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It is as if man had been appointed managing director of the  

biggest business of all, the business of evolution . . . the  

sooner he realizes it, the better.

Julian Huxley

Introduction
Moving down the food chain to a more plant-based diet with 

less nicotinamide encouraged fertility over the last 30 000 years 

or more.1 This led to population booms with benefits, but the 

Neolithic was also the crucible of disease and inter-group vio-

lence over resources. Signalling molecules from diet and micro-

biome, such as serotonin, played a part in settling down and 

domestication.2–8 Domestication and diet is fundamental to 

our recent evolution (even dogs changed their diet to domesti-

cate).9–14 A pro-fertility diet and a pro-family communal child 

rearing culture saved us, we think, from extinction with orna-

mentation religion and the arts being survival and mating 

mechanisms, not ‘icing on the cake’, as was enlightened pro-

social thinking, language, and writing.15–49

Cereal cultivation moved down first from the ‘hilly flanks’ to 

Mesopotamian riverside alluvial plains that allowed animal 

domestication but typically still needed steppe pastoralists to 

specialise in meat production with surpluses to trade for cere-

als.50–63 History can be seen in the light of a drive for an omniv-

orous diet whether trades, raids, or (civil) wars; many social 

relationships, belief systems, and institutions may be built on 

this essential infrastructure needed for reproduction. Overall 

progress was made when amalgamations occurred between 

agrarian farmers and pastoralists or where geography allowed 

mixed farming and a balanced diet in the first place.64–68 A 

high-meat high-cuisine diet however was often the preserve of 

the clever ruling classes and more recently the middle classes 

that expanded on ‘wheat and beef ’ in the wealthier and usually 

Anglophone countries.69,70 This desire for meat continues 

against ecological opposition and climate concerns but may 

have good biological reasons.71,72

Nicotinamide adenine dinucleotide (NAD) can be synthe-

sised from tryptophan via the kynurenine ‘immune tolerance’ 

pathway, but the preferred source is dietary nicotinamide 

mainly derived from animal products (Figure 1). Nicotinamide 

has a detoxification pathway via nicotinamide 

N-methyltransferase (NNMT) that links to methyl metabo-

lism. Nicotinamide adenine dinucleotide consumers control 

metabolism and NAD sensors drive the quest for food and 

construction of a NAD world. There are important interac-

tions with the immune system, but it is complex with some 

currently irreconcilable effects including on disease models 

depending on dose, metabolite, and even route of administra-

tion so we have had to simplify to support our hypothesis: 

although some contradictions may pertain to mixing ultimate 

and proximate causation and a system where resting immuno-

logic state and secondary or even tertiary homeostatic reactions 

cannot always be easily separated.

Our history is full of famines that did not affect fertility in 

the direction anticipated, except when extreme. We explain 

high fertility on poor diets by an interaction with tryptophan 

catabolism. Tolerance of the allogeneic foetus occurs by con-

trolling indoleamine 2,3-dioxygenase (IDO) that also affects 

microbial survival and symbiont acceptance. Kynurenines 

modulate T cells.73–78 This pathway is conditioned by 
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nicotinamide and is perhaps the basis for our constitution that, 

with our collaborative, sexual, and social natures, forms the 

mainspring for successful civilisations.79,80 Mismatched diets 

perhaps cause delayed demographic and exaggerated disease 

transitions, and friction. Dietary friction between sexes has 

been dated to the invention of ploughs relegating women to 

secondary producers of food (although women may, in fact, 

prefer a lower meat diet to aid reproduction).81–83

Meat as a Main Nicotinamide Source
Meat was key to our evolution with extensive meat sharing but 

also aggression with hustling and wars to obtain it, or the 

wherewithal to stock-breed whether land, water, or fossil fuels. 

Meat has, like cereals, been revered in our early cultures and 

gods, often with animal or human sacrifice, and hunting was 

the main subject of cave drawings. Meat has a divided literature 

with emotive titles such as ‘The Hunting Apes’ or ‘The Meat 

Crisis’.84–86 There is evidence for a genuine ‘meat hunger’ and 

that meat is not all about violence for violence’s sake, or status, 

or sexual preferment: vegetarian movements demonstrate the 

need for balance.87

Steppes up to the Plate
Reversion to hunter-gathering once an agricultural society was 

rare – it did occur on climatic edges (such as Norse Greenland) 

but more tellingly where populations were short of meat and 

prone to pellagra, as in the Americas, suggesting that the ben-

efit-to-risk ratio of a cereal diet could be a close call and some-

times reverse.88,89 At the end of the Roman empire, settled 

agriculturalists defected to the pastoralist Huns suggesting that 

the drive for meat can contribute to the demise of empires. 

Many early trading arrangements were centred on pastoralist 

to agriculturalist ‘meat for cereal’ deals and trading routes that 

originated as herding pathways, such as the Silk Road. Meat 

intake has long been linked with success as individuals, as 

tribes, or as countries. Much of African history can be seen in 

this light with many other examples found in all other 

continents.90

Empires and Economic Divergences: Meat Eaters 
Win

Columbian and other exchanges and conquests: diet 
and ‘virgin soil ’ disease

The Columbian exchange was an example of meat-eating 

Europeans conquering a maize-based low-meat culture with 

the winners having better technological brains and a better 

constitution to fight many infectious diseases. On other occa-

sions, where immunity can develop, diseases can protect against 

‘virgin’ colonialists as seen with yellow fever and malaria, but 

Figure 1. Nicotinamide switch. Higher doses shift the immune system from tolerance of infection to intolerance of antigens with consequences for both 

disease and fertility. Many modern therapies try to rebalance the immune system but moderation of the nicotinamide dose might have prevented the 

problem. AHR indicates aryl hydrocarbon receptor; BD, Behçet disease; IL, interleukin; MS, multiple sclerosis; NAD, nicotinamide adenine dinucleotide; 

RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; TGF, transforming growth factor; TRYP, Tryptophan.
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those with the better constitution still usually win.91–97 Animal 

diseases can alter dynamics – rinderpest or sleeping sickness in 

cattle aided the colonial acquisition of Africa and coincided 

with outbreaks of pellagra in the local population. It has been 

surprisingly difficult during our history to achieve even subsist-

ence-level balanced diets so getting ahead of the meat curve 

may have been crucial for success – with more conventional 

explanations being secondary often necessary, but not suffi-

cient, developments98–116 (Figure 2).

Post Black Death

Most historical crises and cycles were famine followed by plague 

or war then a baby boom, then repeat. The more unusual benefi-

cial long-term effects of the Black Death are attributed to 

increased pastoralism and availability of meat with higher wages 

from a reduced workforce. Agricultural developments helped as 

they benefitted the nitrogen cycle through crop rotation, 

ploughing and feeding animals in winter, and more use of ani-

mal by-products such as manure117,118 (Figure 3). This benign 

Figure 2. A well-balanced diet is the base from which all else follows. Formulae for success had emphasised the necessity of the higher tiers, although 

without much agreement. Superstructure is however important as positive feedback loops further secure a high-quality diet.

Figure 3. After the Black Death (triggered by famines), the population remained remarkably stable as did the supply of meat helped by increased wages. 

This period is generally agreed to have been a take-off for the industrial revolution.
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period petered out in the early 18th century due to climate 

change from volcanic activity, poor harvests, wars (impeding use 

of imports), and epizootic diseases of cattle. This decline in diet 

quality that became virtually vegetarian coincided with a spurt 

of population growth due to increases in fertility (as happened 

in the Neolithic).119–139 Even rich peers suffered so one can 

imagine how much life deteriorated for the poor making the 

increase in population even more remarkable140–161 (Figure 4). 

This state of affairs was mitigated later in the mid-19th-century 

United Kingdom by meat imports and by revised Corn Laws 

that enabled the price of grain to fall along with imperialistic 

acquisitions to avoid crises with civil war and food revolts. The 

concept (and German argument for their expansion) of 

‘Lebenstraum’ – farming space – is generalisable with ‘Landrush’ 

phenomenon explaining many aspects of many European 

empires’ behaviour. Sometimes, flexing between agrarian and 

pastoralism is done peaceably but even within economies can 

cause friction as with the Scottish ‘clearances’ needed to feed 

meat to cities.162–164

Lessons from America: common denominator is 
pellagra

America’s ‘King Cotton’ states and industrial North in the 19th 

century form another link with pellagra. The poorer and weaker 

South (home to pellagra) lost the civil war, losing both men 

and even more cattle. The North industrialised with many 

Yankee inventions and better wages that emerged ‘out of thin 

air’.165 In effect, a poor-meat diet and pellagra held back a 

modern economy for over 50 years166–169 (Figure 5). Fertility 

declined faster and earlier in the richer New England states 

and data support high fertility rates in slaves, short of starva-

tion170–174 (Figure 6). As happened in the north of Italy, nicoti-

namide deficiency delays or stalls the switch to modernity 

however defined.175–177 A classic demographic transition as 

happened in the United Kingdom from 1850 correlates, by 

contrast, with rising meat and therefore nicotinamide levels 

(Figure 7).

There has been debate over economic divergences between 

England and Europe or East and West. All relate to higher 

wages or natural resources allowing a higher meat intake. 

Nicotinamide adenine dinucleotide supply is the crucial varia-

ble. The first ‘luxury’ above subsistence level is meat. We now 

live in an ‘Age of Extremes’ without fully recognising that a 

balanced diet is at the base of progress or that NAD homeosta-

sis is not only the master variable but also the master 

narrative.178–184

Lessons From Asia: ‘Land to the Tillers’ and Triumph 
of Gardening
Over the last 75 years, ‘tiger’ economies led by Japan, Taiwan, 

and South Korea transformed themselves reaping a demo-

graphic dividend from a healthy youthful population. China 

Figure 4. After the Black Death, the meat supply remained affordable 

and in step with the price of grain until around 1650. Then in the ‘little 

ice-age’ (perhaps triggered by population collapse in the new world) with 

harvest failures, and wars, meat became very expensive and with the 

exception of the wealthy the population became virtually vegetarian. 

Consistent with our hypothesis, fertility and population took off as did TB 

in the period just before the United Kingdom’s demographic transition 

around 1850 and the decline of TB as meat became more available, 

largely thanks to the wealth to pay for imports. TB indicates tuberculosis.

Figure 5. The poor diet in pellagra-ridden American southern states 

delayed economic progress, despite being the source of the international 

cotton industry.

Figure 6. Comparison of birth rates between the industrial North and the 

South of the United States. Southern states prone to pellagra maintained 

high fertility for a lot longer as did the pellagra-prone province around 

Venice a century earlier – both examples lengthening their demographic 

transitions.
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and India are following after false starts – such as the ‘Great 

Leap Forward’ pulling farmers off the land for ill-conceived 

industrial projects causing famine – or coercive family plan-

ning. Others are behind such as the Soviet bloc, North Korea, 

Cambodia, and Papua, New Guinea.185–195 Land and agrarian 

reform whether internally or externally driven (as happened in 

Japan) with reversion to small-holding mixed farming and later 

encouragement of export-led manufacture all improving diet 

was key to success. The tension between rural and town is 

striking with the latter being motivated to keep food and meat 

prices low: support for rural peasants in the form of land reform 

drives local innovation and efficiency and seems to work. Later, 

corporate agricultural arrangements can make sense once 

countries can import quality produce such as meat – policies 

that subsidise or import cheap or free cereals may however be 

disastrous in the long term.

Avoiding Malthusian Traps
Success and prosperity relate to avoiding Malthusian traps set 

up by calorific surpluses leading to population booms that bust. 

England and later America and now China all achieved this on 

the back of a higher nicotinamide diet that suppressed fertility 

and allowed better brains and longer lives. Malthus was per-

haps right when discussing cereal-dependant economies but 

could not factor in food quality particularly if that relates not 

only to the ‘food necessary for existence’ but also to his second 

postulate that human passion between the sexes ‘would remain 

in its present state’.196–199 If societies get ahead on the meat 

curve, either after a Malthusian crash or from economic suc-

cess, then lower fertility and better brains drive technological 

and economic progress in positive feedback cycles.200–220 It will 

be ironic if meat equity could have avoided such high global 

populations and high meat and cattle needs that are a major 

contributor to deforestation and ‘green-house’ gases through 

the use of fertilisers, water, and fossil fuels. Technological 

advances, often invoked to show that Malthus was wrong, 

could be temporary and ultimately cataclysmic fixes unless 

technology changes its biases towards optimal meat intake 

rather than more and more cereals delaying demographic tran-

sitions221–226 (Figure 8).

Nicotinamide, Gut Microbiome, and Tuberculosis
Nutritional symbioses include organisms that are dangerous by 

reputation, such as tuberculosis (TB). These symbionts support 

poor diets as does the gut microbiome but become dysbiotic if the 

diet becomes very poor. ‘Latent’ TB is metabolically active using 

host-derived cholesterol in exchange for nicotinic acid (Figure 9). 

Tuberculosis rarely evolves to evade the immune system (unlike 

the ‘arms races’ of pathogens): hosts may be tolerant for good 

metabolic reasons but seem perfectly capable of sterilising granu-

lomas when they choose.227–237 The role of nutrition in activating 

latent TB has long been implicated and the harvest of deaths 

from TB when under dietary and other stresses often noted.

Gut symbioses favour complex carbohydrate busters: even 

the oligosaccharide concentrations in breast milk affect the 

infant microbiome and make a contribution to nicotinamide 

levels (ruminants rely on their microbiome to supply vitamin 

B; Figure 10). Helminth interactions show extensive use of the 

tryptophan-NAD pathway that might benefit the host and 

NAD relationships extend to malaria and the host’s genetic 

responses. With malaria, an ecological approach is necessary as 

agricultural static water encourages Anopheles larvae, which 

grow on maize-specific pollen and then are more likely to be 

dichlorodiphenyltrichloroethane (DDT) resistant, and the 

adult malaria vector bites humans where there are few other 

animals to target.238–244 Emergent diseases in general are all 

more likely to evolve or become dysbiotic in poor ecological 

circumstances.

Tryptophan Metabolism and the Immune System
‘Host-directed therapies’ that enhance immunity through nor-

malising NAD-consumer and energy-related sensors, such as 

Figure 7. Fertility rates fell after the death rate and as meat intake rose in the United Kingdom’s demographic transition. This is the opposite of what 

happened in the pellagra-prone provinces of Italy and the United States.
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mammalian target of rapamycin (mTOR) and AMP-activated 

protein kinase (AMPK) signalling rediscover the importance 

of nicotinamide. Metabolic regulation, over and above bioener-

getic and biosynthetic demands of T cell differentiation, of 

immune responses works often through simple compounds, for 

instance, short-chain fatty acids (SCFAs) or glutamate metab-

olites programming T cell fates and the ratio of T helper 17 

(Th17) and induced regulatory T cells (Tregs). These are con-

ditioned by tryptophan status and co-evolved together in pla-

cental mammals to enable reproduction: functionally these 

pathways ameliorate autoimmune encephalomyelitis, the 

model for MS, and other pathogenic Th17-mediated autoim-

mune disease.8,245–273

Role of Tregs

Nicotinamide insufficiency activates the ‘de novo’ pathway. 

This leads to dysbioses, poor defences against pathogens, and 

‘autocarnivory’ with organ damage. Activation predisposes to 

immune tolerance through the production of more Treg but 

less Th17 cells.274–284 Regulation of T cells has been linked 

with leprosy and TB (nicotinamide is antibiotic) and MS, 

myasthenia, and rheumatoid arthritis. Tregs that only exist in 

the periphery in placental mammals cause, shown by transfer 

experiments or rare mutations, other autoimmune diseases 

including oophoritis. Tregs with Th17 cells, even though they 

have a common developmental path, form an immune fulcrum 

governing tolerance to self and non-self and pro/anti-inflam-

mation and B cell antibody responses and even (muscle) stem 

cell regeneration and tumour control. High levels of specific 

Tregs (but low Th17) with their anti-inflammatory cytokines 

and effect on dendritic cells discourage elimination of TB and 

other organisms, but low levels encourage ‘rogue’-specific self-

reactive T cells and a spectrum of autoimmune diseases and 

allergies.285–290

Nicotinamide Switch Explains the Hygiene 
Hypothesis
This system therefore has checkpoints that connect nicotina-

mide with metabolism and innate and adaptive immunity, spe-

cifically the balance of Tregs and other T cell populations. This 

forms the ‘nicotinamide switch’ controlling the inflammatory 

response from activation to tolerance important to the latest 

versions of the ‘hygiene hypothesis’.291–299 In states of affluence, 

we ‘miss’ an evolved dependence on nutritional symbionts that 

are now surplus to requirements and are therefore ‘absent’. 

Even the foetus is exposed to this new environment with 

‘maternal immune activation’ working through excess Th17 

cells and interleukin-17 and a dearth of Tregs. At the other end 

of the nutritional spectrum, the IDO pathway will shut down 

when there is not even enough of its substrate tryptophan – 

and that will cause frank pellagra and complete immune and 

dysbiotic disarray and neurodegeneration – but notably no 

autoimmune disease.300,301

Indoleamine 2,3-dioxygenase is also a critical mediator of 

autoantibody production from B cells and a pathogenic driver 

of organ-specific autoimmune disease alongside its role in 

Figure 9. Koch’s postulates need revision for nutritional symbiotic 

relationships. Symbionts, such as TB, enhance the supply of 

nicotinamide when the diet is poor but become dysbiotic if the diet 

becomes extremely poor. Improving diet, a preventive in the early stages, 

may no longer be enough to reverse pathology later. TB indicates 

tuberculosis.

Figure 8. Conventional demographic transition joined to the Neolithic transition. Lower meat drove the Neolithic, whereas an increase in the meat/cereal 

ratio drove recent transitions. Natural increase = excess of birth after deaths. NAD indicates nicotinamide adenine dinucleotide.
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immune privilege, whether for the foetus or immune evasion 

for symbionts and cancers, and has an impact on mood by 

diverting tryptophan away from serotonin and tryptamine 

synthesis.302

High nicotinamide in diet therefore has the overall conse-

quence of inducing immune intolerance (accepting some con-

tradictions in the literature) and that may be behind the 

epidemic of autoimmune and allergic disease but perhaps also 

cancers and neuropsychiatric ills including autism and carbo-

hydrate-induced obesity. A summary of the main pathways of 

nicotinamide metabolism is shown in Figures 11 and 12.

Meat Elites
Americans and Europeans consume 150 kg of meat per annum 

alongside 250 kg of milk and eggs. The poorest eat negligible 

amounts of animal products. This is ironic as meat sharing was 

a defining feature of hunter-gatherer days, but later cattle own-

ership was the original form of capitalism that drove stratifica-

tion and ‘meat elites’. Cash handouts to the poor would lead to 

a reasonable meat ration but is opposed currently for reasons 

that include cost and environmental concerns.

Too Little and too Much Meat – TB or Cancer and 
Autoimmunity
In recent times, these extremes have been tested with poor out-

comes for billions. There is a long history of concern that too 

much meat causes cancer and an even longer history of advo-

cating meat/milk supplements for the poor. One example – 

‘Zomotherapy’ (zomos = meat broth) – was advocated by Nobel 

Laureates Charles Richet and Renee Dubos who also sug-

gested skim milk for targeting TB (as did the sanatorium 

movement); this was later implemented as milk supplements 

Figure 10. Many pathogens import niacin. TB (and some gut microbes) can export nicotinic acid. On a high-nicotinamide diet, both classic pathogens 

and symbionts are less virulent or dysbiotic. NAD indicates nicotinamide adenine dinucleotide; TB, tuberculosis;

Figure 11. NAD(H) recycles (not shown) in redox and dehydrogenase 

reactions and supplies mitochondria to generate ATP. Here we show 

consumption reactions and salvage pathways that conserve the supply of 

nicotinamide. When the dietary supply is poor, the ‘de novo’ pathway 

needs a dietary supply of tryptophan. ATP indicates adenosine 

triphosphate; NA, nicotinamide; NAD, nicotinamide adenine dinucleotide; 

NAD(H), nicotinamide adenine dinucleotide plus hydrogen; NAM, 

nicotinamide; NAMPT, nicotinamide phosphoribosyltransferase; NMN, 

nicotinamide mononucleotide; NMNAT, nicotinamide mononucleotide 

adenylyltransferase; NNMT, nicotinamide N-methyltransferase; NR, 

nicotinamide-riboside; PARP, poly(ADP-ribose) polymerase.

Figure 12. Structure of nicotinamide showing its detoxification pathway 

that consumes methyl groups and produces N-methyl-nicotinamide that 

is metabolically active but then excreted. MNAM indicates N1-

methylnicotinamide; NAM, nicotinamide; NNMT, nicotinamide 

N-methyltransferase; SAH, S-adenosylhomocysteine; SAM, 

S-adenosylmethionine.
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and school meals with documented health benefits. Even ear-

lier, Roget (of Thesaurus fame) in 1799 had published 

‘Observations on the non-prevalence of consumption among 

Butchers and Fishermen’ – who, of course, had preferential 

access to their own produce.

Williams documented in 1908 falling TB rates with rising 

cancer rates and correlated them with meat intake in the United 

Kingdom and we replicated this finding (Figure 13). Rapid 

increases in TB rates have been documented on multiple occa-

sions when diet deteriorates: some are recent, for instance, in the 

Russian ‘katastroika’ (around 1990) TB rates doubled in less than 

5 years and life expectancy fell as the meat market collapsed. 

There is a further history of support for more meat for working 

people: for example, in the 19th-century United Kingdom there 

were calls for an ‘Industrial ration’, to be supplied by ‘killed and 

chilled’ corn-fed imports; and later for a ‘Colonial’ diet based on 

pioneering work done early in 20th-century Kenya showing the 

importance of animal products was proposed; and more recently 

rations (that included meat, bacon butter, and milk) were imple-

mented to overcome the very poor meat intakes in the inter-war 

and world war years.303–306 Positive meat transitions from 

improved economics and these interventions are correlated with 

periods when health, height, and IQ increase and ‘modern minds 

are forged’.

Diseases Disappear and Appear: Risk of Plague
Both TB and leprosy disappear when and where nicotinamide 

dose in diet increases – nicotinamide is, after all, the original 

‘antibiotic’ for both organisms.307,308 Malaria can also ‘disap-

pear’ and of interest nicotinamide has anti-malarial activity as 

it does for other parasites. However, we should not be fooled by 

this ‘Mirage of Health’ given the recent grim comeback of 

‘medieval’ pestilences and near apocalypses, such as plague in 

Madagascar.309–318 Recent warnings have come concerning 

future plagues using the parallel of the 1918 Spanish Flu pan-

demic that hit hard when metabolic requirements were high in 

the young and diets were poor. Diet is the commonest cause of 

impaired resistance to a wide variety of organisms including 

measles and smallpox epidemics, particularly on ‘virgin soils’ 

where populations have no previous exposure. Such warnings 

emphasise air travel, the ‘global village’, and antibiotic resist-

ance but do not always emphasise the real microbe mutant 

magnets of poor diet and general squalor allowing the emer-

gence of disease that are then a danger to rich and poor alike.

Earlier global crises, discussed already, were triggered by the 

weather (a lesson about dangers of climate change) and poor 

harvests from lost summers. There were widespread revolts 

between haves and have-nots as populations exploded then 

collapsed with descriptions of pellagra within the famines; 

‘blackened faces like ovens’ in prematurely aged children among 

widespread poor behaviour, followed by plagues, and the rise of 

TB. Recovering nations revolutionised their agriculture away 

from cereal dependence with more pastureland and a mixed 

diet aided by the mass emigration to America and the first wel-

fare states.

Circumstances where people live in ‘barnyard’ circumstances 

point now to crucibles of plagues in Asia or Africa – but it is 

worth remembering that the Flu epidemic 1918 - that killed 

more than both world wars combined – originated in pellagra-

prone Kansas. The Cuban experience shows that poor-income 

countries can have effective health care systems coping with an 

epidemic of nutritional disease with widespread vitamin sup-

plements.319–321 Amartya Sen, the Nobel Laureate, once said ‘I 

wonder whether there is any way of making poverty infectious 

– if so, I am certain its elimination would be remarkably rapid’ 

– dangers from poverty are, in fact, infectious (including vio-

lence) and that is one important lesson from the history of 

pellagra.

Nicotinamide and Better Brains
Pellagra also causes brain atrophy. Atrophy due to poor diet can 

be prevented as shown by the Flynn effect. Improved diet being 

Figure 13. Striking time linked correlations between the fall in TB and the rise of cancer at a time when meat intake doubled. The same was true of the 

rise, particularly after 1900, in allergic and autoimmune diseases, as well as Parkinson’s disease. TB indicates tuberculosis.
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necessary to improve learning (and teaching) before better 

schooling can build on a stronger cognitive base and lead to 

economic progress further improving diet and education. 

Improvement in IQ allows better brain reserves to combat age-

ing and that may explain the recent decline in the incidence of 

dementia in rich countries.322–327

Longevity: ‘Mens Sana in Corpore Sano’
There are links between nicotinamide and longevity. The 

observation is not controversial as nicotinamide has been 

explored as an anti-ageing compound in organisms from yeasts 

to worms to man. Proximate reasons relate to a better constitu-

tion, DNA repairs and reductions in virulence of pathogens 

and dangerous symbionts.328–335

A Refresh and Call to Action

Nicotinamide deficiency is unmeasured and 
underdiagnosed

The Columbian exchange brought maize to the Old World as it 

has the advantage of being easy to grow in difficult hydrological 

circumstances and has big returns per grain planted. Pellagra and 

subclinical nicotinamide deficiency is a risk (particularly when 

cultural traditions of mixed farming and special cooking are not 

exported) and had consequences first in the Americas but now in 

Asia and Africa. Pellagra still exists but is rarely formally diag-

nosed, prevented, or treated masquerading as ‘environmental 

enteropathy’ or general ill health and poor cognition – there is no 

easy biochemical test. Social breakdown can also be a feature as 

a (Marxian) ‘metabolic rift’. History is repeating itself as even in 

the pellagra epidemics cases were missed as the symptoms are 

protean and vague and seasonal with remissions. As a form of 

sunburn, black skins are resistant even evolved for and make it 

harder to spot. In the southern states of America, pellagra was 

rife and long before the official epidemic was endemic in the 

slave population and among poor whites ‘antebellum’ (and may 

have been a determinant of Confederate defeat) and instead 

called ‘black tongue’ or typhoid or a (genetic)negro ‘disease’.336

Nicotinamide: all is in the dose

A continuing role for missing symbionts is supported by evi-

dence that re-introducing parasitic infection protects against 

allergic disease. This does not imply that they are metabolically 

needed when diet improves but emphasises their role in edu-

cating the immune system and that their absence causes prob-

lems, at least for a generation or two.

Nicotinamide at low doses is anti-cancer and neuroprotec-

tive but at a higher dose it is carcinogenic or neurotoxic. An 

optimal dose is even described in stem cell models as the 

‘Fountain of Youth’. Some genetic and toxic and anoxic diseases 

respond if NAD is raised through diet or enzyme manipulation. 

A beneficial effect of nicotinamide on perinatal asphyxia or 

trauma alongside a range of developmental conditions has been 

demonstrated.337 Diseases that are NAD sensitive cover a 

variety of phenotypes and proposed mechanisms of neurotoxic-

ity whether mitochondrial, proteotoxic, oxidative stress, or exci-

totoxic and whether cell body or axonal degeneration.338–356

Nicotinamide toxicity is common

High dosage in diet with induction of NNMT indicates that 

there might be a hypervitaminosis state with a wide pheno-

type – that includes the metabolic syndrome, some cancers, 

Parkinson, schizophrenia, and autism with double-edged 

sword relationships with dose. Depending on the dynamics of 

enzyme induction, if the dose is not maintained throughout 

life, then nicotinamide deficiency could occur on an appar-

ently normal diet with increased catabolism confusing epide-

miological studies.

Obesity and cancer

NNMT may be a target for obesity using novel anti-sense 

technology. High nicotinamide in diet could be toxic by a 

number of means and even homeostatic attempts to remove it 

with high NNMT levels in inflamed or pre-cancerous tissue 

could have long-term dangers357–373 (Figure 14).

Parkinson’s disease

Nicotinamide N-methyltransferase is raised in the brains of 

Parkinson’s disease (PD) patients as is N-methyl-nicotinamide 

excretion contributing to an argument, backed by epidemio-

logical evidence that incidence had risen in rich high-meat-

eating countries but was low in previous pellagra states, that 

nicotinamide could cause dopaminergic toxicity as an MPTP 

(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-like mole-

cule. High-dose nicotinamide has shown toxicity in a proteaso-

mal toxicity model of PD even though neuroprotective 

prophylactically in MPTP models. Nicotinamide is an impor-

tant morphogen encouraging neuronal differentiation towards 

dopaminergic cells at moderate but not high doses.374 

Furthermore, NNMT has been shown to interfere, by consum-

ing methyl groups, with DNA methylation and autophagy that 

controls quality of proteins and organelles, as shown by toxins 

or PD mutations, but if excessive can cause cell death. There is 

epidemiological support for PD being a disease of affluence: 

China had an incidence of one fifth of rich nations but this is 

closing rapidly as their meat intake increases. The argument 

that this rise in incidence is all due to an ageing population is 

complex if higher nicotinamide dose is driving longevity – PD 

then being a side-effect of the cause of better ageing, rather 

than due to ageing per se375–386 (Figure 15).

International fertility: redux and review

Many have mentioned cereal diets increasing fertility by 

increasing carbohydrates, or indirect effects such as enabling 

early weaning, but have not discussed the tryptophan pathway. 
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We showed correlations between meat intake and improved 

longevity and declining fertility in the United Kingdom during 

1850 to 1950 and argued that averting a population collapse 

was helped by revisions of the Corn Laws and the ‘ecological 

windfall’ of using money from (cotton) exports to import meat 

often from colonies. Meat famines at home were mitigated by 

agricultural and hunting arrangements abroad – to the detri-

ment of local populations (now the Third World) but allowing 

painless demographic transitions at home.

France, for instance, where maize was banned for human 

consumption, barely had a demographic transition: whereas 

low-meat eaters such as China, India, and Japan had their tran-

sition in the mid-20th century slowly and painfully with large 

population booms much later than Europe – cereal-dependant 

modern Africa fails to complete the transition. These observa-

tions are consistent with population booms on American 

maize, between 1750 and 1850. Looking to poor diet for high 

fertility makes a welcome relief from blaming poor genes or 

Figure 15. Nicotinamide dose matters from conception to cradle to grave. PD is a good example. An optimal dose induces NNMT and supplies NAD to 

mitochondria and NAD consumers and is enough to regulate DNA methylation and stimulate autophagy to keep organelles in good repair. Too much (or 

too little) nicotinamide and all fails, exacerbated by genetic mutations that affect autophagy known to be important in PD. MPTP indicates 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine; NAD, nicotinamide adenine dinucleotide; NNMT, nicotinamide N-methyltransferase; PARP, poly(ADP-ribose) 

polymerase; PD, Parkinson’s disease; SAM, S-adenosylmethionine.

Figure 14. High nicotinamide in diet has consequences. The switch from infections to inflammation and autoimmunity can be explained by several 

overlapping mechanisms as can relative infertility and longevity alongside the metabolic syndrome and cancer. MNAM indicates N1-methylnicotinamide; 

NMN, nicotinamide mononucleotide; NNMT, nicotinamide N-methyltransferase; SAM, S-adenosylmethionine; PD, Parkinson’s disease.
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race as in the United States where eugenists believed that pel-

lagrins were ‘feeble-minded’ and ‘shiftless’ multi-generationally 

and should enter legal sterilisation programmes with marriage 

and immigration prohibitions: casting a long shadow to later 

genocidal and immigration policies.

Analyses of declining birth rates first among the wealthy 

discuss conscious contraception or a preference for careers or a 

reluctance of women to produce ‘cannon fodder’ but overlook 

diet as a potential factor. Education, emancipation, and birth 

control may however be the dividend building on a food-

dependant demography and higher human capital. Increased 

fertility on a more vegetarian diet and decreased fertility on a 

high-meat diet go back to hunter-gatherers such as the Khoisan 

people in South Africa who were out-reproduced by Bantu 

agriculturalists. Meat reduces and poor vegetarian diets increase 

fertility. This may explain (and been evolved for) baby booms 

after famines and why low-meat/high-cereal societies have 

population booms and ‘Malthusian’ corrections. Evidence from 

other animal populations that pumping in calories (‘paradox of 

enrichment’) leads to population instability will make sense 

once tryptophan metabolism is factored into their interpreta-

tion. Optimal meat/nicotinamide may allow for painless demo-

graphic transitions with sustainable environments and 

populations. As a corollary, fertility declines may reverse when 

extremes of high meat intake moderate.

‘Antagonistic Pleiotropy’, ‘Disposable Soma’, ‘Thrifty’ 
Genes and Phenotypes
In possible ‘proof of concept’ twists, the early fertility crises 

reversed by a more plant-based diet in the Palaeolithic left marks 

on our genome. Intriguingly, these pro-fertility genes, such as 

apolipoprotein E4 (APOE-4), interact with infections with 

resistance to diarrhoeal illness predisposed to by pellagra. 

Mutations spread at the time of fertility and infectious stress now 

showing up as risk factors for late-onset non-communicable dis-

eases such as cancer and neurodegeneration.387–392 Many muta-

tions involve NAD metabolism and DNA repair suggesting that 

they evolved at times when nicotinamide homeostasis was out of 

kilter – but could now be helped by altering the dose of nicotina-

mide by individual genome and depending on age.393–398 Another 

trade-off between fertility and healthy ageing is the ‘disposable 

soma’ theory whereby reproduction is metabolically favoured over 

repairs – this trade-off (with immunosuppression leading  

to greater fecundity but more infection) fades away during  

epidemiological transitions with a more carnivorous diet, and 

experimentally with increased ‘autocarnivory’.390,399–408 ‘Thrifty’ 

genotypes and phenotypes can also be brought into this discus-

sion as they may be a manifestation of ‘r’ selection for quantity 

over quality at a price with late costs, such as the metabolic syn-

drome, being perhaps avoidable by fairer nicotinamide sourcing 

throughout and across lives.400,409–414

Conclusions
Nicotinamide is critical to ‘evolution in four dimensions’ as it 

affects genomic, epigenomic, behavioural, and symbolic/cultural 

inheritance.415–419 Nicotinamide resonates between develop-

mental and phenotypic plasticity and a niche-constructed eco-

logically inherited ‘NAD’ world. Nicotinamide, buffered by the 

microbiome, allowed and selected hominid lineages to evolve 

into anatomically modern man and then a fertility crisis 30 000 

to 40 000 years ago in Europe (earlier in southern Africa and 

Asia) drove a pro-fertility-plant-based diet with mating brains 

and cultural artefacts that we call civilisation.420,421

As Huxley implied, we should now direct our evolution by 

ensuring an appropriate diet for all as an entitlement. The 

flourishing of humankind’s culture in the Mesolithic and the 

later economic and artistic and scientific ‘take-off ’ involved 

diet that is an independent variable for fertility, health, and 

brain power. Iatrogenic climate change and other worries about 

the future may sort themselves with higher human capital but 

lower numbers of people.422–427

Moving up then down the food chain led to the ‘Ultra-social 

conquest of Earth’ but now we can aim for individual quality. We 

no longer need poverty to encourage fertility and should guaran-

tee a ‘goldilocks’ diet for all as a human right and out of self-

interest to avoid plagues and wars. A well-balanced diet would 

underpin progress everywhere so that ‘No One’ country is domi-

nant and return to our more egalitarian meat-sharing past.428,429 

Active intervention in population control has not been that suc-

cessful suggesting that we need to look at fundamental biological 

and dietary controls given that ‘Demography is Destiny’.430–432

Food sovereignty puts an emphasis on food quality by politi-

cal and scientific means known as ‘Physiocracy’ that can be 

traced back to mixed farming enthusiasts, such as Virgil or Cato, 

and Hippocratic dietary regimens.433–449 Hippocratic regimens 

are only slightly different from current dietary advice. Becoming 

vegans in a ‘meat retreat’ is not the answer to good health, ani-

mal rights, population control, climate change, or loss of biodi-

versity. Meat hunger is for good biological reason and Engel’s 

law repeatedly shows that poor individuals (and nations) eat 

more meat if allowed. However, there is a limit and we propose 

a hypervitaminosis B3 with an equally broad phenotype to pel-

lagra. This is the ‘Wisdom of the Body’ pertaining to NAD 

homeostasis. We should avoid ending, like other empires that 

collapsed, because we ignored historical intelligence and did not 

appreciate fully that progress depends on a balanced diet and 

sharing meat across societies and nations.450–456
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