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Nickel is a vital strategic metal resource with commodity and financial attributes simultaneously, whose price fluctuation will
affect the decision-making of stakeholders. ,erefore, an effective trend forecast of nickel price is of great reference for the risk
management of the nickel market’s participants; yet, traditional forecast methods are defective in prediction accuracy and
applicability. ,erefore, a prediction model of nickel metal price is proposed based on improved particle swarm optimization
algorithm (PSO) combined with long-short-termmemory (LSTM) neural networks, for higher reliability.,is article introduces a
nonlinear decreasing assignment method and sine function to improve the inertia weight and learning factor of PSO, respectively,
and then uses the improved PSO algorithm to optimize the parameters of LSTM. Nickel metal’s closing prices in London Metal
Exchange are sampled for empirical analysis, and the improved PSO-LSTMmodel is compared with the conventional LSTM and
the integrated moving average autoregressive model (ARIMA). ,e results show that compared with the standard PSO, the
improved PSO has a faster convergence rate and can improve the prediction accuracy of the LSTMmodel effectively. In addition,
compared with the conventional LSTMmodel and the integrated moving average autoregressive (ARIMA) model, the prediction
error of the LSTM model optimized by the improved PSO is reduced by 9% and 13%, respectively, which has high reliability and
can provide valuable guidance for relevant managers.

1. Introduction

Nickel is a rare metal with outstanding physical and
chemical properties. It is known as the “vitamin of the steel
industry” and is also the raw material of green batteries. In
recent years, nickel metal plays an increasingly important
role in the fields of high-tech industry and military industry
and is a strategic metal resource for many countries.
However, China’s nickel resources are relatively small, and
its reserves only account for 3.93% of the world [1]. Besides,
China’s nickel mining and smelting technology are relatively
backward, and the annual average nickel output is less than
5% of global nickel production. ,e contradiction between
supply and demand makes China need to import a large
number of nickel resources every year. ,e price of nickel
metal is susceptible to many factors such as supply and
demand, national policy [2, 3], and the WTO environment.

So the nickel price time series presents the characteristics of
highly unstable, complex, and unpredictable, making it
difficult for nickel market participants such as related
companies, investors, and consumers to grasp business
opportunities and conduct normal production, operation,
and consumption accurately. ,erefore, it is of great sig-
nificance to predict the price of nickel metal effectively.

In recent years, many scholars have conducted a series of
studies on the price forecast of commodities. Research
objects involve energy [4, 5], metals [6, 7], and agricultural
products [8, 9]. ,e research methods can be divided into
two categories: qualitative and quantitative forecasting. ,e
qualitative prediction primarily analyzes the influencing
factors and fluctuation characteristics of prices [5, 10], and
the quantitative prediction mainly uses statistical methods
[11], shallow learning [12], and deep learning methods [13]
to construct prediction models. Although the existing
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literature on price predicting covers a wide range of research
subjects, there are few studies on the prediction of nickel
prices at home and abroad. And most studies focus on the
development of nickel [14] and explore the influencing
factors of nickel price fluctuations [15–17], but there is no
formal, highly reliable quantitative prediction model of
nickel prices. In addition, although there are many quan-
titative prediction methods, the commonly used statistical
methods and the shallow learning methods still have certain
defects, and there are certain conditions for use. For ex-
ample, the integrated moving average autoregressive model
(ARIMA) and the gray prediction model are generally
suitable for processing linear or stationary sequences, but
they are difficult to obtain the nonlinear characteristics of the
data. Although artificial neural networks have self-orga-
nizing and self-adjusting capabilities to deal with complex
nonlinear problems, their ability to predict long-term se-
quences is limited. ,e long-short-term memory neural
network (LSTM) has memory cells, which can extract deep
features from a small number of samples. It is suitable for
processing time series and has achieved sound application
effects in many fields [18, 19]. However, the parameters of
the LSTM model are usually determined by experience, so
the subjectivity is strong and will affect the fitting ability of
the model. Given the above problems, Feng and Zi-Jun [20]
constructed a BP neural network with chaotic PSO opti-
mization to predict carbon price. ,e results show that the
prediction accuracy and stability of the model are better than
the traditional BP neural network and the model optimized
by standard PSO. Catalao et al. [21] and other scholars
proposed a hybrid method based on wavelet transform
(WT), particle swarm optimization (PSO), and adaptive
network fuzzy inference system (ANFIS) for short-term
electricity price forecasting and applied to the short-term
electricity price prediction in the Spanish electricity market.
By comparing with ARIMA, NN, wavelet-ARIMA, FNN,
and other models, it is found that the hybrid model WPA is
perfect in both prediction accuracy and calculation time.

To explore a more reasonable and efficient method to
predict nickel metal price, the LSTM neural network opti-
mized by the improved particle swarm optimization (PSO)
algorithm is proposed to predict the price of nickel metal.
Nonlinear decreasing assignment method and sine function
are introduced to improve the inertia weight and the
learning factors of the PSO algorithm, respectively.,en, the
improved PSO algorithm is used to optimize the parameters
of the LSTM, and the nickel price of the London Metal
Exchange is used as a sample to predict the nickel price.
,en, the model is compared with the conventional LSTM
model and the time-predictive model ARIMA with high
prediction accuracy to verify the validity and reliability of the
model.

2. Related Research Theory

,e LSTM neural network can learn the complex association
between features and tags, but its learning process is highly
susceptible to time step, the number of hidden layers, and
the number of nodes in each hidden layer. However, these

parameters are usually determined by manual adjustment,
which not only increases the complexity of the operation
process but also may result in lower prediction accuracy
[22]. ,e PSO algorithm is simple in operation and fast in
convergence and has a significant effect in solving complex
optimization problems. ,erefore, the PSO algorithm is
adopted in this article to optimize the three parameters of the
LSTM model. According to the root mean square error of
prediction results of the LSTM model corresponding to
different parameters, the PSO algorithm adaptively adjusts
the position and velocity of particles to find the optimal
parameter combination of the LSTM model.

2.1. LSTM Model. ,e long-short-term memory (LSTM)
model is a variant of the recurrent neural network, which
was proposed and improved based on the recurrent neural
network [23]. LSTM changes the weight of the self-loop by
adding input gate, forgetting gate, and output gate, which
can ease the problem of gradient disappearance and gradient
explosion in model training, and make up the defects of
traditional RNN model. In addition, LSTM has excellent
advantages in dealing with nonlinear time-series data with
associated relationships for the particular memory function.
,e basic unit structure of LSTM is shown in Figure 1.

In Figure 1, the LSTM is a four-layer structure with
interactions between structures, where ht− 1 and ht represent
the output of the previous cell and the current cell, xt
represents the input of the current unit, the box represents
the neural network layer, the content in the box is the ac-
tivation function, and the circles represent the arithmetic
rules between vectors. Ct represents the state of the neuron
at time t and ft represents the forgetting threshold, which
controls the probability of forgetting the state of the last unit
neuron through the sigmoid activation function. it repre-
sents the input threshold, which determines the information
that needs to be updated by the sigmoid function, and then
uses the tanh activation function to generate a new memory
Ct′, and ultimately controls how much new information will
be added to the neuron state. And ot represents the output
threshold, which determines which parts of the neuron state
are output by the sigmoid function, and uses the tanh ac-
tivation function to process the neuron state to get the final
output.

,e input layer of the LSTM neural network contains
three parameters: sample, time step, and feature dimension,
where the time step can be understood as the length of the
sliding window. ,e value of the time step determines how
many previous consecutive input data will affect the current
input data; that is, how many historical data will be used to
predict the data of the next time. ,e setting of this pa-
rameter helps the LSTM neural network to learn long-term
dependency information within the time-series data to
improve the accuracy of the prediction results. ,e hidden
layer has one parameter: the number of hidden layer nodes,
that is, the number of neurons contained in the hidden layer.
In an LSTM unit, the physical implementation of each gate is
essentially a gate function implemented by several hidden-
layer neurons. ,e hidden-layer neurons are fully connected
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with the input vector, and the input vectors are weighted and
summed by the weight coefficient matrix, and then the offset
matrix is added to obtain the output of the hidden layer
through the excitation function. ,e output layer contains
two parameters: the number of hidden layer nodes and the
output dimension. ,e calculation process of the LSTM
memory unit can be expressed as follows:

ft � sigmoid wf xt, ht− 1  + bf ,
it � sigmoid wi xt, ht− 1  + bi( ,
ot � sigmoid wo xt, ht− 1  + bo( ,
Ct′ � tanh wC xt, ht− 1  + bC( ,

(1)

where wf, wi, wo, and wC represent the weight coefficient
matrix corresponding to the forgetting gate, the input gate,
the output gate, and the neuron state matrix, respectively;
and, bf, bi, bo, and bC represent corresponding offset con-
stants, respectively. According to the above formula, the
state Ct and the output ht of the neuron can be further
calculated as shown in the following equations:

Ct � ftCt− 1 + itCt′, (2)

ht � ot tanh Ct( . (3)

,is is the forward calculation process of the LSTM
neural network model. ,e particular structure enables it to
learn long-term dependencies and has been widely used in
text analysis [24], time-series prediction [25], and other
fields.

2.2. Standard PSO Algorithm. Particle swarm optimization
(PSO) is a global optimization algorithm with simple rules
and fast convergence [26]. It has been widely used in neural
network training and structural optimization design [20].

When solving the optimization problem, PSO updates
the velocity and position of the particle by tracking the
individual optimal particle and the group optimal particle. It
can be described as follows: In the D-dimensional search
space, there are m particles forming a group. In the t-th
iteration, the position and velocity of the i-th particle areXi,t

and Vi,t, respectively. ,e particle updates its position and
speed by supervising the individual’s optimal fitness value
pbesti and the group’s current optimal fitness value gbestt.

,e specific evolution formula is shown in the following
equations:

Vi,t+1 � w∗Vi,t + c1 ∗ rand∗ pbesti − Xi,t 
+ c2 ∗ rand∗ gbestt − Xi,t , (4)

Xi,t+1 � Xi,t + λ∗Vi,t+1, (5)

where w is the inertia weight, c1 and c2 are the learning
factors, rand is the random number between [0, 1], and λ is
the velocity coefficient, λ� 1. ,e particle’s velocity update
formula consists of three parts. ,e first part is w∗Vi,t,
which indicates that the particle maintains its previous speed
trend and plays the role of balancing global search and local
search. Among them, the inertia weight w will affect the
performance of the algorithm to a large extent. If the weight
is set too large, it is not conducive to the local search in the
later stage of the algorithm. If the setting is too small, it is not
conducive to the global search in the early stage of the al-
gorithm, which will slow down the convergence speed of the
population. ,e second part is c1 ∗ rand∗ (pbesti − Xi,t),
which indicates the ability of the particle to tend to the best
position in its history. Among them, the learning factor c1
reflects the preference degree of the particle learning to the
extreme value of the individual, and its value will affect the
global searching ability of the algorithm, which will affect the
convergence speed of the algorithm. ,e third part is
c2 ∗ rand∗ (gbestt − Xi,t), which indicates the ability of the
particle to tend to the best position in the history of the
population. Among them, the learning factor c2 reflects the
preference degree of the particle learning to the global ex-
tremum, and its value will affect the local search ability of the
algorithm, which may cause local optimal.

2.3. ARIMA Model. ,e ARIMA model is called autore-
gressive integrated moving average model, which consists of
autoregressive and moving average. Its expression is
ARIMA(p, d, and q), where p is the autoregressive order, d is
the difference order, and q is the moving average order.
ARIMA is a linear time-series prediction method with high
accuracy commonly used in statistics, which can well de-
scribe the linear characteristics of time series when dealing
with complex time series. ,erefore, it is widely used in the
field of price prediction research.

,e expression of the ARIMA model is as follows:

Xt � φ1Xt− 1 + φ2Xt− 2 + · · · + φpXt− p + εt + θ1εt− 1

+ θ2εt− 2 + · · · + θqεt− q,
(6)

where φ1,φ2, . . . ,φp are autoregressive coefficients, p is the
autoregressive order, θ1, θ2, . . . , θq are moving average co-
efficients, q is the moving average order, and εt  is the white
noise sequence.

,e process of constructing ARIMA model for time-
series prediction is shown in Figure 2.

,e premise of constructing the ARIMA model is that
the sequence is stationary, so the first step is to verify the
smoothness of the data. In this article, the ADF (Augmented
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Figure 1: ,e structure diagram of the LSTM unit.
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Dickey–Fuller test) method is used to test the stability of the
sequence. In addition, it is necessary to verify whether the
data are a white noise sequence because the white noise
sequence is randomly perturbed and cannot be predicted. In
the model identification stage, the parameters’ range of the
ARIMA model can be roughly determined by plotting the
autocorrelation graph and the partial autocorrelation graph,
and then the parameters of the model are finally determined
according to the information criterion. ,e Akaike In-
formation Criterion (AIC) is a commonly used information
criterion. To avoid overfitting, the model with the smallest
AIC value is generally preferred. After determining the
parameters of the model, it is necessary to verify whether the
model is appropriate. In this stage, we mainly test whether
the residual sequence of the model is white noise. If the
residual sequence is not white noise, it indicates that the
currently constructed model does not fit all the valuable
information in the sequence, and the parameters of the
model need to be redetermined until the residual sequence is
classified as white noise.

3. Construction of LSTM Prediction Model
Optimized by Improved PSO

Although PSO has a significant effect in solving complex
optimization problems, it lacks effective parameter control
when dealing with optimization problems. ,ere are
problems such as slow convergence, easy to fall into local
optimum, and low precision in the later iteration [27].
,rough the analysis of particle swarm evolution formula in
Section 2.2, this article improves the inertia weight and
learning factor of PSO algorithm and uses the improved PSO
algorithm to optimize the parameters of LSTM model to
reduce the subjective influence of artificially selected
parameters.

3.1. Improved PSO Algorithm

3.1.1. Improvement of InertiaWeight. ,e inertia weightw is
mainly used to control the influence of the migration ve-
locity on the current particle velocity, which is manifested as
the performance of the PSO. ,e commonly used inertia

weight assignment strategy is a linear decrement assignment;
that is, the weight w decreases linearly with the number of
iterations. Although this strategy can improve the perfor-
mance of the PSO algorithm to a certain extent, as the
number of iterations decreases linearly, the local search
ability of the PSO will be worse. ,erefore, in order to
improve the overall optimization level of PSO, based on the
previous research [28], the nonlinear decrement assignment
method is adopted, as shown in the following equation:

w � wmax − wmax − wmin( ∗
���������

i

item_max


, (7)

where wmax and wmin are the maximum inertia weight and
the minimum inertia weight, respectively. i is the current
iteration number and item_max is the maximum iteration
number.

3.1.2. Improvement of Learning Factors. ,e learning factors
c1 and c2 are mainly used to adjust the step size of the particle
moving to the individual optimal position and the global
optimal position. In practical applications, with the advance
of the iteration process, it is usually required that the value of
c1 changes from large to small to accelerate the search speed
in the early iteration and improve the global search ability.
And the value of c2 is required to be changed from small to
large to facilitate the local refinement search at the later stage
of the iteration and improve the accuracy, simultaneously.
However, the standard PSO usually sets c1 � c2 � 2, which
cannot meet the demands of practical applications. ,ere-
fore, the sine function is introduced to improve the learning
factor, as shown in the following equation:

c1 � 2
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Figure 2: Prediction flowchart of ARIMA model.
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3.2. Implementation Process of the LSTM Optimized by the
Improved PSO. In this article, the LSTM neural network
model optimized by the improved PSO algorithm is used to
predict the price of nickel. ,e specific implementation
process is shown in Figure 3.

,e specific implementation steps of the forecast model
of nickel price are as follows:

(1) Preprocess the sample data: to better fit the regularity
contained in the time series and avoid the influence
of the data on the gradient descent method, the
nickel price data need to be smoothed and nor-
malized. ,e specific calculation methods are shown
in the following equations:

Δxt � xt+1 − xt, (9)

y �
Δx − Δxmin

Δxmax − Δxmin

, (10)

where xt and xt+1 are sample data corresponding to
time t and time t + 1, respectively, and Δxt is a
first-order difference corresponding to sample xt.
Δx is the sample data after the difference, Δxmin

and Δxmax are the minimum and maximum values
of the sample data after the difference, re-
spectively, and y is the value obtained by nor-
malizing the Δx.

(2) Initialize the parameters: determine the population
size, particle dimension, the number of iterations,
learning factor, inertia weight, and the defined in-
terval of the parameter to be optimized.

(3) Initialize the particles: initialize the position and
velocity of the particle, and randomly generate a
particleXi,0(node1, node2, look_back), where node1
represents the number of neurons in the first hidden
layer, node2 represents the number of neurons in the
second hidden layer, and look_back represents the
time step.

(4) Set the fitness function of the particle: the sample
data are divided into training data, verification data,
and test data. In this article, the training data are
input to the neural network for training. ,e root
mean square error (RMSE) of the verification data of
the LSTM model obtained after reaching the limit of
the training times is selected as the individual fitness
function, and the minimum fitness value is taken as
the iterative target of the PSO algorithm. ,en, the
improved PSO was used to find the best parameters
to be optimized to determine the optimal prediction
model for nickel price. ,e fitness value (fitness) is
calculated as follows:

fitness � RMSE(LSTM(node1, node2, look_back)),

RMSE(LSTM(node1, node2, look_back)) �

��������������
1

N
N
t�1

xt − xt( 2,


(11)

where N is the number of verification samples and xt
and xt are the real and fitted values of the verification
sample, respectively.

(5) Update the speed and position of the particles:
calculate the fitness value of each particle and de-
termine the individual optimal fitness value and the
group optimal fitness value. In the iterative process,
the velocity and position of the particle are

continuously updated according to the two optimal
values.

(6) Complete the prediction and analyze the results: the
parameter values obtained when the end condition of
the improved PSO algorithm is satisfied are substituted
into the LSTM neural network model, and then the
test samples are input into the model for prediction,
and finally, the prediction results are analyzed.
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Figure 3:,e implementation process of the improved PSO-LSTM
model.
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4. Case Analysis

In order to verify the effectiveness of the LSTM neural
network model with improved PSO optimization, five
predictionmodels are constructed based on the deep learning
library Keras. ,ey are as follows: (1) LSTMmodel with only
one hidden layer optimized by standard PSO algorithm
(PSO-LSTM11), (2) LSTMmodel with only one hidden layer
optimized by improved PSO algorithm (PSO-LSTM12), (3)
LSTM model with two hidden layers optimized by standard
PSO algorithm (PSO-LSTM21), (4) LSTM model with two
hidden layers optimized by improved PSO algorithm (PSO-
LSTM22), and (5) conventional LSTM model. In addition,
the autoregressive integrated moving average model
(ARIMA) for processing time-series prediction is con-
structed as a control experiment. For the same sample data,
the above six models are used to predict nickel prices.

4.1. Selection of Evaluation Indicators. To show the pre-
diction effect of each model, the three indicators of root
mean square error (RMSE), mean absolute deviation (MAE),
and mean absolute percentage error (MAPE) are used to
measure the performance of each model. RMSE is sensitive
to the large deviation between the predicted value and the
real value, which can reflect the accuracy of the prediction
result well. MAE can avoid the problem that the positive and
negative errors cancel each other out. MAPE considers the
deviation between the predicted value and the actual value as
well as the relationship between the error and the real value,
which can better reflect the accuracy of the prediction result.
,e calculation formulas for the three indicators are as
follows:

RMSE �

�������������
1

N
N
t�1

xt − xt( 2


,

MAE �
1

N
N
t�1

xt − xt ,

MAPE �
100

N
N
t�1

xt − xt
xt


,

(12)

where N is the number of samples and xt and xt are the true
and predicted values of the sample, respectively.

4.2. Data Preprocessing. As the largest nonferrous metals
exchange in the world, London Metal Exchange’s trading
price is regarded as the benchmark of the world metal trade,
which has an important impact on the production and sales
of nonferrous metals in various countries. ,erefore, this
article uses the monthly average closing price of LME nickel
on the London Metal Exchange from June 2006 to July 2018
as the research sample, as shown in Figure 4(a).

4.2.1. Data Preprocessing of the LSTM Model. From
Figure 4(a), it can be found that the price fluctuation of

nickel metal is frequent and extensive. In order to reduce the
influence of other factors on the prediction results, the article
makes a smooth treatment of nickel price according to
equation (9). ,en, this article normalizes the differential
data to avoid numerical problems and make the network
converge quickly, and the normalized form is shown in
equation (10). ,e final preprocessed data are shown in
Figure 4(b).

After data processing, the data set is divided into three
parts. ,e data of 2006.06–2013.07 are used as training data,
the data of 2017.08–2015.12 are used as verification data, and
the data of 2016.01–2018.07 are used as test data.

4.2.2. Data Preprocessing of the ARIMA Model. Since the
validation set is not needed when constructing an ARIMA
model for prediction, the data set is divided into two parts. In
order to ensure the fairness of the model performance
comparison, the data of 2006.06–2015.12 are used as training
data and the data of 2016.01–2018.07 are used as test data.

Since the ARIMA model requires the sequence to be
stable, the article firstly performs the ADF test on the nickel
metal price series. As shown in Table 1, it is found that the
p-value is much larger than the significance level of 0.05, so
the sequence is considered to have a unit root and is
nonstationary. ,e original sequence needs to be smoothed.
In addition, the fluctuation of nickel metal price is large, so
in order to alleviate the influence of heteroscedasticity on the
model, this article performs the logarithmic operation on the
original sequence and performs first-order differential
processing on the logarithmic sequence.,e ADF test is then
performed on the first-order difference sequence, as shown
in Table 1. From Table 1, it is found that the p-value of the
first-order difference sequence is much smaller than the
significance level of 0.05, so the first-order difference se-
quence is considered to be a stationary sequence. ,erefore,
the first-order difference sequence of the LME nickel metal
price is selected for analysis.

To verify the applicability of the model, the Ljung–Box
test is performed on the first-order difference sequence. ,e
Ljung–Box test is a test of pure randomness to verify whether
the sequence is a white noise sequence. ,e results of the
Ljung–Box test are shown in Table 2.

From Table 2, it can be found that the p-value of the Q
statistic are far less than the significance level of 0.05, so the
first-order difference sequence is a nonwhite noise sequence.
In summary, the ARIMA model can be constructed to
analyze the sequence.

4.3. Prediction ofNickel Prices Based onLSTM. In this article,
the adaptive moment estimation (Adam) algorithm is used
as the optimization algorithm to train the internal param-
eters of LSTM. To prevent the overfitting phenomenon in
the LSTM training process, use dropout for regularization
and set dropout� 0.1. ,e number of LSTM training is 50.
,e parameters of the PSO are set as follows: the population
number is 20, the number of iterations is 50, the minimum
value of the parameter to be optimized is 1, and the max-
imum value is 15. And the learning factor of the standard
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PSO is set to c1 � c2 � 2, and the inertia weight is set to
w� 0.6; the maximum inertia weight of the improved PSO is
set to 0.8, and the minimum inertia weight is set to 0.2.

4.3.1. Prediction of Nickel Prices Based on Conventional
LSTM. In order to determine the parameters of the model
when constructing the LSTM model for prediction, 1000
groups of integers in the range of [1, 15] are randomly
generated as the value of the time step and the number of
nodes in each hidden layer for the LSTM model with only
one LSTM layer and two LSTM layers. �en, the LSTM
models corresponding to different parameter combinations
are used for nickel metal price prediction, respectively, and
the RMSE of the verification set of each model is compared.
Some results are shown in Table 3.

In Table 3, look_back is the time step, node is the number
of nodes contained in the hidden layer in the LSTM model

with a single hidden layer, node1 and node2 are, re-
spectively, the numbers of nodes included in each hidden
layer in the LSTM model with two hidden layers, and the
layer is the number of hidden layers of the LSTM model.
Observing the data in Table 3, it can be found that the setting
of the numbers of hidden layers, the number of nodes in-
cluded in the hidden layer, and the time step have a deep
influence on the fitting effect of the LSTM. �e model
LSTM2 (look_back� 15, node� 3, layer� 1) with the
smallest RMSE of the verification set is selected as the
representative of the traditional LSTM model in the com-
parative experiment.

4.3.2. Prediction of Nickel Prices Based on the LSTM Model
Optimized by Improved PSO. �e standard PSO algorithm
and the improved PSO algorithm are used to optimize the
LSTM model with one hidden layer and two hidden
layers, respectively. In the process of optimizing the
LSTM by PSO, the change of the fitness value is shown in
Figure 5.

From Figure 5, fitness11, fitness21, fitness12, and fit-
ness22 are the fitness values corresponding to the models

Table 1: �e results of two ADF tests.

Test item Test result of original sequence Test result of processed sequence

Test statistic value − 2.2601036330998725 − 8.7048239142842423
p-value 0.18515824547409387 0.00000000000003725
Critical value (1%) − 3.4786478891750301 − 3.4765979175374011
Critical value (5%) − 2.8827217656441682 − 2.8818291230495543
Critical value (10%) − 2.5780653266120561 − 2.5775887982253085

Table 2: �e Ljung–Box test results of first-order difference
sequences.

Lag AC Q p-value

1.0 0.335056 13.137734 0.000289
2.0 0.137655 15.375058 0.000459
3.0 − 0.047252 15.641057 0.001343
4.0 0.094434 16.713127 0.002197
5.0 0.134068 18.893789 0.002012
6.0 0.033009 19.027203 0.004118
7.0 − 0.080867 19.835415 0.005936
8.0 − 0.115688 21.505096 0.005920
9.0 − 0.074676 22.207423 0.008244
10.0 − 0.000595 22.207468 0.014082
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Figure 4: �e (a) original sequence and (b) processed sequence of nickel metal monthly price.

Table 3: �e display of partial LSTM prediction models.

Model Structure
RMSE

verification

LSTM1 (look_back, node, layer)� (10, 3, 1) 788.60
LSTM2 (look_back, node, layer)� (15, 3, 1) 617.53
LSTM3 (look_back, node, layer)� (15, 11, 1) 973.40

LSTM4
(look_back, node1, node2, layer)� (15, 4,

11, 2)
624.12
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PSO-LSTM11, PSO-LSTM21, PSO-LSTM12, and PSO-
LSTM22, respectively. �e following can be seen from
Figure 5:

(1) �e final convergence value of fitness21 is smaller
than that of fitness11, and its convergence speed is
faster than that of fitness11. Fitness22’s final con-
vergence value is smaller than that of fitness12, and
its convergence speed is faster than that of fitness12.
It indicates that the fitness value of the LSTM with
two hidden layers optimized by PSO is smaller than
that of the LSTMwith one hidden layer optimized by
PSO, and the convergence speed is faster.

(2) �e final convergence value of fitness12 is smaller
than that of fitness11, and the convergence speed is
faster than that of fitness11. �e final convergence
value of fitness22 is smaller than that of fitness21, and
the convergence speed is faster than that of fitness21.
It shows that the fitness value of LSTM optimized by
improved PSO is smaller than that of LSTM opti-
mized by standard PSO, and the convergence speed
of improved PSO is faster than that of standard PSO.

From the above, it can be seen that the improved PSO
algorithm can effectively improve the prediction accuracy of
the LSTM neural network and the convergence speed of the
PSO algorithm. �e prediction effect of the LSTM model
optimized by the improved PSO algorithm is significantly
better than that of the LSTM model optimized by standard
PSO, and the prediction effect of the PSO-LSTM22 is the best.

To verify the rationality and effectiveness of the LSTM
optimized by the improved PSO algorithm in this article, the
following control experiments were set up: (1) the LSTM
model with two hidden layers optimized by PSO with im-
proved inertia weight w according to equation (7) (PSO-
LSTM-W) and (2) the LSTM model with two hidden layers
optimized by PSO with improved inertia weightw according
to equation (7) and learning factors according to the liter-
ature [28] (PSO-LSTM-WC). �e changes in fitness values

for each model during the iterative process are shown in
Figure 6.

Fitness21, fitness22, fitnessW, and fitnessWC are fitness
values corresponding to the models PSO-LSTM21, PSO-
LSTM22, PSO-LSTM-W, and PSO-LSTM-WC, respectively.
�e following can be seen from Figure 6:

(1) �e convergence speed of fitnessW is faster than that
of fitness21, but the final convergence values of the
two are close. It shows that the improved inertia
weight method shown in equation (7) can accelerate
the convergence speed of PSO, but the accuracy is
not improved.

(2) �e final convergence value of fitnessWC is smaller
than that of fitness21 and fitnessW, and the con-
vergence speed is faster than that of fitness21 and
fitnessW. It shows that the improved method of
PSO-LSTM-WC model can effectively improve the
search accuracy and speed of the PSO algorithm.

(3) �e final convergence value of fitness22 is signifi-
cantly smaller than that of fitnessWC, and the
convergence speed is slightly faster than that of
fitnessWC. It indicates that the improved method of
PSO-LSTM22 model can significantly improve the
convergence speed of the PSO algorithm and the
prediction accuracy of the LSTM model, and its
performance is better than that of PSO-LSTM-WC
model.

In conclusion, the PSO-LSTM22 nickel price prediction
model proposed in this article is reasonable and efficient.

In addition, to present the optimal parameter values of
the LSTM model determined by the improved PSO algo-
rithm, Figures 7 and 8, respectively, show the changes in the
number of the nodes and the time step in the PSO-LSTM22
model’s optimization process.

It can be seen from Figures 7 and 8 that the optimal
parameter of the PSO-LSTM22 model is set to node1� 4,
node2� 2, and look_kack� 15.
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4.4. Prediction of Nickel Prices Based on ARIMA. In order to
determine the order of the ARIMA model, this article first
draws the first-order difference sequence and its autocor-
relation graph and partial autocorrelation graph, as shown in
Figure 9. ,en, the order range of the model was identified
by observing the autocorrelation graph and the partial au-
tocorrelation graph, and then the p and q of the model were
determined according to the AIC criterion.

When determining the order of the model according
to the AIC criterion, the order range of p and q are se-
lected as [0, 5], and the heat map corresponding to the
AIC value of each model in the range is drawn, as shown in
Figure 10.

Five models were selected by observing the heat map and
the autocorrelation and partial autocorrelation plot of the
first-order difference sequence in the original manuscript:
ARIMA(3, 1, 2), ARIMA(3, 1, 3), ARIMA(0, 1, 2), ARIMA(1,
1, 2), and ARIMA(1, 1, 1) to predict nickel metal prices,
respectively.

After determining the order of the model, in order to
verify the rationality of the model, this article takes the
ARIMA(1, 1, 2) model as an example and carries out the
Ljung–Box test on the residual sequence. ,e results are
shown in Table 4. Meanwhile, the autocorrelation graph,
partial autocorrelation graph, and QQ graph of the residual
sequence are drawn, as shown in Figure 11.

From Table 4, it can be found that the p-value of the Q
statistic is far greater than the significance level of 0.05, so
the residual sequence is considered to be a white noise
sequence. It can be seen from Figure 11 that the auto-
correlation coefficient and the partial autocorrelation
coefficient are mostly within the confidence interval, so
the residual is considered to not correlate. In addition, the
residuals in the QQ graph are basically concentrated on a
straight line, indicating that the residuals obey the normal
distribution. It can be considered that the model has a
good fitting effect.

,en, in order to test whether the residual is hetero-
scedastic, an autocorrelation test on the residual square
sequence was performed. ,e results are shown in Table 5.

From Table 5, it can be found that the p-value of lag 1–12
are all greater than the significance level of 0.05, so it can be
considered that the residual sequence does not have auto-
correlation; that is, the residual sequence does not have the
ARCH effect. In summary, it is reasonable to construct an
ARIMA(1, 1, 2) model to analyze the sequence.

,e verification processes of the other 4 models are the
same as above. Finally, the errors corresponding to the test
sets of the five models are compared, as shown in Table 6.

From Table 6, it can be found that the RMSE, MAE, and
MAPE of the model ARIMA(1, 1, 2) are smaller than those of
the other four models, and the prediction effect is better. So
the ARIMA(1, 1, 2) model is finally constructed to predict
the price of nickel metal.

5. Result Analysis

To evaluate the prediction performance of the improved
LSTM model optimized by the PSO algorithm, the test

samples are used for verification. In this article, the
LSTM model optimized by the standard PSO algorithm,
the conventional LSTM model, and the ARIMA model
are compared with the model. Since the time steps of the
five LSTM models all have a value of 15, Figure 12 shows
the relative error of each model for the prediction results
of the last 15 test data. In addition, the maximum and
minimum values of the relative errors are listed in
Table 7.

As can be seen from Table 7, the maximum and mini-
mum relative errors of the PSO-LSTM12 model are reduced
by 1% and 28%, respectively, compared with the PSO-
LSTM11 model. Moreover, the maximum and minimum
relative errors of the PSO-LSTM22model are reduced by 1%
and 44%, respectively, compared with the PSO-LSTM21
model. It shows that, compared with the standard PSO
algorithm, the improved PSO algorithm can effectively
improve the prediction accuracy of the LSTM model. ,e
maximum and minimum relative errors of the LSTM model
optimized by PSO are lower than those of the conventional
LSTM model and the ARIMA model, indicating that using
the PSO algorithm to optimize the LSTM model can ef-
fectively improve the prediction accuracy of the LSTM
model.

In order to more intuitively display the prediction
effects of each model, the predicted performance evaluation
index values of each model are calculated, as shown in
Table 8.

From Table 8, it can be found that compared with the
PSO-LSTM21 model, the RMSE, MAE, and MAPE of the
PSO-LSTM22 model are reduced by 3%, 7%, and 6%, re-
spectively. And the RMSE, MAE, and MAPE of the PSO-
LSTM12 model are all smaller than those of PSO-LSTM11.
It shows that compared with the standard PSO algorithm,
using the improved PSO algorithm to optimize the LSTM
model can improve the accuracy of the optimization re-
sults. Comparing the prediction error of PSO-LSTM11 and
PSO-LSTM21, PSO-LSTM12, and PSO-LSTM22, it can be
found that the prediction effect of the LSTM with two
hidden layers is better than that of the LSTM with one
hidden layer. Comparing the prediction error of the PSO-
LSTM series model and the standard LSTMmodel, it can be
found that the evaluation index values of the PSO-LSTM
model are smaller than those of the LSTM model. In
particular, compared with the LSTM model, the RMSE,
MAE, and MAPE of the PSO-LSTM22 model are reduced
by 9%, 9%, and 10%, respectively. It shows that the PSO
algorithm can effectively improve the prediction perfor-
mance of the LSTM model. ,e evaluation index values of
the PSO-LSTM model and the LSTM model are smaller
than those of the ARIMA model, which indicates that the
prediction effect of the LSTM model is better than that of
the shallow structure model, and the LSTM model is more
suitable for dealing with complex nonlinear problems.
Also, compared with the ARIMAmodel, the accuracy of the
PSO-LSTM22 model is improved by 13%. In conclusion,
the LSTM optimized by the improved PSO constructed in
this article has better prediction effect and higher
reliability.
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Figure 9:,e (a) original data and (b) processed data nickel price and (c) autocorrelation graph and (d) partial autocorrelation graph of the
processed sequence.
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Table 4: ,e Ljung–Box test results of residual sequence of ARIMA(1, 1, 2).

Lag AC Q p-value

1.0 0.026972 0.083684 0.772366
2.0 − 0.027064 0.168704 0.919108
3.0 − 0.229964 6.363354 0.095210
4.0 0.057894 6.759599 0.149151
5.0 0.122480 8.549676 0.128431
6.0 0.022287 8.609507 0.196759
7.0 − 0.109559 10.069091 0.184692
8.0 − 0.134496 12.289901 0.138730
9.0 − 0.055056 12.665653 0.178328
10.0 0.069653 13.272957 0.208808
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Figure 11: ,e (a) autocorrelation graph, (b) partial autocorrelation graph, and (c) QQ graph of the residual sequence.

12 Mathematical Problems in Engineering



6. Conclusions

In this article, PSO is improved by nonlinear decrement
assignment and sine function, and the improved PSO

algorithm is used to optimize the parameters of LSTM.,en,
the LSTM neural network model optimized by the improved
PSO algorithm is applied to LME nickel metal price pre-
diction and compared with the standard PSO-optimized

Table 5: ,e Ljung–Box test results of the residual square sequence of the ARIMA(1, 1, 2).

Lag AC Q p-value

1.0 0.001880 0.000407 0.983911
2.0 − 0.013717 0.022247 0.988938
3.0 0.240741 6.811112 0.078168
4.0 0.060478 7.243522 0.123565
5.0 0.006430 7.248456 0.202808
6.0 0.191994 11.688549 0.069289
7.0 0.073203 12.340164 0.089913
8.0 0.060502 12.78956 0.119298
9.0 0.048683 13.083349 0.158871
10.0 0.184445 17.341826 0.067134
11.0 0.111246 18.906318 0.062796
12.0 − 0.011588 18.923464 0.090392

Table 6: Prediction errors of the five models.

ARIMA(1, 1, 2) ARIMA(1, 1, 1) ARIMA(3, 1, 2) ARIMA(0, 1, 2) ARIMA(3, 1, 3)

RMSE 633.96 636.84 640.12 640.37 644.39
MAE 508.45 510.32 508.59 511.50 524.97
MAPE (%) 4.61 4.63 4.61 4.63 4.80
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Figure 12: ,e comparison of prediction errors of the six models.

Table 7: ,e comparison of relative errors of the six models.

PSO-LSTM11 (%) PSO-LSTM12 (%) PSO-LSTM21 (%) PSO-LSTM22 (%) LSTM (%) ARIMA (%)

Maximum value 9.31 9.25 9.18 9.05 9.55 13.07
Minimum value 0.46 0.33 0.32 0.18 0.62 0.67

Table 8: Comparison of prediction error index values of six models.

PSO-LSTM11 PSO-LSTM12 PSO-LSTM21 PSO-LSTM22 LSTM ARIMA

RMSE 588.97 584.72 569.50 553.89 610.32 633.96
MAE 507.76 507.26 495.12 460.03 507.85 508.45
MAPE (%) 4.49 4.49 4.37 4.11 4.56 4.61

Mathematical Problems in Engineering 13



LSTMmodel, conventional LSTMmodel, and ARIMA time-
series prediction model with higher prediction accuracy.
Empirical results show that the LSTM neural network model
optimized by the improved PSO algorithm can effectively
complement the defects of the standard PSO algorithm with
poor robustness and solve the problems that are difficult to
be determined by LSTM network structure. Furthermore, it
can effectively improve the convergence speed of PSO and
the prediction accuracy of the LSTM model.

,is article uses the improved LSTM neural network to
predict the price of nickel metal, which has excellent pre-
diction performance and strong reliability and can provide
technical support for the establishment of a good nickel price
prediction mechanism. In addition, effective price pre-
diction facilitates nickel market participants to deeply dig
into the law of nickel price fluctuations, timely grasp the
trend of nickel market price fluctuations, and make rea-
sonable production, purchase, and investment plans in
advance, so as to better deal with the impact of nickel price
fluctuations.

,is article studies the medium-term forecast of nickel
metal price, and it is necessary to further verify whether the
model constructed here has the same sound effect on short-
term nickel metal price forecast. In addition, based on the
existing research, further research is in need about how to
comprehensively grasp the influencing factors of nickel
metal price and accurately measure the contribution rate of
each influencing factor in nickel metal price fluctuation to
improve the prediction accuracy.
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