j xl]c) = Dj ([xk x j xl]c) = 0, so

applying Dj to the previous equality we get

0 = αq2
jkqj j qjl x j [x

2
k x j xl]c + β(1 − qkkqk j qjk)(1 − q2

kkqk j qjk)[xk x j xl]cx2
k

+ γ (1 − qkkqk j qjk)(1 − q2
kkqk j qjk)xl[xk x j ]cx2

k + γ q2
jkqj j xl x j [x

2
k x j ]c

+ µ[x j xl]cx3
k + ν(1 + qj j )xl x j x

3
k ,

Note that ν = 0 if qj j 6= −1; otherwise, x2
j = 0 by hypothesis, so we can discard

this last summand. The other hyperwords appearing in this expression are linearly

independent, since the corresponding words are linearly independent by Lemma

2.7. Thus α = β = γ = µ = 0.

(2) If qkk /∈ G3 and qj j 6= −1, then x2
k x j xl xk x j is a linear combination of greater

words, as can be seen using the quantum Serre relations in a way similar to that in

Lemma 5.6. Now apply part (1).

(3) If V is a standard braided vector space, consider Vk as the braided vector space

obtained transforming by sk . Then m̃k j = 2. Therefore, ek +2ej +el /∈ 1+(B(Vk))

by Lemma 5.5, so sk(ek +2ej +el)= 3ek +2ej +el /∈1+(B(V )). Since x2
k x j xl xk x j

is a Lyndon word, it follows that it is a linear combination of greater words, and

we apply (1). �

We now give explicit formulas for the comultiplication of these hyperwords.

Lemma 5.7. Consider the structure of graded braided Hopf algebra of T (V ) (see

Section 2A). For all k 6= j ,

1((ad xk)
mk j +1x j ) = (ad xk)

mk j +1x j ⊗ 1 + 1 ⊗ (ad xk)
mk j +1x j

+
∏

1≤t≤mk j

(1 − q t
kkqk j qjk)x

mi j +1

k ⊗ x j . (5-9)

Proof. We have Fk((ad xk)
mk j +1x j ) = 0 by the definition of mk j and (2-5). Also,

Fl((ad xk)
mk j +1x j ) for l 6= k by (2-6) and the properties of Fl , so
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11,mk j ((ad xk)
mk j +1x j ) =

θ∑

l=1

xl ⊗ Fl((ad xk)
mk j +1x j ) = 0.

Now Dk([x i
k x j ]cx s−i

k ) = 0 from (2-3), and from (2-4)

Dj ([x
i
k x j ]cx s−i

k ) =
∏

1≤t≤mk j

(1 − q t
kkqk j qjk)x

mi j +1

k ,

so we deduce that

1mk j ,1((ad xk)
mk j +1x j ) =

∏

1≤t≤mk j

(1 − q t
kkqk j qjk)x

mi j +1

k ⊗x j .

Since hyperwords form a basis of T (V ), we can write, for each 1 < s < mk j ,

1mk j +1−s,s((ad xk)
mk j +1x j )

=

mk j +1−s∑

t=0

εst [x
t
k x j ]cx

mk j +1−s−t
k ⊗ x s

k +

s∑

p=0

ρspx
mk j +1−s
k ⊗ [x s−p

k x j ]cx p
k ,

for some εst , ρsp ∈ k. Then, for each 0 ≤ t ≤ mk j + 1 − s,

0 =
(
(ad xk)

mk j +1x j

∣∣ [x t
k x j ]cx

mk j +1−t
k x s

k

)

=
(
((ad xk)

mk j +1x j )(1)

∣∣ [x t
k x j ]cx

mk j +1−t−s
k

)(
((ad xk)

mk j +1x j )(2)

∣∣ x s
k

)

= εst
(
[x t

k x j ]cx
mk j +1−t−s
k

∣∣ [x t
k x j ]cx

mk j +1−t−s
k

)
(x s

k |x
s
k)

= εst(mk j + 1 − s − t)qkk! (s)qkk!
(
[x t

k x j ]c

∣∣ [x t
k x j ]c

)
,

where we have used that (ad xk)
mk j +1x j ∈ I (V ) for the first equality, (1-8) for the

second, (1-10) and the orthogonality between increasing products of hyperwords

for the third, and (5-2) for the last. Since

(mk j + 1 − s − t)qkk! (s)qkk! ([x
t
k x j ]c|[x

t
k x j ]c) 6= 0,

we conclude that εst = 0 for all 0 ≤ t ≤ mk j + 1 − s. In a similar way, ρsp = 0 for

all 0 ≤ p ≤ s, so we obtain (5-9). �

Lemma 5.8. Let B be a braided graded Hopf algebra provided with an inclusion
of braided vector spaces V →֒ P(B). Assume that

• there exist 1 ≤ j 6= k 6= l ≤ θ such that mk j = mkl = 1, m jl = 0;

• (ad xk)
2x j = (ad xk)

2xl = (ad x j )xl = 0 in B;

• x2
k = 0 if qkkqk j qjk 6= 1 or qkkqklqlk 6= 1.

Then u := [(ad x j )(ad xk)xl, xk]c ∈ P(B).
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Proof. From (2-3), Dj (u) = 0. Also, Dk((ad x j )(ad xk)xl) = 0, so

Dk(u) = (1 − q2
kkqjkqk j qklqlk)(ad x j )(ad xk)xl = 0.

From (2-4) and the properties of Dl we have

Dl(u) = qlk(1 − qklqlk)[x j xk]cxk − qjkqkkqlk(1 − qklqlk)xk[x j xk]c

= qlk(1 − qlkqkl)
[
[x j xk]c, xk

]
c = 0.

Then 131(u) = 0. From (2-6) and the properties of Fk and Fl , we have Fk(u) =

Fl(u) = 0. Using (2-5), we have

Fj (u) = (1 − qjkqk j )[xk xl]cxk − qjkqkkqlkqk j (1 − qjkqk j )xk[xk xl]c

= (1 − qlkqkl)(1 − qk j qjkq2
kkqlkqjk)[xk xl]cxk = 0.

Thus 113(u) = 0 as well.

Also, we have

1(u) = 1
(
(ad x j )(ad xk)xl

)
1(xk) − qek+ej +ej ,ej 1(xk)1

(
(ad x j )(ad xk)xl

)
,

and looking at the terms in B2 ⊗ B2,

12,2(u) = (1 − qlkqkl)[x j xk]c ⊗
(
xl xk − qk j qjkq2

kkqlk xk xl
)

+ (1 − qk j qjk)qlkqkk
(
x j xk − qjk xk x j

)
⊗ [xk xl]c

=
(
1 − qk j qjk − (1 − qlkqkl) qkkqjkqk j

)
qlkqkk[x j xk]c ⊗ [xk xl]c.

Now a calculation shows that u ∈ P(B):

1 − qk j qjk − (1 − qlkqkl)qkkqjkqk j = 1 − qk j qjk − qkkqjkqk j + q−1
kk

= q−1
kk (1 + qkk)(1 − qkkqk j qjk) = 0. �

Lemma 5.9. Let B be a braided graded Hopf algebra provided with an inclusion
of braided vector spaces V →֒ P(B). Assume that

• there exist 1 ≤ k 6= j ≤ θ such that mk j = 2, m jk = 1;

• (ad xs)
mst+1xt = 0, for all 1 ≤ s 6= t ≤ θ in B;

• xmst+1
s = 0 for each s such that qmst

ss qstqts 6= 1, for some t 6= s.

(a) If v :=
[
(ad xk)

2x j , (ad xk)x j
]

c, there exists b ∈ k such that

1(v) = v ⊗ 1 + 1 ⊗ v + b(1 − q2
kkq2

k j q
2
jkqj j )x3

k ⊗ x2
j . (5-10)

(b) Assume there exist l 6= j, k such that m jl = ml j = 1, mkl = mlk = 0, and that
(5-4) is valid in B. Set

w :=
[
(ad xk)

2(ad x j )xl, (ad xk)x j
]

c .
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Then there exist constants b1, b2 ∈ k such that

1(w) = w ⊗1+1⊗w +b1v ⊗ xl +b2(1−q2
kkqk j qjk)x3

k ⊗
(
(ad x j )xl

)
x j . (5-11)

Proof. (a) Fj (v) = 0 since v is a braided commutator of two elements in ker Fj .

Using (1-4) we have [(ad xk)
2x j , x j ]c = qk j (qj j − qkk)[xk x j ]

2
c , so we calculate

Fk(v) = (1+qkk)(1−qkkqk j qjk)[xk x j ]
2
c−q2

kkq2
k j qjkqj j (1−qk j qjk)x j [x

2
k x j ]c

+q2
kkqjk(1−qk j qjk)[x

2
k x j ]cx j−q3

kkq2
k j q

2
jkqj j (1+qkk)(1−qkkqk j qjk)[xk x j ]

2
c

= q2
kkqjkqk j (1−qk j qjk)(qj j−qkk)

+(1+qkk)(1−qkkqk j qjk)(1−q3
kkq2

k j q
2
jkqj j )[xk x j ]

2
c,

which vanishes since the coefficient of [xk x j ]
2
c is zero for each possible braiding.

Thus

11,4(v) = xk ⊗ Fk(v) = 0.

Also, Dk(v) = 0, and a calculation gives

Dj (v) = (1 − qk j qjk)
(
[x2

k x j ]xk + (1 − qkkqk j qjk)qjkqj j x
2
k [xk x j ]c

− q2
kkq2

k j qjkqj j (1 − qkkqk j qjk)[xk x j ]cx2
k − q2

kkq2
k j q

3
jkq2

j j xk[x
2
k x j ]

)

=
(
1 + (1 + qkk)(1 − qkkqk j qjk)qkkqk j qjkqj j − q4

kkq3
k j q

3
jkq2

j j

)

(1 − qk j qjk)[x
2
k x j ]xk,

where we have reordered the hyperwords and used that (ad xk)
3x j = 0; also,

1 + (1 + qkk)(1 − qkkqk j qjk)qkkqk j qjkqj j − q4
kkq3

k j q
3
jkq2

j j = 0, (5-12)

by calculation for each possible braiding. Thus

14,1(v) = Dj (v) ⊗ x j = 0.

To finish, we use the fact that 1(v) equals

1((adc xk)
2x j )1((adc xk)x j ) − χ(2ek + ej , ek + ej )1((adc xk)x j )1((adc xk)

2x j ).

Looking at the terms in B3 ⊗ B2 and B2 ⊗ B3, and using the definition of the

braided commutator, we obtain

132(v)

= (1 − q4
kkq3

k j q
3
jkq2

j j )[x
2
k x j ]c ⊗ [xk x j ]c

+ (1+qkk)(1−qkkqk j qjk)qkkqk j qjkqj j
(
xk[xk x j ]c−qkkqk j [xk x j ]cxk

)
⊗ [xk x j ]c

+ (1 − qk j qjk)
2(1 − q2

kkqk j qjk)(1 − q2
kkq2

k j q
2
jkqj j )x3

k ⊗ x2
j

=
(
1 + (1 + qkk)(1 − qkkqk j qjk)qkkqk j qjkqj j − q4

kkq3
k j q

3
jkq2

j j

)
[x2

k x j ]c ⊗ [xk x j ]c

+ b1(1 − q2
kkq2

k j q
2
jkqj j )x3

k ⊗ x2
j .
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Also,

123(v) = (1 − qkkqk j qjk)(1 − qk j qjk)x2
k

⊗
(
(1 + qkk)qkkqjk[xk x j ]cx j − (1 + qkk)q

2
kkq2

k j q
2
jkqj j x j [xk x j ]c

+ x j [xk x j ]c − q4
kkq2

k j q
3
jkqj j [xk x j ]cx j

)

=
(
1 − q4

kkq3
k j q

3
jkq2

j j + (1 + qkk)(1 − qkkqk j qjk)qkkqk j qjkqj j
)

(1 − qkkqk j qjk)(1 − qk j qjk)x2
k ⊗ x j [xk x j ]c.

Using (5-12), we obtain (5-10).

(b) We set y = (ad xk)
2(ad x j )xl and z = (ad xk)x j . Note that 1(w) = 1(y)1(z)−

χ(2ek + ej + el, ek + ej )1(z)1(y) and that

1(y) = y ⊗ 1 + (1 − qjlql j )(ad xk)
2x j ⊗ xl

+ (1 − qk j qjk)(1 − qkkqk j qjk)x2
k ⊗ (ad x j )xl

+ (1 + qkk)(1 − qkkqk j qjk)xk ⊗ (ad xk)(ad x j )xl + 1 ⊗ y,

1(z) = z ⊗ 1 + (1 − qk j qjk)xk ⊗ x j + 1 ⊗ z.

From (2-3) we have Dk(w) = 0, and from (2-4),

Dl(w) = (1 − ql j qjl)qlkql j
[
(ad xk)

2x j , (ad xk)x j
]

c ,

Dj (w) = −(1 − qk j qjk)q
−2
kk q−1

k j q−1
kl (ad xk)

3(ad x j )xl

= −(1 − qk j qjk)q
−2
kk q−1

k j q−1
kl [(ad xk)

3x j , xl]c = 0,

where in the last equality we used (1-4) and the vanishing of [xk, xl]c = 0. It

follows that

151(w) = (1 − ql j qjl)qlkql j
[
(ad xk)

2x j , (ad xk)x j
]

c ⊗ xl .

Also, Fj (z) = Fj (y) = Fl(z) = Fl(y) = 0 by (2-6) and the properties of these

skew derivations, so Fj (w) = Fl(w) = 0. We now calculate

Fk(w)

= (1 + qkk)(1 − qkkqk j qjk)[xk x j xl]c[xk x j ]c + q2
kkqjkqlk(1 − qk j qjk)[x

2
k x j xl]cx j

−χ(2ek + ej + el, ek + ej )(
(1−qk j qjk)x j [x2

k x j xl]c+(1+qkk)(1−qkkqk j qjk)qkkqjk[xk x j xl]c[xk x j ]c
)

= q2
kkqjkqlk(1 − qk j qjk)

[
[x2

k x j xl]c, x j
]

c

− (1 + qkk)(1 − qkkqk j qjk)q
3
kkq2

k j q
2
jkqj j ql j qlk

[
[xk x j ]c, [xk x j xl]c

]
c

= q2
kkqk j qjkqj j ql j qlk(

1 − qk j qjk − (1 + qkk)(1 − qkkqk j qjk)qkkqk j qjk
)[

[xk x j ]c, [xk x j xl]c
]

c

= 0,
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where we used (1-4) and (5-4) in the third equality, and we calculate that

1 − qk j qjk − (1 + qkk)(1 − qkkqk j qjk)qkkqk j qjk = 0 (5-13)

for each possible standard braiding. It follows that 115(w) = 0.

We find each of the other terms of 1(w) by direct calculation. First,

142(w)

=
(
1 − χ(2ek + ej + el, ek + ej )χ(ek + ej , 2ek + ej + el)

)
y ⊗ z

+ (1 − qk j qjk)(1 − ql j qjl)(
qlk[x

2
k x j ]cxk ⊗ xl x j − χ(2ek + ej + el, ek + ej )q

2
jkqj j xk[x

2
k x j ]c ⊗ x j xl

)

+ (1 − qk j qjk)(1 − qkkqk j qjk)(
χ(ej + el, ek + ej )x2

k z − χ(2ek + ej + el, ek + ej )zx2
k

)
⊗ [x j xl]c

= (1 − qk j qjk)qlk
(
1 − qjkqk j + (1 + qkk)(1 − qkkqk j qjk)qkkqk j qjk

)

[x2
k x j ]cxk ⊗ [x j xl]c,

which is seen to equal 0. In a similar way we calculate

133(w)

= (1−ql j qjl)[x
2
k x j ]⊗

(
xl z−χ(2ek +ej +el, ek +ej )χ(ek +ej , ek +ej +el)zxl

)

+ (1+qkk)(1−qkkqk j qjk)χ(ek+ej +el, ek+ej )(xkz−qkkqk j zxk)⊗[xk x j xl]c

+ (1−qkkqk j qjk)(1−qk j qjk)
2x3

k

⊗
(
χ(ej +el, ek)[x j xl]cx j −χ(2ek +ej +el, ek +ej )χ(ej , 2ek)x j [x j xl]c

)

=
(
(1+qkk)(1−qkkqk j qjk)−qkkqk j qjkqj j (1−ql j qjl)

)

χ(ek +ej +el, ek +ej )[x
2
k x j ]c⊗[xk x j xl]c

+ (1−qkkqk j qjk)(1−qk j qjk)
2(1−q2

kkqk j qjk)x3
k ⊗[x j xl]cx j ,

and the coefficient of [x2
k x j ]c ⊗[xk x j xl]c is zero (we calculate it for each possible

standard braiding). Finally,

124(w)

= (1−qkkqk j qjk)(1−qk j qjk)x2
k

⊗
(
(1+qkk)χ(ek +ej +el, ek)[xk x j xl]cx j

−(1+qkk)χ(2ek +ej +el, ek +ej )qjk x j [xk x j xl]c

−χ(2ek +ej +el, ek +ej )χ(ek +ej , 2ek)
[
[xk x j ]c, [x j xl]c

]
c

)

= (1−qkkqk j qjk)(1−qk j qjk)χ(ej +el, ek +ej )qk j(
qkk(1−qkkqk j qjk)−qj j (1−qjlql j )

)
x2

k ⊗x j [xk x j xl]c

= 0.

From these calculations, we obtain (5-11). �
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5B. Presentation when the type is Aθ . We now assume V is a standard braided

vector space of type Aθ and B a Z
θ -graded algebra, provided with an inclusion

of vector spaces V →֒ B1 =
⊕

1≤ j≤θ Bej . We can extend the braiding to B by

setting

c(u ⊗ v) = χ(α, β)v ⊗ u, u ∈ Bα, v ∈ Bβ, α, β ∈ N
θ .

We assume that on B we have

x2
i = 0 if qi i = −1,

adc xi (x j ) = 0 if | j − i | > 1,

(adc xi )
2(x j )c = 0 if | j − i | = 1,

[
(adc xi )(adc xi+1)xi+2, xi+1

]
c = 0 2 ≤ i ≤ θ − 1.

Using the same notation as in Section 4B,

xei = xi , xui, j := [xi , xui+1, j ]c (i < j).

Lemma 5.10. Let 1 ≤ i ≤ j < p ≤ r ≤ θ . The following relations hold in B:

[xui j , xupr ]c = 0, p − j ≥ 2; (5-14)

[xui j , xuj+1,r ]c = xuir . (5-15)

Proof. Note that xupr belongs to the subalgebra generated by x p, . . . , xr , and

[xui j , xs]c = 0, for each p ≤ s ≤ r . Equation (5-14) follows from this.

We prove (5-15) by induction on j − i : if i = j , it is exactly the definition of

xuir . To prove the inductive step, we use the inductive hypothesis, (5-14) and (1-4)

(the braided Jacobi identity) to obtain

[xui, j+1
, xuj+2,r ]c =

[
[xui j , xi+1]c, xuj+2,r

]
c
=

[
xui j , [xi+1, xuj+2,r ]c

]
c

= [xui j , xuj+1,r ]c = xuir ,

and (5-15) is also proved. �

Lemma 5.11. If i < p ≤ r < j , the following relation holds in B:

[xui j , xupr ]c = 0. (5-16)

Proof. When p = r = j − 1 and i = j − 2, note that this is exactly

[
(adc xi )(adc xi+1)xi+2, xi+1

]
c = 0.

Then, by (1-4),

[xui−1, j , x j−1]c = [[xi−1, xui, j ]c, x j−1]c = [xi−1, [xui, j , x j−1]c]c.

We assume that j − i > 2, so [xi−1, x j−1]c = 0 by the hypothesis on B. Now we

prove the case p = r = j − 1 by induction on p − i .
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Using (1-4) and (5-15), we also have

[xui, j+1
, x p]c =

[
[xui, j , x j+1]c, x p

]
c =

[
xui, j , [x j+1, x p]c

]
c

+qj+1,p[xui, j , x j−1]cx j+1 − χ(ui, j , ej+1)x j+1[xui, j , x j−1]c,

so using that [x j+1, x p]c = 0 if j > p, by induction on j − p we prove (5-16) for

the case p = r .

For the general case, we use (1-4) one more time as follows

[xui, j , xup,r+1
]c =

[
xui, j , [xupr , xr+1]c

]
c =

[
[xui, j , xupr ]c, xr+1

]
c

− χ(upr , er+1)[xui j , xr+1]cxupr + χ(ui j , upr )xupr [xui j , xr+1]c,

and we prove (5-16) by induction on r − p. �

Lemma 5.12. The following relations hold in B:

[xui j , xui p ]c = 0 if i ≤ j < p, (5-17)

[xui j , xupj ]c = 0 if i < p ≤ j. (5-18)

Proof. To prove (5-17), note that if i = j = p − 1, we have

[xui i , xui,i+1
]c =

[
xi , [xi , xi+1]c

]
c = (ad xi )

2xi+1 = 0.

Since [xi , xui+2,p ]c = 0 for each p > i +1 by (5-14), we use (1-4), the previous case

and (5-15) to obtain

[xui i , xui p ]c =
[
xui i , [xui,i+1

, xui+2,p ]c
]

c
= 0.

Now, if i < j < p, from (5-14) and the relations between the qst we obtain

[xui+1, j , xui p ]c = −χ(ui p, ui+1, j )[xui p , xui+1, j ]c = 0.

Using (1-4) and the previous case we conclude

[xui j , xui p ]c =
[
[xui i , xui+1, j ]c, xui p

]
c = 0.

The proof of (5-18) is analogous. �

Lemma 5.13. If i < p ≤ r < j , the following relation holds in B:

[xuir , xupj ]c = χ(uir , upr )(1 − qr,r+1qr+1,r )xupr xui j . (5-19)

Proof. We calculate

[xuir , xupj ]c =
[
xuir , [xupr , xur+1, j ]c

]
c

= χ(uir , upr )xupr xui j − χ(upr , ur+1, j )xui j xupr

=
(
χ(uir , upr ) − χ(ui j , upr )χ(upr , ur+1, j )

)
xupr xui j

= χ(uir , upr )
(
1 − χ(upr , ur+1, j )χ(ur+1, j , upr )

)
xupr xui j ,



86 Iván Ezequiel Angiono

where we have used (5-15) in the first equality, (1-4) in the second, (5-18) in the

third and the relation between the qi j in the last. �

We now prove the main theorem of this subsection, namely, the presentation by

generators and relations of the Nichols algebra associated to V .

Theorem 5.14. Let V be a standard braided vector space of type Aθ , where θ =

dim V , and let C = (ai j )i, j∈{1,...,θ} be the corresponding Cartan matrix of type Aθ .
The Nichols algebra B(V ) is presented by the generators xi , 1 ≤ i ≤ θ , and the

relations

x Nα
α = 0, α ∈ 1+;

adc(xi )
1−ai j (x j ) = 0, i 6= j;

[
(ad x j−1)(ad x j )x j+1, x j

]
c = 0, 1 < j < θ, qj j = −1.

The following elements constitute a basis of B(V ):

xh1

β1
xh2

β2
. . . xh P

βP
, where 0 ≤ h j < Nβj where βj ∈ SI , for 1 ≤ j ≤ P. (5-20)

Proof. From Corollary 4.2 and the definitions of the xα, we know that the last

statement about the PBW basis is true.

Let B be the algebra presented by generators x1, . . . , xθ and the relations in

the statement of the theorem. From Lemmas 5.3, 5.4 and Corollary 5.2 we have

a canonical epimorphism φ : B → B(V ). The last relation also holds in B for

qj j 6= 1, by Lemma 5.4(2).

The rest is similar to the proofs of [Andruskiewitsch and Dăscălescu 2005,

Lemma 3.7] and [Andruskiewitsch and Schneider 2002b, Lemma 6.12]. Consider

the subspace I of B generated by the elements in (5-20). Using Lemmas 5.10,

5.11, 5.12 and 5.13 we prove that I is an ideal. But 1 ∈ I, so I = B.

The images under φ of the elements in (5-20) form a basis of B(V ), so φ is an

isomorphism. �

The presentation and dimension of B(V ) agree with the results presented in [An-

druskiewitsch and Dăscălescu 2005] and [Andruskiewitsch and Schneider 2002b].

5C. Presentation when the type is Bθ . We now assume V is a standard braided

vector space of type Bθ and B is a Z
θ -graded algebra, provided with an inclusion

of vector spaces V →֒ B1 =
⊕

1≤ j≤θ Bej . Then we can extend the braiding to B.

We assume the following relations in B:

x2
i = 0 if qi i = −1,

x3
1 = 0 if q11 ∈ G3,

(adc xi )x j = 0 if | j − i | > 1,

(adc xi )
2x j = 0 if | j − i | = 1 and i 6= 1,



Nichols algebras with standard braiding 87

[
(adc xi )(adc xi+1)xi+2, xi+1

]
c = 0 if 2 ≤ i ≤ θ,

(adc x1)
3x2 = 0,

[
(adc x1)

2x2, (adc x1)x2

]
c = 0,

[
(ad x1)

2(ad x2)x3, (ad x1)x2

]
c = 0.

Using the same notation as in Section 4B,

xvi j = [xu1i , xu1 j ]c, 1 ≤ i < j ≤ θ.

From the proof of the relations corresponding the Aθ case, we know that (5-14),

(5-15), (5-16), (5-18) and (5-19) hold for i ≥ 1, but for relation (5-17) we must

assume i > 1.

Lemma 5.15. Suppose 1 ≤ s < t and 1 < k ≤ j . The following relations hold in B:

[xvst , xuk j ]c





= 0 if t + 1 < k,

= xvs j if t + 1 = k < j,

= 0 if s + 1 < k ≤ j ≤ t,

= χ(vst , ukt)(1 − qt,t+1qt+1,t)xukt xvs j if s + 1 < k ≤ t < j,

= χ(u1t , us+1, j )xvj t if s + 1 = k ≤ j < t,

= (χ(u1t , us+1,t) − χ(u1s, u1t))x2
u1t

if s + 1 = k, j = t,

∈ kxvt j + kxu1 j xu1t + kxus+1, j xvs j if s + 1 = k ≤ t < j,

= γ
k j
st xuks xvj t if k ≤ s < j ≤ t,

∈ kxuks xvt j + kxuks xu1 j xu1t + kxukt xvs j if k ≤ s < t < j,

= 0 if k ≤ j ≤ s,

where γ
k j
st = χ(u1t , uk j )χ(u1s, uks)(1 − qs,s+1qs+1,s).

Proof. The first, third and last equalities follow from the vanishing of [xu1s , xuk j ]c

and [xu1t , xuk j ]c = 0, using (5-14), (5-16), (5-17) or (5-18) as the case maybe,

together with (1-4).

For the second case, we use that [xu1s , xut+1, j ]c = 0, (5-15) and (1-4) to obtain

xvs j =[xu1s , xu1 j ]c =
[
xu1s , [xu1t , xut+1, j ]c

]
c
=

[
[xu1s , xu1t ]c, xut+1, j

]
c
=[xvst , xut+1, j ]c.

For the fourth, we use (1-4) and the third case to calculate

[xvst , xuk j ]c = [xvst , [xukt , xut+1, j ]c]c

=χ(vst , ukt)xukt xvs j − χ(ukt , ut+1, j )xvs j xukt

=χ(vst , ukt)(1 − χ(ukt , ut+1, j )χ(ut+1, j , ukt))xukt xvs j .
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For the fifth, note that χ(u1t , us+1, j )
−1 =χ(us+1, j , u1t). Then use (5-15), (5-16)

and (1-4) to prove that

[xvst , xus+1, j ]c =
[
[xu1s , xu1t ]c, xus+1, j

]
c

= χ(u1t , us+1, j )xu1 j xu1t − χ(u1s, u1t)xu1t xu1s

= χ(u1t , us+1, j )(xu1 j xu1t − χ(u1 j , u1t)xu1t xu1s ).

The sixth case is similar.

For the seventh case, we use (1-4), (1-5) and the previous case to calculate

[xvst , xus+1, j ]c =
[
xvst , [xus+1,t , xut+1, j ]c

]
c

= (χ(u1t , us+1,t) − χ(u1s, u1t))[x
2
u1t

, xut+1, j ]

+ χ(vst , us+1,t)xus+1,t xvs j − χ(us+1,t , ut+1, j )xvs j xus+1,t

= (χ(u1t , us+1,t) − χ(u1s, u1t))((xvt j + χ(u1t , u1 j )xu1 j xu1t )

+ χ(u1t , ut+1, j )xu1 j xu1t ) − χ(us+1,t , ut+1, j )xvt j

+ (χ(vst , us+1,t) − χ(us+1,t , ut+1, j )χ(vs j , us+1,t))xus+1,t xvs j .

We use the previous cases, (5-16) and (5-19) to calculate for the eighth case

[xvst , xuk j ]c = [[xu1s , xu1t ]c, xuk j ]c

= χ(u1t , uk j )(χ(u1s, uks)(1 − qs,s+1qs+1,s)xuks xu1 j )xu1t

− χ(u1s, u1t)xu1t (χ(u1s, uks)(1 − qs,s+1qs+1,s)xuks xu1 j )

= γ
k j
st xuks (xu1 j xu1t − χ(u1 j , u1t)xu1t xu1 j ).

To conclude, we prove the ninth case in a similar way:

[xvst , xuk j ]c = [xvst , [xukt , xut+1, j ]c]c

= γ kt
st (1 − qv1t )[xuks x2

u1t
, xut+1, j ]

+ χ(vst , uk,t)xukt xvs j − χ(ukt , ut+1, j )xvs j xukt . �

We consider the remaining commutator
[
xvst , xujk

]
c
: when j = 1.

Lemma 5.16. Let s < t in {1, . . . , θ}. The following relations hold in B:

[xvst , xu1k ]c = 0 if s < k ≤ t, (5-21)

[xu1s , xvst ]c = 0. (5-22)

Proof. By assumption we have

[xv12
, xu12

]c =
[
(adc x1)

2x2, (adc x1)x2

]
c = 0,

[xv13
, xu12

]c =
[
(adc x1)

2(adc x2)x3, (adc x1)x2

]
c = 0.
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For t ≥ 4, [xu4t , xu12
]c = 0 by (5-14), and using (1-4),

[xv1t , xu12
]c =

[
[xv13

, xu4t ]c, xu12

]
c = 0.

For each k ≤ t we have [xu1t , xu3k ]c = [x1, xu3k ]c = 0, so [xv1t , xu3k ]c = 0. Using

(1-4) and (5-15) we have

[xv1t , xu1k ]c =
[
xv1t , [xu12

, xu3k ]c
]

c = 0.

Now consider 2 ≤ s ≤ k. Since [xv1t , xu1k ]c = [xu2s , xu1k ]c = 0 by previous

results and (5-16), we conclude from (1-5) and Lemma 5.15 that (5-21) is valid in

the general case.

To prove (5-22), we have for s = 1, t = 2

[xu11
, xv12

]c = [x1, xv12
]c = (adc x1)

3x2 = 0.

Using that [x1, xu3t ]c = 0 if t ≥ 3 and (1-4), we deduce that

[xu11
, xv1t ]c =

[
x1, [xv12

, xu3t ]c
]

c = 0.

If 1 < s < t we have, by the previous case,

[xu1s , xv1t ]c = −χ(xu1s , xv1t )[xv1t , xu1s ]c = 0.

By (5-18), [xu1s , xu2s ]c = 0. Also, [xv1t , xu2s ]c = χ(u1t , u2s)xvst , by Lemma 5.15.

Equation (5-22) follows by (1-4) and the last three equalities. �

Lemma 5.17. Let s < k < t . The following relations hold in B:

[xvsk , xu1t ]c = χ(vsk, u1k)(1 − qk,k+1qk+1,k)xu1k xvst , (5-23)

[xu1s , xvkt ]c = χ(u1s, u1k)(1 + qu1k )(1 − qk,k+1qk+1,k)xu1k xvst . (5-24)

Proof. The proof follows by (1-4), the second case of Lemma 5.15 and (5-22):

[xvsk , xu1t ]c =
[
xvsk , [xu1k , xuk+1,t ]c

]
c

= χ(vsk, u1k)xu1k xvst − χ(u1k, uk+1,t)xvst xu1k

= χ(vsk, u1k)
(
1 − χ(u1k, uk+1,t)χ(uk+1,t , u1k)

)
xu1k xvst ,

[xu1s , xvkt ]c =
[
xu1s , [xu1k , xu1t ]c

]
c

= [xvsk , xu1t ]c + χ(u1s, u1k)xu1k xvst − χ(u1k, u1t)xvst xu1k

= χ(u1s, u1k)(qu1k (1 − qk,k+1qk+1,k) + 1 − qk,k+1qk+1,k)xu1k xvst . �

We next deal with the expression of the commutator of two words of type xvst .
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Lemma 5.18. Let s < t and s ≤ k < j , with k 6= s or j 6= t . The following relations
hold in B:

[xvst , xvk j ]c





= 0 if k < j ≤ t,

= 0 if k = s, t < j,

= χ(vst , vkt)(1 − qt,t+1qt+1,t)xvkt xvs j if k < t < j,

= χ(vst , u1t)
2(1 − qt,t+1qt+1,t)

(1 − qu1t qt,t+1qt+1,t)x2
u1t

xvs j if k = t < j,

∈ kxvt j xvsk + kxvtk xvs j + kxu1k xu1t xvs j if t < k < j.

Proof. The first and second equalities follow from (1-4) and (5-21), (5-22), respec-

tively. For the third, we use the previous one and (1-4):

[xvst , xvk j ]c

=
[
xvst , [xu1k , xu1 j ]c

]
c

= χ(vst , u1k)xu1k

(
χ(vst , u1t)(1 − qt,t+1qt+1,t)xu1t xvs j

)

− χ(u1k, u1 j )
(
χ(vst , u1t)(1 − qt,t+1qt+1,t)xu1t xvs j

)
xu1k

= (1 − qt,t+1qt+1,t)
(
χ(vst , u1k)χ(vst , u1t)xu1k xu1t xvs j

− χ(u1k, u1 j )χ(vst , u1t)χ(vs j , u1k)xu1t xu1k xvs j

)

= χ(vst , u1k)χ(vst , u1t)(1 − qt,t+1qt+1,t)
(
xu1k xu1k −χ(u1k, u1t)xu1k xu1k

)
xvs j .

The fourth case is similar to the previous one.

To prove the last case we use (1-4) and Lemma 5.17:

[xvst , xvk j ]c =
[
xvst , [xu1k , xu1 j ]c

]
c

= [χ(vst , u1t)(1 − qt,t+1qt+1,t)xu1t xvsk , xu1 j ]c

+ χ(vst , u1k)xu1k (χ(vst , u1t)(1 − qt,t+1qt+1,t)xu1t xvs j )

− χ(u1k, u1 j )(χ(vst , u1t)(1 − qt,t+1qt+1,t)xu1t xvs j )xu1k .

The proof is finished using (1-5) and the previous identities. �

Theorem 5.19. Let V be a standard braided vector space of type Bθ , where θ =

dim V , and let C = (ai j )i, j∈{1,...,θ} be the corresponding Cartan matrix of type Bθ .
The Nichols algebra B(V ) is presented by the generators xi , 1 ≤ i ≤ θ , and the

relations
x Nα
α = 0, α ∈ 1+;

adc(xi )
1−ai j (x j ) = 0, i 6= j;

[
(ad x j−1)(ad x j )x j+1, x j

]
c = 0, 1 < j < θ, qj j = −1;

[
(ad x1)

2x2, (ad x1)x2

]
c = 0, q11 ∈ G3 or q22 = −1;

[
(ad x1)

2(ad x2)x3, (ad x1)x2

]
c = 0, q11 ∈ G3 or q22 = −1.
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The following elements constitute a basis of B(V ):

xh1

β1
xh2

β2
. . . xh P

βP
, where 0 ≤ h j < Nβj −1 if βj ∈ SI , for 1 ≤ j ≤ P. (5-25)

Proof. The proof is analogous to that of Theorem 5.14, since by the previous

lemmas we can express the commutator of two generators xα < xβ as a linear

combination of monotone hyperwords whose greater hyperletter is great or equal

to xβ . �

5D. Presentation when the type is G2. We now consider standard braidings of

type G2, with m12 = 3, m21 = 1.

Lemma 5.20. Let B := T (V )/I , for some I ∈ S, and suppose that

xord q11

1 = 0, xord q22

2 = 0, (ad x1)
4x2 = (ad x2)

2x1 = 0 (5-26)

in B. Then

(a) [x3
1 x2x1x2]c = 0 in B ⇐⇒ 4e1 + 2e2 /∈ 1+(B).

Assume further that the equivalent conditions in (a) hold. Then

(b)
[
(ad x1)

3x2, (ad x1)
2x2

]
c = 0 in B ⇐⇒ 5e1 + 2e2 /∈ 1+(B) and

(c)
[
[x2

1 x2x1x2]c, [x1x2]c

]
c = 0 in B ⇐⇒ 4e1 + 3e2 /∈ 1+(B).

Assume also that the equivalent conditions in (b) and those in (c) hold. Then

(d)
[
[x2

1 x2]c, [x2
1 x2x1x2]c

]
c = 0 in B ⇐⇒ 5e1 + 3e2 /∈ 1+(B).

In particular, all these relations hold when V is a standard braiding and B =

B(V ) is finite-dimensional.

Proof. Take the ordering x1 < x2, and consider a PBW basis as in Theorem 1.12.

Define γk :=
∏

0≤ j≤k−1(1 − q j
11q12q21).

(a) If [x3
1 x2x1x2]c = 0, then 4e1 +2e2 /∈ 1+(B) since there are no possible Lyndon

words in SI : x3
1 x2x1x2 is the unique Lyndon word such that x3

1 x2 and x1x2
2 are not

factors, and it is not in SI by assumption.

Conversely, if 4e1 + 2e2 /∈ 1+(B), then [x3
1 x2x1x2]c is a linear combination of

greater hyperwords, and [x1x2x3
1 x2]c and [x2

1 x2
1 x2] are the only greater hyperwords

that are not in SI and do not end in x1 (we discard words ending in x1 since

[x3
1 x2x1x2]c is in ker D1). Taking their Shirshov decomposition, we see that there

exist α, β ∈ k such that

[x3
1 x2x1x2]c − α[x1x2]c[x

3
1 x2]c − β[x2

1 x2]
2
c = 0. (5-27)

Note that [x3
1 x2x1x2]c = ad x1([x2

1 x2x1x2]c), so by direct calculation,

D2([x
2
1 x2x1x2]c) = 0.
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Apply D2 to both sides of equality (5-27) and express the result as a linear combi-

nation of [x3
1 x2]cx1, [x2

1 x2]cx2
1 and [x1x2]cx3

1 . The coefficient of [x1x2]cx3
1 is

α(1 − q12q21)(1 − q11q12q21),

so α = 0. Note also that D2
1 D2

(
[x 13x2x1x2]c

)
= 0; but

D2
1 D2

(
[x2

1 x2]
2
c

)
= (1 − q12q21)(1 − q11q12q21)(1 + q11)(q2e1+e2

+ 1)[x2
1 x2]c.

Looking at the proof of Proposition 4.7, we see that q2e1+e2
6= −1, so β = 0.

(b) Assuming (5-26) and the condition in (a), the only possible Lyndon word of

degree 5e1 + 2ej is x3
1 x2x2

1 x2, and

[x2
1 x2x1x2x1x2]c =

[
(ad x1)

3x2, (ad x1)
2x2

]
c .

Then we proceed as before. One implication is clear. For the other, if 5e1 + 2ej /∈

1+(B), there exists α ∈ k such that

[
(ad x1)

3x2, (ad x1)
2x2

]
c = α(ad x1)

2x2(ad x1)
3x2.

Now we apply D2 and express the equality as a linear combination of (ad x1)
3x2x2

1

and (ad x1)
2x2x3

1 (using the hypothesis that (ad x1)
4x2 = 0); the coefficient of

(ad x1)
2x2x3

1 is αγ3, so α = 0.

(c) The proof is similar. Since we are considering Lyndon words not having x3
1 x2 or

x1x2
2 as a factor, the only possible Lyndon word of degree 4e1+3ej is x2

1 x2x1x2x1x2,

and

[x2
1 x2x1x2x1x2]c =

[
[x2

1 x2x1x2]c, [x1x2]c
]

c .

If 4e1 + 3ej /∈ 1+(B), there exist αi ∈ k such that

[
x2

1 x2(x1x2)
2
]

c

= α1[x1x2]c[x
2
1 x2x1x2]c+α2[x1x2]

2
c[x

2
1 x2]c+α3x2[x

2
1 x2]

2
c +α4x2[x1x2]c[x

3
1 x2]c,

since, as above, we are discarding words greater than x2
1 x2x1x2x1x2 ending in x1;

we also discard words with factors x4
1 x2, x1x2

2 , x3
1 x2x2

1 x2, by the assumption on B.

We apply D2 to this equality. Using the definition of the braided commutator, we

express the hyperletter just considered as a linear combination of elements of the

PBW basis, having degree 4e1 + 2e2.

The coefficient of x2[x1x2]cx3
1 is α4γ3 since this PBW generator appears only

in the expression of D2(x2[x1x2]c[x3
1 x2]c). Thus α4 = 0.

Using this fact, we see that the coefficient of x2[x3
1 x2]cx1 is

α3γ2(1 + q11)q
2
11q12q2

21q22,

since this term appears only in the expression of Dj (x2[x2
1 x2]

2
c). Thus α3 = 0.
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Next, the coefficient of [x1x2]
2
c x2

1 is α2γ2, so α2 = 0. Now we calculate the

coefficient of [x2
1 x2]

2
c :

α1γ2

(
χ(e1, 5e1 + e2) − χ(2e1 + e2, e1 + e2)

)
= α1γ2q11q12

(
q3

11 − q22q12q21

)
.

Since q3
11 6= q22q12q21 for each standard braiding, we conclude that α1 = 0.

(d) If the conditions in (b) and (c) hold, the only possible Lyndon word of degree

5e1 + 3e2 not having x4
1 x2 or x1x2

2 as factors is x2
1 x2x2

1 x2x1x2, and

[x2
1 x2x2

1 x2x1x2]c =
[
[x2

1 x2]c, [x
2
1 x2x1x2]c

]
c .

This hyperword is not in SI if and only if there exist νi ∈ k such that

[x2
1 x2x2

1 x2x1x2]c = ν1[x
2
1 x2x1x2]c[x

2
1 x2]c + ν2[x1x2]c[x

2
1 x2]

2
c

+ ν3[x1x2]
2
c[x

3
1 x2]c + ν4x2[x

2
1 x2]c[x

3
1 x2]c. (5-28)

Apply D2 and note that D2([x2
1 x2x2

1 x2x1x2]c) = 0 under the hypotheses on B.

Then express the resulting sum as a linear combination of elements of the PBW

basis, which have degree 5e1 + 2e2.

The hyperword x2[x2
1 x2]x3

1 appears only for D2(x2[x2
1 x2]c[x3

1 x2]c), and its co-

efficient is ν4γ3, and since γ3 6= 0 we conclude that ν4 = 0.

Analogously, [x1x2]
2
c x3

1 appears only for [x1x2]
2
c[x

3
1 x2]c (due to ν4 = 0). Its

coefficient is ν3γ3, so ν3 = 0.

Note that D2
1 D2([x2

1 x2x1x2]c) = 0. We apply D2
1 D2 to the expression (5-28),

and obtain

0 = ν1γ2(1 + q11)[x
2
1 x2x1x2]c + ν2γ2(1 + q11)(1 + q2e1+e2

)[x1x2]c[x
2
1 x2]c.

The terms [x2
1 x2x1x2]c and [x1x2]c[x2

1 x2]c are linearly independent, since they are

linearly independent in B(V ), and we have a surjection B → B(V ). Then

ν1γ2(1 + q11) = ν2γ2(1 + q11)(1 + q2e1+e2
) = 0.

But for standard braidings of type G2 we note that q11, q2e1+e2
6= −1 and γ2 6= 0,

so ν1 = ν2 = 0.

The last statement is true since

1+(B(V )) = {e1, e1 + e2, 2e1 + e2, 3e1 + e2, 3e1 + 2e2, e2},

if the braiding is standard of type G2. �

Remark 5.21. Let V be a standard braided vector space of type G2 and let B

be a braided graded Hopf algebra satisfying the hypotheses of Lemma 5.20. In a

similar way to Lemma 5.5, if q11 /∈ G4 and q22 6=−1, then 5e1+2e2, 4e1+2e24e1+

3e2, 5e1 + 3e2 /∈ 1+(B).
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This follows because x3
1 x2x2

1 x2, x2
1 x2x1x2x1x2, x2

1 x2x2
1 x2x1x2 /∈ SI , using the

quantum Serre relations as in the lemma cited.

Theorem 5.22. Let V be a standard braided vector space of type G2. The Nichols
algebra B(V ) is presented by the generators x1, x2 and the relations

adc(x1)
4(x2) = adc(x2)

2(x1) = 0, x Nα
α = 0, α ∈ 1+, (5-29)

and, if q11 ∈ G4 or q22 = −1,

[
(ad x1)

3x2, (ad x1)
2x2

]
c = 0, (5-30)

[
x1, [x

2
1 x2x1x2]c

]
c = 0, (5-31)

[
[x2

1 x2x1x2]c, [x1x2]c
]

c = 0, (5-32)
[
[x2

1 x2]c, [x
2
1 x2x1x2]c

]
c = 0. (5-33)

The following elements constitute a basis of B(V ):

x
he2

2 [x1x2]
he1+e2
c [x2

1 x2x1x2]
h3e1+2e2
c [x2

1 x2]
h2e1+e2
c [x3

1 x2]
h3e1+e2
c x

he1

1 , 0 ≤ hα ≤ Nα −1.

(5-34)

Proof. The statement about the PBW basis follows from Corollary 4.2 and the

definitions of the xα.

Let B be the algebra presented by the generators x1, x2 and the relations (5-29)–

(5-33). From Lemma 5.20 and Corollary 5.2, we have a canonical epimorphism of

algebras φ : B → B(V ).

Consider the subspace I of B generated by the elements in (5-34). We prove by

induction on the sum S of the hα’s of a such product M that x1 M ∈ I; moreover,

we prove that it is a linear combination of products whose first hyperletter is less

than or equal to the first hyperletter of M . If S = 0, we have M = 1.

• If M = x N1

1 , then x1 M = x N1+1
1 , which is zero if N1 = ord x1 − 1.

• If M = [x3
1 x2]c M ′, then we use that x1[x3

1 x2]c = q3
11q12[x3

1 x2]cx1 to prove that

x1 M lies in I and either is zero or begins with [x3
1 x2]c.

• If M = [x2
1 x2]c M ′, we have

x1[x
2
1 x2]c = [x3

1 x2]c + q2
11q12[x

2
1 x2]cx1.

We use the inductive step and relation (5-30) to prove that x1 M lies in I and

is either zero or a linear combination of hyperwords starting with a hyperletter

less than or equal to [x2
1 x2]c.

• If M = [x2
1 x2x1x2]c M ′, we deduce from (5-31) that

x1[x
2
1 x2x1x2]c = χ(e1, 3e1 + 2e2)[x

2
1 x2x1x2]cx1;
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using also (5-32) and (5-33), we prove that x1 M lies in I and is either zero or

a linear combination of hyperwords that starting with a hyperletter less than or

equal to [x2
1 x2x1x2]c.

• If M = [x1x2]c M ′, observe that

x1[x1x2]c = [x2
1 x2]c + q11q12[x1x2]cx1.

Using the inductive step together with (5-31), (5-32), and the equality

[x2
1 x2]c[x1x2]c =

[
[x2

1 x2]c, [x1x2]c
]

c + χ(2e1 + e2, e1 + e2)[x1x2]c[x
2
1 x2]c,

by the definition of braided commutator, we prove that x1 M lies in I and is

either zero or a linear combination of hyperwords starting with a hyperletter

less than or equal to [x1x2]c.

• If M = x2 M ′, we use the equalities x1x2 =[x1x2]c+q12x2x1 and [[x1x2]c, x2]c =

0 to prove that x1 M lies in I and is either zero or a linear combination of

hyperwords.

Now, x2 M is a product of nonincreasing hyperwords or is zero, for each element

in (5-34), so I is an ideal of B containing 1; hence I = B. Since the elements in

(5-34) are a basis of B(V ), the map φ is an isomorphism. �

5E. Presentation when the braiding is of Cartan type. In this subsection, we

present the Nichols algebra of a diagonal braiding vector space of Cartan type with

matrix (qi j ), by generators and relations. This was established in [Andruskiewitsch

and Schneider 2002a, Theorem 4.5] assuming that qi i has odd order and that order

is not divisible by 3 if i belongs to a component of type G2. The proof in loc. cit.

combines a reduction to symmetric (qi j ) by twisting, with results from [Andersen

et al. 1994] and [De Concini and Procesi 1993]. We also note that some particular

instances were already proved earlier in this section.

Fix a standard braided vector space V with connected Dynkin diagram and an

i ∈ {1, . . . , θ}. Suppose that B is a quotient by an ideal I ∈ S of T (V ). Assume
moreover that V is not of type G2 and that

(5-3) holds in B if 1 ≤ i 6= j ≤ θ; (5-35)

(5-4) holds in B if mk j = mkl = 1 and m jl = 0; (5-36)

(5-6) holds in B if mk j = 2 and m jk = 1; (5-37)

(5-8) holds in B if mk j = 2, m jk = m jl = 1 and mkl = 0. (5-38)

Note that if (5-3) holds in an algebra with derivations Dk , then (2-11) holds also,

by Lemma 2.7. By Theorem 2.6, we have an algebra si (B) provided with skew

derivations Di . We set x̃k = (adc xi )
mik (xk)#1 ∈ si (B), for k 6= i , and x̃i = 1# y.

The elements generate si (B)1 as a vector space.
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Lemma 5.23. Conditions (5-35)–(5-38) are satisfied with si (B) in lieu of B.

Proof of (5-35). Each mek + ej , 0 ≤ m ≤ mk j is an element of 1(B(Vi )), so

si (mek + ej ) ∈ 1(B(V )). Since we have a surjective morphism of braided graded

Hopf algebras B → B(V ), we have 1(B(V )) ⊆ 1(B).

From Lemma 5.3, (adc x̃k)
m x̃ j = 0 if and only if x̃m

k x̃ j is a linear combination of

greater words, for an order in which x̃k < x̃ j (since we are considering the Cartan

case, the condition about the ordering of the x̃ j is satisfied). Note that x̃m
k x̃ j is the

unique Lyndon word of degree mek + ej . Then, by the relation (2-15) between the

Hilbert series of B and si (B), the validity of (5-3) for si (B) is equivalent to the

condition

si ((mk j + 1)ek + ej ) /∈ 1+(B).

(a) When k = i 6= j , this says that −ei + ej /∈ 1+(B), so (5-3) holds.

(b) To prove (5-3) for si (B) when j = i , we show case by case that

(mki + 1)ek + ((mki + 1)mik − 1)ei /∈ 1+(B).

• If mki = mik = 0, we have ek − ei /∈ 1+(B).

• If mki = mik = 1, then 2ek + ei /∈ 1+(B), because (ad xk)
2xi = 0.

• If mki = 1 and mik = 2, then 2ek + 3ei /∈ 1+(B), since we can apply Lemma

5.5 to B, which satisfies (5-6) by assumption.

• If mki = 2 and mik = 1, then 3ek + 2ei /∈ 1+(B), as before.

Thus (5-3) holds for each k 6= i .

(c) Now consider θ ≥ 3 and k, j 6= i .

• If mik = mi j = 0, then si (mek + ej ) = mek + ej , and (mk j +1)ek + ej /∈ 1+(B),

since the quantum Serre relation holds in B.

• If mik = 1 and mi j = 0, then si (mek + ej ) = mei + mek + ej . If we assume

x j < xi < xk and look at the possible Lyndon words in SI , from (5-3), these

words have no factors x2
i xk, x j xi , so the only possibility is x j (xk xi )

m .

– If mk j = 0, then x j xk xi = qjk xk x j xi , so x j xk xi /∈ SI .

– If mk j = 1, then x j xk xl xk /∈ SI when mki = 1, since (5-4) is valid in B;

while if mki = 2 we have qkk 6= −1 and

x j (xk xi )
2 = (1 + qkk)

−1q−1
ki x j x

2
k x2

i + (1 + qkk)
−1qki q

2
kk x j xi x

2
k xi

= q−1
ki q−1

k j q−2
kk xk x j xk x2

i + (1 + qkk)
−1q−1

ki q−2
k j q−2

kk x2
k x j x

2
i

+ (1 + qkk)
−1qki q

2
kkqj i xi x j x

2
k xi .

In both cases, x j (xk xi )
2 /∈ SI .
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– If mk j = 2, then mki = m jk = 1 and qkk 6= −1. The proof is similar to the

previous case.

• If mik = 2, mi j = 0, then si (mek + ej ) = 2mei + mek + ej and mk j = 0, 1.

When mk j = 0, the proof is clear as above. When mk j = 1, for j < k < i and

considering only the quantum Serre relations, the only possible Lyndon word is

x j (xk x2
i )2. But since

[
[x2

i xk]c, [xi xk]c
]

c = 0, we deduce that such a word is not

in SI .

• If mik = 0, mi j = 1, then si (mek +ej )= ei +mek +ej . If k < i < j , note that from

xk xi , x
mk j +1

k x j /∈ SI , there are no Lyndon words of degree ei + (mk j + 1)ek + ej

in SI .

• If mik =0, mi j =2, then si (mek+ej )=2ei +mek+ej , and the proof is analogous

to the previous case.

• If mik = mi j = 1, then mk j = 0, and si (ek + ej ) = 2ei + ek + ej , which is not in

1+(B) from Lemma 5.4.

• If mik = 2, mi j = 1 (it is analogous to mik = 1, mi j = 2), then mk j = 0 and

si (ek + ej ) = 3ei + ek + ej . In this way we get qi i 6= −1, and if xk < xi < x j the

unique Lyndon word without x2
i x j or xk x3

i as factors is

xk x2
i x j xi = (1 + qi i )

−1q−1
i j xk x3

i x j + (1 + qi i )
−1q2

i i qi j xk xi x j x
2
i

∈ k(xi xk x2
i x j ) + k(x2

i xk xi x j ) + k(x3
i xk x j ) + k(xk xi x j x

2
i ),

using the quantum Serre relations; hence there are no Lyndon words of degree

3ei + ek + ej in SI .

So, (5-3) holds, for each k, j 6= i, k 6= j . �

Proof of (5-36). Assume mk j = mkl = 1. We prove case by case that

si (2ek + ej + el) /∈ 1+(B).

• If mi j = mik = mil = 0, then si (2ek +ej +el) = 2ek +ej +el , so it follows from

Lemma 5.4, because 2ek + ej + el /∈ 1+(B).

• If mi j 6= 0 (analogously, if mil 6= 0), then mik = mil = 0, because there are no

cycles in the Dynkin diagram. Then si (2ek + ej + el) = 2ek + ej + el +mi j ei . If

we consider xk < xl < x j < xi , using the equalities xk xi = qki xi xk , x j xl = qjl xl x j

and xl xi = qli xi xl , and also that x2
k xl, x2

k x j /∈ SI , we conclude that no possible

Lyndon words of degree 2ek + ej + el + mi j ei can be an element of SI , except

xk xl xk x j x
mi j

i ; but this, too, is not an element of SI , because xk xl xk x j /∈ SI . Hence

2ek + ej + el + mi j ei /∈ 1+(B).

• If mik = 1, and therefore mi j = mil = 0, then si (2ek + ej + el) = 2ek + ej + el +

2mikei . If we consider xl < xi < xk < x j , using the equalities x j xi = qj i xi x j ,
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x j xl = qjl xl x j and xl xi = qli xi xl , and also that x2
k xl, x2

k x j /∈ SI , we discard

as before all possible Lyndon words of degree 2ek + ej + el + 2mikei , except

xl xk x j xk x2mi j
i ; but this is not an element of SI , because xk xl xk x j /∈ SI . Thus

2ek + ej + el + 2mi j ei /∈ 1+(B).

• If i = j (analogously, if i = l), then sj (2ek +ej +el) = 2ek +ej +el /∈ 1+(B) if

m jk = 1 by Lemma 5.4, or sj (2ek +ej +el) = 2ek +3ej +el /∈ 1+(B) if m jk = 2

by Lemma 5.5.

• If i = k, then sk(2ek + ej + el) = ej + el /∈ 1+(B), since m jl = 0.

Also, if u ∈ {ek +ej , ek +el, ek, ej , el}, then u ∈1(B(Vi )), so si (u)∈1(B(V )).

The canonical surjective algebra morphisms from T (V ) to B and B(V ) induce a

surjective algebra morphism B→B(V ), so 1(B(V ))⊆1(B); in particular, each

si (u) lies in 1(B).

Consider a basis as in Proposition 1.11 for an order such that x j < xk < xl . From

Lemma 2.7, x j xk , xk xl , x j xk xl are elements of this basis, since they are not linear

combinations of greater words modulo Ii , the ideal of T (Vi ) such that si (B) =

T (Vi )/Ii . In the same way, (xk xl)(x j xk), xl xk(x j xk), (xk xl)xk x j , xk(x j xk xl), xl x2
k x j

(if x2
k 6= 0) are elements of this basis, where the parenthesis indicates the Lyndon

decomposition as nonincreasing products of Lyndon words. Also, x j xl , x j x2
k , x2

k xl

are not in this basis, by (5-3). By the relation (2-15) between Hilbert series and

the fact that 2ek + ej + el /∈ si
(
1+(B)

)
, we note that x j xk xl xk is not an element

of the basis. Thus this word is a linear combination of greater words. By Lemma

5.4, this implies that (5-4) holds in si (B). �

Proof of (5-37). As before, we prove first that si (3ek +2ej ) /∈ 1+(B) case by case:

• If mik = mi j = 0, then si (3ek + 2ej ) = 3ek + 2ej /∈ 1+(B) by assumption.

• If mik = 0, mi j = 1, then si (3ek +2ej ) = 2ei +3ek +2ej . If we consider an order

such that xk < xi < x j , a Lyndon word of degree 2ei +3ek +2ej in SI begins with

xk , and xk xi is not a factor, because xk xi = qki xi x j . Thus the possible Lyndon

words with these conditions are x2
k x j xi xk x j xi and x2

k x j xk x j x2
i ; the first is not in

SI because from (5-4) for j, k, i we can express x j xi xk x j as a linear combination

of greater words, and the second is not in SI because x2
k x j xk x j /∈ SI .

• If mik = 1, mi j = 0, then si (3ek + 2ej ) = 3ei + 3ek + 2ej . If we consider an

order such that x j < xi < xk , a Lyndon word of degree 3ei + 3ek + 2ej in SI

begins with x j , and x j xi is not a factor. Using that also x2
i xk, x2

j xk /∈ SI , the

possible Lyndon word under these conditions is x j xk xi x j xk xi xk xi . But from the

condition on the mrs , we are in cases Cθ or F4, and we use that (ad xi )
2xk = 0,

qi i 6= −1 to replace xi xk xi by a linear combination of x2
i xk and xk x2

i , and also

use x j xi = qj i xi x j , so we conclude that x j xk xi x j xk xi xk xi /∈ SI .

• If i = j , then sj (3ek + 2ej ) = 3ek + ej /∈ 1+(B), since mk j = 2.



Nichols algebras with standard braiding 99

• If i = k, then sk(3ek + 2ej ) = ek + 2ej /∈ 1+(B), since m jk = 1.

If v ∈ {ek +ej , 2ek +ej , ek, ej }, then v ∈ 1(B(Vi )), so si (v) ∈ 1(B(V )). Since

1(B(V )) ⊆ 1(B); in particular, each v lies in si (1(B)).

As in (a), consider a basis as in Proposition 1.11 for an order such that xk < x j . In

a similar way, xk x j , x2
k x j are elements of this basis, but x3

k x j and xk x2
j are not in this

basis by (5-3). By Lemma 2.7, (xk x j )(x2
k x j ), x j (x2

k x j )xk , (xk x j )
2xk , x j (xk x j )x2

k ,

x2
j x3

k (the last if x2
j , x3

k 6= 0) are not linear combinations of greater words modulo

Ii , so they are elements of the chosen basis. By the relation (2-15) between Hilbert

series and the fact that 3ek + 2ej /∈ si
(
1+(B)

)
, the Lyndon word x2

k x j xk x j is not

an element of the basis. Thus this word is a linear combination of greater words,

and by Lemma 5.5, this implies that (5-6) holds in si (B). �

Proof of (5-38). We prove case by case that

si (3ek + 2ej + el) /∈ 1+(B).

• If mik = mi j = mil = 0, then si (3ek + 2ej + el) = 3ek + 2ej + el , and this is not

in 1+(B) by Lemma 5.6.

• If i 6= j, k, l and mik 6= 0, the only possibility is mik = mki = 1, so V is of type

F4. Thus si (3ek +2ej +el)= 3ei +3ek +2ej +el . For the order xl < x j < xk < xi ,

the only possible Lyndon word without the factors xl x2
j , xl xk , xl xi , x2

j xk , x j xi ,

xk x2
i , x2

k xi is xl x j xk xi x j xk xi xk xi . Using the quantum Serre relations and the

fact that qi i = qkk 6= −1, we see that this Lyndon word is not in SI . Thus

3ei + 3ek + 2ej + el /∈ 1+(B).

• i 6= j, k, l and mi j 6= 0: there are no standard braided vector spaces with these

values.

• If i 6= j, k, l and mil 6= 0, the unique possibility is mil = mli = 1. In this case

si (3ek + 2ej + el) = 3ek + 2ej + el + ei . If we consider xk < x j < xl < xi , the

only possible Lyndon word of this degree without the factors xk xl , xk xi , x j xi ,

x3
k x j , xk x2

j is x2
k x j xl xi xk xi . But by assumption,

[
[x2

k x j xl]c, [xk x j ]c
]

c =
[
xi , [xk x j ]c

]
c = 0,

so [x2
k x j xl xi xk xi ]c =

[
[x2

k x j xl xi ]c, [xk x j ]c
]

c = 0, and x2
k x j xl xi xk xi /∈ SI .

• If i = k, then si (3ei + 2ej + el) = ei + 2ej + el /∈ 1+(B), by Lemma 5.4.

• If i = j , then si (3ek + 2ei + el) = 3ek + 2ei + el /∈ 1+(B), by Lemma 5.6.

• If i = k, then si (3ek + 2ej + ei ) = ek + 2ej + ei /∈ 1+(B), as before.

Now, if w ∈ {ek, ej , el, ek +ej , ek +ej +el, 2ek +ej , 2ek +ej +el, 2ek +2ej +el},

then w ∈ 1(B(Vi )), so si (w) ∈ 1(B(V )), hence si (w) ∈ 1(B).
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Consider a basis as in Proposition 1.11 for an order such that xk < x j < xl .

Then x j xk and xk xl are elements of this basis. We know that xk xl , x3
k x j , xk x2

j ,

xk x j xl xk , x2
k x j xk x j are not elements of the basis, since (5-3), (5-4) and (5-6) hold

in B. By Lemma 2.7, the relation (2-15) between Hilbert series and the fact that

3ek + 2ej + el /∈ si (1
+(B)), the Lyndon word x2

k x j xl xk x j is not an element of the

basis. Thus this word is a linear combination of greater words. By Lemma 5.6,

this implies that (5-8) holds in si (B). �

This concludes the proof of Lemma 5.23. Note also that si (B) is of the same

type as B.

Let V be of a type different from G2. We define the algebra B̂(V ) :=T (V )/I(V ),

where I(V ) is the two-sided ideal of T (V ) generated by

• (adc xk)
mk j +1x j , k 6= j ;

•
[
(adc x j )(adc xk)xl, xk

]
c, l 6= k 6= j , qkk = −1, mk j = mkl = 1;

•
[
(adc xk)

2x j , (adc xk)x j
]

c, k 6= j , qkk ∈ G3 or qj j = −1, mk j = 2, m jk = 1;

•
[
(adc xk)

2(adc x j )xl, (adc xk)x j
]

c, k 6= j 6= l, qkk ∈ G3 or qj j = −1, mk j = 2,

m jk = m jl = 1.

(Compare with the definitions in Section 4 of [Andruskiewitsch and Schneider

2002a].) Since V is of Cartan type, I(V ) is a Hopf ideal, by Lemmas 5.7–5.9.

Since I(V ) also is Z
θ -homogeneous, we have I(V ) ∈ S.

By Lemmas 5.4–5.6, the canonical epimorphism T (V ) → B(V ) induces an

epimorphism of braided graded Hopf algebras

πV : B̂(V ) → B(V ). (5-39)

Also, B̂(V ) satisfies the conditions in Theorem 2.6 for each i ∈ {1, . . . , θ}, so

we can transform it.

Lemma 5.24. With the notation above, si (B̂(V )) ∼= B̂(Vi ).

Proof. By Lemma 5.23, the relations defining I(Vi ) are satisfied in si (B̂(V )).

Thus the canonical projections from T (Vi ) onto B̂(Vi ) and si (B̂(V )) induce a

surjective algebra map B̂(Vi ) → si (B̂(V )). Conversely, each relation defining

I(V ) is satisfied in si (B̂(Vi )), so we have the following situation:

B̂(V ) // //

(((h
(h

(h
(h

(h
(h

(h
(h

si (B̂(Vi ))

B̂(Vi )
// //

66
6v

6v
6v

6v
6v

6v
6v

6v

si (B̂(V )).
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From the relation (2-15) between Hilbert series, we have, for each u ∈ N
θ ,

dim si (B̂(V ))u =
∑

k∈N: u−kei ∈N
θ

si (u−kei )∈N
θ

dim B̂(V )si (u−kei ),

and a analogous relation for dim si (B̂(Vi ))
u. But in view of the previous surjections

we have

dim si (B̂(V ))u ≤ dim B̂(Vi )
u, dim si (B̂(Vi ))

u ≤ dim B̂(V )u,

for each u ∈ N
θ . Since s2

i = id, each of these inequalities is in fact an equality, and

si (B̂(V )) = B̂(Vi ). �

We are now able to prove one of the main results of this paper.

Theorem 5.25. Let V be a braided vector space of Cartan type, of dimension θ ,

and C = (ai j )i, j∈{1,...,θ} the corresponding finite Cartan matrix, where ai j := −mi j .
The Nichols algebra B(V ) is presented by the generators xi , for 1 ≤ i ≤ θ , and

the relations

x Nα
α = 0, α ∈ 1+, (5-40)

adc(xk)
1−ak j (x j ) = 0, k 6= j. (5-41)

If there exist j 6= k 6= l such that mk j = mkl = 1, qkk = −1, then
[
(ad xk)x j , (ad xk)xl

]
c = 0. (5-42)

If there exist k 6= j such that mk j = 2, m jk = 1, qkk ∈ G3 or qj j = −1, then
[
(ad xk)

2x j , (ad xk)x j
]

c = 0. (5-43)

If there exist k 6= j 6= l such that mk j = 2, m jk = m jl = 1, qkk ∈ G3 or qj j = −1,

then [
(ad xk)

2(ad x j )xl, (ad xk)x j
]

c = 0. (5-44)

If θ = 2, V if of type G2, and q11 ∈ G4 or q22 = −1, then
[
(ad x1)

3x2, (ad x1)
2x2

]
c = 0, (5-45)

[
x1,

[
x2

1 x2x1x2

]
c

]
c
= 0, (5-46)

[[
x2

1 x2x1x2

]
c , [x1x2]c

]
c
= 0, (5-47)

[[
x2

1 x2

]
c ,

[
x2

1 x2x1x2

]
c

]
c
= 0. (5-48)

The following elements constitute a basis of B(V ):

xh1

β1
xh2

β2
. . . xh P

βP
, where 0 ≤ h j ≤ Nβj − 1, if βj ∈ SI , for 1 ≤ j ≤ P.
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Proof. We may assume that C is connected. For V of type G2, the result was

proved in Theorem 5.22. So we can assume mk j 6= 3, k 6= j .

The statement about the PBW basis was proved in Corollary 4.2; see the defi-

nition of the xα in Section 4B.

Consider the images of the xα in B̂(V ); they correspond in B(V ) with the xα,

and are PBW generators for a basis constructed as in Theorem 1.12, considering

the same order in the letters. As we observed in (5-39), there exists a surjective

morphism of braided Hopf algebras B̂(V ) → B(V ), so

1(B(V )) ⊆ 1(B̂(V )).

Also, B̂(V ) satisfies the conditions in Theorem 2.6 for each i ∈{1, . . . , θ}, so we

can transform it. By Lemma 5.24, the new algebra is B̂(Vi ), so we can continue.

Consider the sets

1̂ :=
⋃

{1(si1
. . . sik B̂) : k ∈ N, 1 ≤ i1, . . . , ik ≤ θ}, 1̂+ := 1 ∩ N

θ ;

1̂ is invariant by the si . Also, 1(B(V )) ⊆ 1, and

1(si1
. . . sik B̂(V )) = si1

. . . sik 1(B̂(V )).

Consider α ∈ 1̂+ \ 1+(B(V )). Suppose that α is not of the form mαi for

m ∈ N and i ∈ {1, . . . , θ}, and that it is of minimal height among such roots. For

each si , since α is not a multiple of αi , we have si (α) ∈ 1+ \ 1+ (B(V )); hence

deg si (α) − deg α ≥ 0. But α =
∑θ

i=1 bi ei , so
∑θ

i=1 bi ai j ≤ 0, and since bi ≥ 0,

we have
∑θ

i, j=1 bi ai j bj ≤ 0. This contradicts the fact that (ai j ) is definite positive,

and (bi ) ≥ 0, (bi ) 6= 0.

Also, mei ∈ 1+(B̂) ⇐⇒ m = Nei or m = 1, since x
Nei
i 6= 0. Hence

1(B̂(V )) = 1(B(V )) ∪ {Nαα : α ∈ 1(B(V ))}.

This follows since by Corollary 4.2 each α ∈ 1+(B(V )) is of the form

α = si1
· · · sim (ej ), i1, . . . , im, j ∈ {1, . . . , θ} .

Now, Nej ej ∈ 1(B̂(V )), so

Nαα = Nej α = si1
. . . sim (Nej ej ) ∈ 1(B̂(V )).

Also, each degree Nαα has multiplicity one in 1(B̂(V )).

Suppose there exist Lyndon words of degree Nαα, and consider one such word

u of minimal height. Let u = vw be a Shirshov decomposition thereof, and put

β := deg v, γ := deg w ∈ 1+(B̂(V )).
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By the preceding assumption, β, γ ∈ 1+(B(V )). Write

α =
θ∑

k=1

akek, β =
θ∑

k=1

bkek, γ =
θ∑

k=1

ckek,

so Nαak = bk +ck , for each k ∈ {1, . . . , θ}. We can assume, by taking a subdiagram

if necessary, that a1, aθ 6= 0.

Now, if V is of type F4 and β = 2e1 + 3e2 + 4e3 + 3e4, then c1 = 0, a1 = 1,

Nα = 2, or a1 = c1 = 1, Nα = 3, since α, γ 6= β.

• If Nα = 3, then 3a2 = 3 + c2. Hence c2 = 0, so c3 = c4 = 0, or c2 = 3, and

c3 = 4, c4 = 2. But in both cases we have a contradiction to α ∈ N
4.

• If Nα = 2, c1 = 0, then c2 and c4 are odd, and c3 is even and nonzero. The only

possibility is γ = e2 +2e3 + e4, so α = e1 +2e2 +3e3 +2e4. But qα = q 6= −1,

so Nα 6= 2, which is a contradiction.

Thus we can assume b1, c1 ≤ 1 or bθ , cθ ≤ 1, so a1 = b1 = c1 = 1 or aθ = bθ =

cθ = 1; in both cases, Nα = 2. For each possible β with b1 6= 0 (by the assumption

that a1 6= 0, we have b1 6= 0 or c1 6= 0), we look for γ such that β + γ has even

coordinates. In types A, D and E there are no such pairs of roots. As for the other

types:

• Bθ : β = viθ , γ = ui+1,θ . Then α = u1θ , but qα = q11 6= −1, which is a

contradiction.

• Cθ : β =w11, γ = eθ . Then α =u1θ , but qα =qθθ 6=−1, which is a contradiction.

• F4: β = e1 + e2 + 2e3 + 2e4, γ = e1 + e2, or β = e1 + 2e2 + 2e3 + 2e4, γ = e1.

In both cases, α = e1 + e2 + e3 + e4, but qα = q 6= −1, which is a contradiction.

Thus each root Nαα corresponds to x Nα
α , and each xα has infinite height, as

before. The elements

xh1

β1
xh2

β2
. . . xh P

βP
, where 0 ≤ h j < ∞, if βj ∈ SI , for 1 ≤ j ≤ P,

form a basis of B̂(V ) as a vector space.

Now let Ī (V ) be the ideal of T (V ) generated by the relations (5-41)–(5-44) and

(5-40). We have I(V ) ⊆ Ī (V ) ⊆ I (V ), so the corresponding projections induce a

surjective morphism of algebras φ : B → B(V ), where B := T (V )/ Ī (V ):

T (V )

����

// // B̂(V )

{{{{vv
v
v
v
v
v
v
v

����
B(V ) B

φ
oooo



104 Iván Ezequiel Angiono

Also, the elements

xh1

β1
xh2

β2
. . . xh P

βP
, where 0 ≤ h j < Nβj , if βj ∈ SI , for 1 ≤ j ≤ P,

generate B as a vector space, because they correspond to images of generators of

B̂(V ) and are nonzero (as before, each nonincreasing product of hyperwords such

that h j ≥ Nβj is zero in B). But φ is surjective, and the corresponding images of

these elements form a basis of B(V ), so φ is an isomorphism. �
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Brzeziński et al., Birkhäuser, Basel, 2008.
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