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Introduction

Nicotinamide adenine dinucleotide (NAD) was first discov-
ered in 1904 by Sir Arther Harden who identified a low-
molecular-weight compound in yeast termed cozymase that 
was required for sugar fermentation. In the 1930s, Warburg 
found this compound to be a hydride-accepting and donat-
ing molecule that played a role in multiple cellular reac-
tions.1 The enzymatic activity responsible for NAD 
synthesis was identified in 1957 and designated as nicotin-
amide mononucleotide (NMN) pyrophosphorylase.2 In 
1966, Gholson predicted that NAD is actively turned over 
within cells, and this prediction was confirmed when the 
half-life of cellular NAD was found to be 1.0 ± 0.3 hours 
within cultured cells.3,4 The enzyme responsible for NAD 
synthesis was first cloned from activated peripheral human 
lymphocytes in 1994. It was initially identified as a secreted 
cytokine that synergized with interleukin-7 and stem cell 
factor to stimulate early stage B-cells, hence its designation 
as pre-B cell colony-enhancing factor (PBEF).5 Later work 
confirmed a role for PBEF as a cytokine that is up-regulated 
in activated neutrophils and recombinant PBEF inhibits 
neutrophil apoptosis when placed in culture media.6 In 
2005, Fukuhara et al.7 identified a visceral fat-secreted adi-
pokine, corresponding to PBEF, with insulin-mimetic 
effects that was designated visfatin. The article was later 
retracted based on difficulty with data reproducibility.8

Data demonstrating that PBEF played a role in intracel-
lular NAD synthesis came in 2001, when Martin et al.9 
demonstrated that the Haemophilus ducreyi gene nadV, 
which has homology to mammalian Nampt/PBEF, is an 

NAD phosphoribosyltransferase that when expressed 
allowed H. ducreyi to grow in NAD free media. Later, 
Rongvaux et al.10 demonstrated that murine PBEF was an 
intracellular nicotinamide phosphosribosyltransferase. The 
cloned murine Nampt gene was also able to confer growth 
in Actinobacillus pleuropneumoniae lacking nadV, indicat-
ing conservation of the NAD synthesis pathway between 
mammals and bacteria.10 Based on this work, the enzyme 
was designated nicotinamide phosphosribosyltransferase 
(Nampt).9,10

Nampt is now known to catalyze NAD synthesis by 
transferring the phosphoribosyl group of 5-phosporibosyl-
1-pyrophosphate to nicotinamide (NAM), forming NMN. 
NAD synthesis is completed by NMN adenylyltransferase 
(Nmnat), which converts NMN into NAD.10 Nampt’s cata-
lytic activity is ~46-fold lower than Nmnat activity, so 
Nampt catalyses the rate-limiting step of NAD synthesis. 
Thus, even very small changes in Nampt, but not Nmnat 
levels, can profoundly affect NAD metabolism and NAD-
dependent events.10,11 The specific murine Nmnat isoform 
analyzed in this study was not identified, although the 
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Abstract
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Nmnat had Km and Vmax values consistent with those pre-
viously reported for human Nmnat-1.11 Interestingly, there 
are 3 different Nmnat enzymes located in the nucleus, cyto-
sol, and mitochondria (Nmnats1-3, respectively).10,11 NAD 
is synthesized either de novo from precursors such as tryp-
tophan, and nicotinic or quinolinic acids, or by the Nampt/
Nmnat-catalyzed salvage pathway, with the later pathway 
being significantly faster, more efficient, and also the major 
NAD biosynthesis pathway in mammals (Figure 1).1,11,12 
Nampt is found both intracellularly in the cytoplasm (desig-
nated iNampt), nucleus, and possibly the mitochondria in 
most cell types, and extracellularly in the plasma (eNampt), 
which was previously designated as visfatin.7,8,13,14

Yang et al.15 found that cell survival following genotoxic 
stress was dependent on the mitochondrial, but not the 
nuclear or cytoplasmic NAD pools. Cell survival was 
increased with increasing iNampt expression, an event 
dependent on expression of the mitochondrial NAD+-
dependent deacetylases SirT3 and SirT4, indicating that 

mitochondrial Nampt/NAD synthesis plays a vital role in 
cellular function and survival. However, other investigators 
have not found mitochondrial Nampt. For example, Nikifo-
rov et al.16 found no mitochondrial iNampt and instead 
found that the mitochondrial-specific Nmnat3 produced  
all the mitochondrial NAD from NMN imported from  
the cytosol. The reason for this discrepancy is unknown,  
but it may be due to using different cells, or different mito-
chondrial isolation and analysis techniques. Interestingly, 
approximately 70% of the intracellular NAD pool is 
mitochondrial.1

The functions of eNampt are presently poorly under-
stood and there is conflicting data on eNampt function. For 
example, Revollo et al.17 found that Nampt haplodeficient 
mice have reduced plasma NMN and eNampt and defects in 
glucose-stimulated insulin secretion in pancreatic β-cells. 
This defect is corrected by NMN administration. The 
authors concluded that eNampt-mediated systemic NAD 
synthesis is critical for normal β-cell function. However, 

Figure 1.  The NAD salvage pathway (modified from 11). NAD is consumed in many different reactions, including PARP1, CD38, and SirT1 activities.
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Zhang et al.14 found that eNampt promoted macrophage 
survival following endoplasmic reticulum stress, by stimu-
lating interleukin-6 secretion and Stat3 activation. Interest-
ingly, enzymatically inactive mutated eNampt was as 
biologically active as wild-type eNampt. Thus, eNampt 
exerts some functions independently of NAD synthesis. 
Last, low plasma eNampt levels correlate with hepatic 
mitochondrial dysfunction, thereby indicating that eNampt 
regulates some aspects of intracellular biochemistry.18 An 
NAD-synthesizing role for eNampt also seems unlikely as 
other investigators have found eNampt to have very low 
catalytic activity under normal physiologic conditions, due 
to the extracellular space having very low adenosine- 
triphosphate concentrations.19,20 eNampt is secreted by a 
nonclassical pathway in several different cell types, includ-
ing differentiated adipocytes, macrophages, cardiomyo-
cytes, and hepatocytes.21-25 Interestingly, overexpression 
and secretion of eNampt in murine cardiomyocytes resulted 
in cardiac hypertrophy. Cardiomyocyte eNampt secretion 
was inhibited in cell culture by treatment with NAM or 
trichostatin, indicating that extracellular signals my par-
tially regulate eNampt secretion.25

Nampt is found at 7q22 and spans 34.7 kb having 11 
exons and 10 introns, giving a cDNA of 2,357 kb translated 
into a 491 amino acid, 52 kDa protein. Three predominant 
mRNA transcripts have been identified, comprising 2.0, 
2.4, and 4.0 kb transcripts.13,15 Nampt mRNA is found in all 
tissues, suggesting it has a vital and indispensible func-
tion.10,26 The enzyme shows a high degree of evolutionary 
conservation, and enzymes with closely related sequences 
are found in prokaryotes, sponges, insects, and mam-
mals.10,27 Crystallographic studies show that Nampt is a 
dimeric class type II phosphoribosyltransferases where 2 
identical Nampt subunits contribute to an enzymatic active 
site, thus converting NAM and 5-phosporibosy1-1-pyro-
phosphate into NMN by an A

N
D

N
 mechanism.27,28 iNampt 

is phosphorylated at histidine 247, resulting in a 160,000-
fold increased enzymatic affinity for NAM.29 iNampt and 
eNampt undergo other posttranslational modifications, 
including acetylation and ubiquitization. The significance 
of these modifications is presently poorly understood.11 
Presently all 3 of these names (PBEF, Visfatin, and Nampt) 
are used, although the Human Genome Organization Gene 
Nomenclature Committee approved the name of Nampt.

Nampt, NAD+, and Cancer
NAD is a cofactor that plays a central role in cellular elec-
tron transfer redox reactions, alternating between oxidized 
and reduced forms (NAD+ + e− ⇔ NADH) and is a univer-
sal energy- and signal-carrying molecule. NAD functions in 
many cellular events, including transcriptional regulation, 
longevity and caloric-restriction responses, cell cycle pro-
gression, apoptosis, DNA repair, circadian rhythms, chro-
matin dynamics regulation, telomerase activity, intracellular 

calcium mobilization. It also regulates the histone deacety-
lases (SirT1-T7), CtBP, CD38, and the poly(ADP-ribose) 
polymerases that play a central role in the maintenance of 
organismal metabolic homeostasis and genomic stabil-
ity.1,30-36 Unlike many cellular redox reactions, several 
NAD-dependent signaling processes degrade NAD by 
transferring the ADP-ribose moiety onto a receptor with the 
concomitant release of NAM. Thus, constant NAD resyn-
thesis is an absolute requirement for cell survival, espe-
cially for rapidly growing cells.33

Several different human malignant tumors have been 
demonstrated to overexpress iNampt including colorectal, 
ovarian, breast, gastric, prostrate, well-differentiated thy-
roid, and endometrial carcinomas, and myeloma, mela-
noma, and astrocytomas. Increased iNampt expression also 
occurs in malignant lymphomas, including diffuse large 
B-cell lymphoma, follicular B-cell lymphoma, Hodgkin’s 
lymphoma, and peripheral T-cell lymphoma (Table 1).37-55 
eNampt also increases the growth fraction of the hepatocel-
lular carcinoma HepG2 cell line in vitro, suggesting a role 
for it in hepatocellular carcinoma.53 Many of these studies 
have found interesting aspects of Nampt expression in can-
cer. Olesen et al.55 found higher iNampt expression in 
aggressive malignant lymphomas. Huang et al.56 found that 
iNampt expression increases cellular stromal cell-derived 
factor-1 levels in colon cancer cells, promoting colorectal 
carcinoma progression. Although most studies documented 
increased iNampt levels between benign and malignant tis-
sue, several correlated iNampt expression with specific 
changes in tumor behavior. For example, Long et al.44 
found iNampt was expressed 13 times higher in gastric can-
cer than in benign gastric tissue. Higher iNampt expression 
correlated with deeper tumor invasion, lymph node metas-
tases, a higher clinical TMN stage, and a reduced patient 
survival. Similarly, increased iNampt correlates with 
increased tumor growth, metastases, cellular dedifferentia-
tion, and the presence of a vertical growth phase in mela-
noma. Higher iNampt expression also confers a worse 
prognosis in endometrial adenocarcinoma and astrocyto-
mas.47-49,52 Wang et al.45 found that elevated iNampt expres-
sion in early prostate cancer and inhibition of iNampt 
suppressed cell growth in culture, cell invasion, and the 
growth of xenografted prostate cancer cells in mice. Last, 
several researchers found that iNampt expression confers 
resistance to chemotherapeutic agents, including fluoroura-
cil, doxorubicin, paclitaxel, etoposide, and phenylethyl iso-
thiocyanate.40,41,43,45 Interestingly, in one case of signet ring 
cell gastric carcinoma following exposure to the Chernobyl 
nuclear accident, iNampt expression was very low in the 
malignant cells, which may suggest that iNampt expression 
may be different between radiation-induced and sporadic 
gastric cancers.57

Molecular Mechanisms of iNampt and Carcinogenesis. Several 
molecular targets of iNampt activity have been identified 
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that contribute, or are likely to contribute, to carcinogenesis 
and cancer progression. Most appear to be regulated by 
increased intracellular NAD synthesis and degradation. 
Here we will review several of them. The role of eNampt in 
carcinogenesis is discussed in a separate section.

SirT1. The silent mating type information regulation 1 
(SirT1) is a sirtuin family member, which consists of 7 iso-
forms, each of which has specific functions and subcellular 
localizations. SirT1 is the best characterized of the sirtuins 
and functions as a longevity-promoting protein playing a 
role lifespan extension induced by caloric restriction. SirT1 
is an NAD+-dependent histone deacetylase overexpressed 
in prostate, colon, breast, gastric, liver, and pancreatic 
tumors; interestingly, many of the tumors overexpress 
iNampt (Table 1).59 Up-regulation of SirT1 in malignancies 

is associated with a poor prognosis, poor therapy response, 
shorter patient survival, higher tumor stage, node metasta-
ses, and increased Ki-67 expression. The molecular mecha-
nisms of SirT1 function in cancer are complex, with some 
pathways promoting carcinogenesis and others suppressing 
it. For example, SirT1 activity suppresses Stat3 and NF-κB 
signaling and attenuates chronic inflammatory responses, 
suppressing carcinogenesis. However, SirT1 also attenuates 
p53, PTEN, retinoblastoma protein activities, stabilizes 
N-Myc, promotes the epithelial to mesenchymal transition, 
and increases cell migration, all of which promote carcino-
genesis.56 Revollo et al.11 found that increased iNampt, but 
not Nmnat, increased cellular NAD levels, enhancing 
SirT1-mediated transcription in murine cells. Additionally, 
oligonucleotide microarray studies demonstrated a signifi-
cant correlation in gene expression profiles of iNampt and 

Table 1.  Nampt Overexpression in Several Human Malignanciesa.

Tumor Type Experimental Method(s) Finding(s) References

Colorectal carcinoma* Suppression subtractive hybrid-
ization and immunohistochem-
istry

Six-fold iNampt overexpression compared to benign 
tissue

37, 38

Ovarian serous  
adenocarcinoma*

Tissue microarray iNampt overexpressed 39

Breast cancer* cDNA microarray, quantitative 
RT-PCR, immunohistochemis-
try, chromatin immunoprecipi-
tation

iNampt overexpressed in doxorubicin resistant 
tumors, increased by hypoxia, promotes cell prolif-
eration

40-42

Gastric cancer* RT-PCR, Western blot Overexpression, higher iNampt expression with 
deeper tumor invasion and in metastases

43, 44

Prostate cancer* Western blot, immunohisto-
chemistry

iNampt overexpressed, higher expression increases 
H

2
O

2
 and chemotherapeutic agent resistance, and 

FOXO3a expression

45, 46

Endometrial adenocarci-
noma*

Tissue microarray, immunohisto-
chemistry

iNampt overexpressed, expression is an indepen-
dent overall survival predictor, higher expression 
with greater endometrial epithelial atypia

47

Melanoma* Immunohistochemistry iNampt overexpressed, higher levels in metastases 
and vertical growth phase melanoma, eNampt 
increases tumor growth

48, 49

Myeloma Enzyme-linked immunosorbent 
assay (ELISA)

Overexpressed, inhibiting iNampt lowered SirT1 and 
PARP-1 activities, t(11;14) causes gains at 7q22 
where Nampt is located

50, 51

Astrocytomas* cDNA Microarray, RT-qPCR, 
ELISA

iNampt overexpressed, high expression with p53 
correlates with poor survival, expression cor-
relates with astrocytoma grade

52

HepG2 cells* Western blot, cell proliferation 
assays, ELISA

eNampt increases HepG2 cell growth, eNampt is 
higher with advanced hepatocellular carcinoma 
stage

41, 53

Well-differentiated thyroid 
carcinomas*

Tissue microarray Significant overexpression of iNampt and SirT3 in 
papillary and follicular thyroid carcinomas, PARP-1 
overexpression seen in papillary thyroid carcino-
mas

54

Malignant lymphomas* Immunohistochemistry on 
formalin-fixed, paraffin-embed-
ded slides

Nampt expression is higher in more aggressive 
malignant lymphomas and is higher in Reed-
Sternberg cells

52

a“*” denotes malignancies with PARP-1 overexpression. PARP-1 overexpression is seen in diffuse large B-cell and follicular lymphomas.58
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SirT1 overexpressing cells. The authors concluded that 
iNampt-mediated NAD synthesis regulates SirT1 function. 
Not surprisingly, iNampt-mediated cellular resistance to 
oxidants is attenuated with SirT1 knockdown in prostate 
cancer.45 Last, the mitochondrial-specific sirtuins SirT3 and 
SirT4 may function with mitochondrial Nampt to promote 
cell survival following genotoxic stress.15 The significance 
of these sirtuins in cancer is so far poorly characterized, 
although interestingly both iNampt and SirT3 are overex-
pressed in well-differentiated thyroid carcinomas.54,60,61

CtBP. The mammalian COOH-terminal binding proteins 
(CtBPs), CtBP1 and CtBP2, promote invasive behavior and 
apoptosis resistance in malignant cells, with concomitant 
suppression of the tumor suppressor gene products (E-cad-
herin, PTEN, APC, and the Ink4 gene family members) and 
increased expression of transcription factors that promote 
the epithelial-to-mesenchymal transition.34 CtBP is overex-
pressed in breast cancer, with high expression resulting in a 
lower median patient survival, an epithelial-to-mesenchy-
mal transition, and lower genomic instability.62 Currently, 
efforts are underway to treat cancer by suppressing CtBP 
activity.63 An increased NADH/NAD ratio strengthens 
CtBP binding to its cellular targets, enhancing resistance to 
proteolytic digestion and promoting cell migration, par-
tially through the metastases-promoting Tiam1 protein.64-66 
Increased iNampt expression increases intracellular NAD 
levels, while hypoxia increases the NADH/NAD+ ratio. 
Thus, increased tumor iNampt combined with hypoxia 
could lead to pro-carcinogenesis events via CtBP activa-
tion.13,64-66 Van Horssen et al.67 demonstrated that pharma-
cologic or genetic suppression of iNampt lowered NADH 
levels and glioma cell migration, while extracellular sup-
plementation with NAD+ or iNampt re-expression abol-
ished these effects. Cellular mobility was also associated 
with a lowered internal pH determined by the lactate dehy-
drogenase dependent pyruvate-lactate conversion, suggest-
ing that tumor hypoxia may promote cell migration. 
Interestingly, iNampt is induced by hypoxia in breast can-
cer and hepatoma cells.41 Thus, CtBP and iNampt might 
function cooperatively to promote carcinogenesis.

CD38. CD38 is an ADP ribosyl cyclase, first identified 
as a regulator of T-lymphocyte activation and proliferation. 
It is expressed at varying levels in B-cells, pancreatic acinar 
cells, smooth muscle cells, osteoclasts, and in different 
areas of the brain, eye, and gastrointestinal tract. Despite 
being an ectoenzyme, CD38 ablation in mice results in very 
high intracellular NAD+ levels, indicating that CD38 con-
tributes to NAD+ homeostasis through constant degrada-
tion.35 Higher CD38 expression is a negative prognostic 
marker in chronic lymphocytic leukemia (CLL), and anti-
CD38 antibodies are in clinical trials to treat myeloma and 

CLL.68,69 Additionally, iNampt is overexpressed in 
myeloma, CLL, and other hematopoietic malignancies (but 
not in normal hematopoietic progenitor cells), which show 
high sensitivity to low concentrations of pharmacologic 
Nampt inhibitors.50,51,70 The role of CD38, NAD+, and 
Nampt in malignancy is presently poorly understood. How-
ever, it is likely that CD38 and Nampt function together in 
some malignancies, promoting the malignant phenotype.

Poly(ADP-ribose) polymerase-1 (PARP-1). Poly(ADP-ribo-
syl)lation is a posttranslational protein modification that 
degrades NAD+ into NAM and ADP-ribose, forming long, 
branched ADP-ribose polymers at sites of broken DNA or 
at unusual DNA structures, such as cruciform DNA. This 
reaction is carried out predominantly by nuclear PARP-1, 
although there are at least 17 other PARP-1-related human 
proteins, 5 of which are also poly(ADP-ribose) polymer-
ases and 12 that transfer single ADP-ribosyl units onto tar-
get proteins. PARP-1 has many, often-divergent cellular 
functions, including roles in regulating DNA repair, tran-
scription, intracellular signaling, protein stability and deg-
radation, as well as cellular proliferation, death, or 
differentiation.36 PARP-1 activity protects cells from carci-
nogenesis, and the T2444C single nucleotide polymor-
phism, which reduces enzymatic activity by 30% to 40%, is 
associated with an increased incidence of prostate, lung, 
and esophageal cancers.36,71-73 Massive DNA damage 
induces high PARP-1 activity rapidly degrading NAD+, 
resulting in cell death.74 PARP-1 inhibition under these cir-
cumstances can prevent cell death.70,74-77

PARP-1 activity is very high in malignant cells, with a 
roughly 45-fold higher activity than is seen in normal human 
lymphocytes, while the PARP-1 protein levels are roughly 
23-fold higher.75 This PARP-1 activity appears to be impor-
tant in cancer cell survival and currently PARP-1 inhibition 
is being investigated as a possible cancer therapy (see 
below).78,79 In myeloma cells iNampt inhibition lowers cel-
lular PARP-1 activity and cell viability, which is an event 
reversed by the addition of NAD+ precursors to the culture 
medium.50 Additionally, high iNampt expression protects 
cells from death due to excessive NAD+ degradation caused 
by high tumor cell PARP-1 activity, an event partially medi-
ated by SirT1 PARP-1 deacetylation and subsequent inacti-
vation.10,50,74,80-82 Thus, crosstalk between PARP-1 and 
iNampt plays a major role in cell viability during stress.83 
SirT1 also negatively regulates PARP-1 at the transcrip-
tional level.45 Since iNampt expression increases SirT1 
activity, iNampt contributes to cell survival by attenuating 
PARP-1 activity.11 Not surprisingly PARP-1 and iNampt 
overexpression often occurs in the same malignancy and is 
seen most of the malignancies listed in Table 1.58,84-89 For the 
other malignancies PARP-1 expression either has not been 
examined or is not overexpressed. For some like myeloma 
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iNampt inhibition significantly inhibits PARP-1 activity.50 
Last, in breast and prostate malignancies increased PARP-1 
expression confers a worse prognosis.85,89

Elevated eNampt and Cancer. Plasma eNampt is elevated in 
a variety of human malignancies, including astrocytomas, 
myeloma, and male oral squamous cell; gastric, endome-
trial, hepatocellular, and colorectal carcinomas; and inva-
sive breast cancer.47-49,52,53,90-93 Interestingly, plasma 
eNampt increases with increased astrocytoma grade and 
has been hypothesized to be a prognostic marker.52 Simi-
larly, eNampt is elevated at tumor higher stages in male oral 
squamous cell, hepatocellular, endometrial, and invasive 
breast carcinomas.47,53,93 Higher eNampt levels correlate 
with myometrial invasion and shorter patient survival in 
women with endometrial carcinoma.44 Last, higher eNampt 
levels in invasive breast cancer correlated with lymph node 
metastases and the absence of estrogen and progesterone 
receptors.93

The biological function of eNampt is presently poorly 
understood. Cardiac-specific eNampt overexpression in 
mice causes cardiac and cardiomyocyte hypertrophy by 
activation of the JNK1, p38, and ERK kinases. Interest-
ingly, cardiomyocytes stressed in culture with H

2
O

2
 or 

serum starvation secrete eNampt.25 Pretreatment of human 
chondrocytes with eNampt inhibited IGF-1 stimulated pro-
teoglycan synthesis and AKT and insulin receptor sub-
strate-1 phosphorylation, while activating ERK.94 Zhang  
et al.14 found that eNampt treatment rapidly induced inter-
leukin-6 in murine macrophages, followed by interleukin-
6-mediated Stat3 activation, an event that readily occurred 
even with mutated, enzymatically inactive eNampt. Inter-
estingly, eNampt expression is induced in macrophages by 
interleukin-1β, tumor necrosis factor-α, and interleu-
kin-6.95-97 Constitutively activated Stat3 mediates dysregu-
lated cell growth, survival, and angiogenesis, contributing 
to malignancy.98,99 Additionally, chronic inflammation, 
mediated by cytokines such as tumor necrosis factor-α and 
interleukin-6, with concomitant Stat3 activation, plays a 
prominent role in carcinogenesis, including many of the 
malignancies listed in Table 1.100,101 Taken together, these 
data suggests that plasma eNampt may contribute to carci-
nogenesis and tumor growth, partially explaining the 
increased eNampt accompanying human 
malignancies.47-49,52,53,90-93

Treatment of Human Malignancies With 
iNampt Inhibitors
The overexpression of Nampt in several human malignan-
cies, combined with its promotion of many aspects of the 
malignant phenotype,37-54 suggests that Nampt inhibition 

may exert anticancer effects. Hasmann and Schemainda102 
found that the highly specific, noncompetitive Nampt 
inhibitor FK866 induced delayed cell death by apoptosis in 
HepG2 human liver carcinoma cells with an IC

50
 of ~1 nM. 

The mechanism involved a gradual NAD+ depletion, which 
could be partially reversed by adding NAM or nicotinic 
acid. Others researchers found that Nampt inhibition also 
causes ATP depletion, lowered PARP-1 and SirT1 activi-
ties, and eventual cell death.102-105 Interestingly, due to their 
increased NAD and ATP catabolism, tumor cells are more 
sensitive to iNampt inhibition than are benign cells.106 
Recently, several Nampt inhibitors have shown promise in 
treating several human malignancies and several are now in 
phase I and II clinical trials (Table 2).43,48,106-110 Interest-
ingly, Nampt inhibition by FK866 had little effect on cul-
tured melanoma cells.48 Several of these studies employed 
a Nampt inhibitor with another chemotherapeutic agent to 
induce “synthetic lethality,” where the inhibition of 2 gene 
products causes cell death, while inhibition of either gene 
product alone does not significantly lower cell viability.111 
For example, Bajrami et al.78 employed an olaparib (a 
PARP-1 inhibitor) sensitization screen to examine the effect 
of inhibiting different enzymes involved in NAD metabo-
lism and their effect on triple-negative breast cancer cell 
growth in murine xenografts. Nampt was identified as a 
nonredundant modifier of the olaparib response. Based on 
this the authors concluded that Nampt/PARP-1 inhibitor 
combinations may have value in treating triple-negative 
breast cancer.

Conclusion
Both iNampt and eNampt are overexpressed in several 
human malignancies, where increased expression of either 
form is often associated with malignant progression.37-54,90-92 
Additionally, several early studies indicate that Nampt inhi-
bition may have clinical efficacy in treating some human 
malignancies.43,70,78,107,108 Based on these data, Nampt plays 
an important role in carcinogenesis and possibly cancer 
treatment, especially as it relates to other proteins involved 
in NAD metabolism. There are many aspects of Nampt 
biology that are presently poorly understood and need fur-
ther study. For example, Santidrian et al.112 found that a 
nonlethal reduction NAD+ levels by interfering with Nampt 
expression increased breast cancer metastases in an animal 
model, contradicting much of the data given above. Addi-
tionally, the same study revealed that mitochondrial com-
plex I activity and the NAD+/NADH ratio regulated breast 
cancer progression. This last observation indicates that 
there are many aspects of NAD metabolism related to car-
cinogenesis and that Nampt activity in only one aspect of a 
complex NAD metabolome in cancer.
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