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Abstract

Converging research efforts suggest that nicotine and other drugs that act at nicotinic acetylcholine

receptors (nAChRs) may be beneficial in the management of Parkinson’s disease. This idea

initially stemmed from the results of epidemiological studies which demonstrate that smoking is

associated with a decreased incidence of Parkinson’s disease. The subsequent finding that nicotine

administration protected against nigrostriatal damage in parkinsonian animal models led to the

idea that nicotine in tobacco products may contribute to this apparent protective action. Nicotine

most likely exerts its effects by interacting at nAChRs. Accumulating research indicates that

multiple subtypes, including α4β2, α6β2 and/or α7 containing nAChRs, may be involved.

Stimulation of nAChRs initially activates various intracellular transduction pathways primarily via

alterations in calcium signaling. Consequent adaptations in immune responsiveness and trophic

factors may ultimately mediate nicotine’s ability to reduce/halt the neuronal damage that arises in

Parkinson’s disease. In addition to a potential neuroprotective action, nicotine also has anti-

depressant properties and improves attention/cognition. Altogether, these findings suggest that

nicotine and nAChR drugs represent promising therapeutic agents for the management of

Parkinson’s disease.
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Introduction

A critical unmet need in the management of Parkinson’s disease is the development of

strategies to slow, stop, or preferably reverse the neurodegenerative process. Parkinson’s

disease is a neurological disorder characterized by a progressive loss of dopaminergic

neurons in the substantia nigra pars compacta that results in tremor, rigidity and

bradykinesia 1–7. Although the nigrostriatal dopaminergic deficits are the most severe, there

are also declines in numerous other CNS neurotransmitter systems. These most likely

underlie the non-motor problems associated with Parkinson’s disease, including autonomic

deficits, psychiatric symptoms, behavioral changes, dementia, sleep disorders and others 1–7.
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Dopamine replacement therapies provide effective control of the motor symptoms,

particularly in the early stages of the disease. However, they do not adequately manage the

non-motor deficits and, in addition, induce a variety of motor and psychiatric side effects.

Moreover, they provide only symptomatic relief while the underlying disease continues to

worsen. These shortcomings highlight the importance of identifying novel treatment

strategies that delay or halt disease progression, or ideally restore function in Parkinson’s

disease.

Development of neuroprotective agents for Parkinson’s disease

Although drug development has yielded numerous agents for the symptomatic control of

motor impairments in Parkinson’s disease, there are as yet no approved drugs capable of

reducing disease progression. One reason for this relates to uncertainty as to the cause of

Parkinson’s disease (Table 1). Accumulating evidence indicates that exposure to

environmental agents, such as fungicides, herbicides, pesticides and metals, is associated

with an increased risk of Parkinson’s disease 8–12. In addition, specific gene defects have

been linked to familial and sporadic forms of Parkinson’s disease including mutations in

LRRK2, alpha-synuclein, parkin, DJ-1, PINK1 and others 13–15. However, it is unclear how

these environmental insults and/or gene mutations contribute to the degenerative changes

observed in Parkinson’s disease brain, for instance, mitochondrial dysfunction, oxidative

stress, modifications in protein handling, adaptations in immune-modulators, as well as

alterations in other molecular and cellular functions 1, 15. An understanding of the factors

involved in the etiology of Parkinson’s disease and how they mediate subsequent

pathological changes is essential for the development of rational neuroprotective strategies.

Moreover, this knowledge may lead to the identification of an early biomarker for

Parkinson’s disease. Symptoms only arise when there is already considerable neuronal

degeneration; early detection would allow for the administration of protective treatments

before the onset of disease symptoms.

Other factors (Table 1) that have hampered the identification of clinically effective

neuroprotective agents for Parkinson’s disease include the lack of parkinsonian animal

models that precisely mimic the pathogenesis of the disease with respect to its etiology, slow

progressive nature and pattern of cell loss 16–20. Most of the neurotoxin-induced or genetic

animal models lack one or more of these key features, although a more recent rotenone

model may represent a better alternative 16–21. This shortcoming is exacerbated by

difficulties in translating the animal data to the design of an effective clinical trial with

respect to optimal drug dosage and timing. A drug treatment regimen in an animal model

may not be suitable in Parkinson’s disease patients because of differences in drug

metabolism, pharmacokinetics and pharmacodynamics. Another obstacle in the development

of effective neuroprotective strategies is an inability to discriminate between the acute and

long term effects of a drug. For instance, the drug of interest may acutely improve the same

clinical symptoms that are also the endpoint of the neuroprotective trial, thus complicating

data interpretation. Continued pre-clinical and clinical research is necessary to resolve these

issues and identify targeted neuroprotective drugs.

Putative neuroprotective strategies for Parkinson’s disease

Despite the above limitations, there is optimism in the development of disease modifying

strategies for Parkinson’s disease. An expanding pre-clinical effort provides support for a

growing number of agents that may be useful for neuroprotection against nigrostriatal

damage. Results from in vitro and in vivo work have led to the design of a number of trials

investigating neuroprotection in Parkinson’s disease patients (Table 2). Drugs under study

include compounds that modulate mitochondrial function like creatine and coenzyme
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Q 22–24 and the antioxidant glutathione 25. Trophic factors 26, 27, immune-modulators 28–31,

and the calcium channel blocker isradipine 32 have or are being tested for their ability to

delay disease progression. The diversity of agents initially appears somewhat daunting but

may simply reflect the numerous interactive mechanisms that play a role in

neurodegeneration under different conditions.

Epidemiological work has also been instrumental in identifying agents that may protect

against Parkinson’s disease 10, 11, 33, 34. The most consistent and notable of these findings

are the inverse associations between Parkinson’s disease and elevated uric acid levels, coffee

drinking and smoking. Uric acid, an antioxidant found in high concentrations in serum and

brain, had been hypothesized to protect against oxidative damage and cell death as occurs in

Parkinson’s disease. Indeed, subsequent studies showed an inverse correlation between

elevated uric acid and Parkinson’s disease 35–38. These combined findings formed the basis

for a clinical trial to test inosine, which elevates urate levels, for its potential to modify

Parkinson’s disease progression (Table 2). An environmental factor that has been associated

with a decreased incidence of Parkinson’s disease is coffee drinking. Coffee may be

beneficial via an antagonistic action of caffeine at adenosine A2a receptors 34, 39, 40. A

clinical trial to test the adenosine A2a antagonist preladenant is currently in progress (Table

2). Another lifestyle factor inversely correlated to the development of Parkinson’s disease is

smoking. The epidemiological evidence for this association and the components in tobacco

smoke that may be responsible for smoking’s apparent protective effect is the focus of the

remainder of this review.

Smoking is linked to a reduced incidence of Parkinson’s disease

An extensive epidemiological literature quite unexpectedly showed that tobacco use is

associated with a lower incidence of Parkinson’s disease 10, 11, 33. Over 50 studies done over

the last half century consistently demonstrate a reduced prevalence of Parkinson’s disease

among smokers compared to never-smokers 12, 41–43. This inverse association between

Parkinson’s disease and smoking is correlated with increased intensity and duration of

smoking, is more pronounced in current compared with former smokers, decreases with

years after quitting smoking and was observed with different types of tobacco products.

Importantly, it did not appear to be due to selective survival of Parkinson’s disease cases or

reporting bias 42–51. These combined findings provide strong evidence for a negative

association between smoking and Parkinson’s disease.

Nicotine protects against nigrostriatal damage in parkinsonian animal

models

Such compelling evidence for a decreased incidence of Parkinson’s disease with smoking

prompted studies to identify the active component(s) as such work may yield insight about

potential neuroprotective strategies. A drawback is that tobacco and its combustion products

contain thousands of chemicals any of which may improve neuronal integrity. However,

despite the extensive number of reagents, tobacco constituents have been identified that

protect against nigrostriatal damage in animals models.

One of these is 2,3,6-trimethyl-1,4-naphthoquinone (TMN) an inhibitor of monoamine

oxidase (MAO) A and B activity 52–54. TMN partially protects against MPTP-induced

neurodegeneration in mice by reducing endogenous dopamine metabolism and consequently

decreasing oxidative stress. It may also protect by blocking MAO-mediated activation of

exogenous neurotoxins 55, 56. An example of a synthetic MAO B inhibitor currently used in

the treatment of Parkinson’s disease is rasagiline. This drug appears to provide symptomatic

relief and may also protect against nigrostriatal damage because of its ability to decrease
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dopamine metabolism and prolong the action of dopamine 56. In fact, rasagiline delayed the

need for antiparkinsonian drugs in a recent clinical trial 57 (Table 2).

In addition to MAO inhibitors, another chemical in tobacco that has been the focus of

intense research is nicotine. The rationale for investigating a role for nicotine is based on

results demonstrating a close anatomical relationship between the nicotinic cholinergic and

dopaminergic neurotransmitter systems in the striatum 58. Moreover, nicotine influences

dopaminergic activity by acting at nicotinic receptors (nAChRs) on dopaminergic terminals

and modulating dopamine release 59, 60. Such actions of nicotine may ultimately result in its

overall functional effects including protection against nigrostriatal damage 61–63.

Numerous experimental studies have shown that nicotine administration enhances

dopaminergic integrity in the striatum of parkinsonian rodents and monkeys 60–62. This

includes protection against MPTP-, 6-hydroxydopamine- or paraquat-induced toxicity in rats

and mice 64–70. Chronic nicotine administration also reduced MPTP-induced striatal damage

in nonhuman primates, a model that shares many resemblances with the human

disease 71, 72. Several months of nicotine exposure improved striatal tyrosine hydroxylase,

the dopamine and vesicular monoamine transporters, dopamine levels, nAChR expression

and normalized lesion-induced over activity of the nigrostriatal pathway. This effect of

nicotine appears to be due to protection against ongoing degeneration, as nicotine treatment

did not enhance dopaminergic measures when administered to animals with pre-existing

nigrostriatal damage (Fig. 1) 66. These latter observations suggest that early treatment would

yield optimal therapeutic benefit in Parkinson’s disease patients.

Altogether, these data form the basis for the idea that nicotine may contribute, at least in

part, to the apparent neuroprotective effect of tobacco use in Parkinson’s disease.

Nicotine acts at nicotinic receptors

An important question is by what mechanisms nicotine protects against neuronal damage as

such knowledge may allow for the development of drugs that selectively target the relevant

molecular deficits. Considerable evidence suggests that nicotine primarily exerts its effects

by acting at nAChRs. These are pentameric ligand-gated cation channels composed of

varying combinations of different α and β subunits. The naturally occurring

neurotransmitter for this receptor is acetylcholine which binds to the α or ligand binding

subunit, of which there are 5 types in mammalian brain (α2, α3, α4, α6 and α7). In

addition, the receptor may contain subunits which do not bind acetylcholine including the

β2, β3, β4 and also the α5 subunit 73, 74.

These receptor subunits co-assemble to form a diverse family of nAChRs, the most

abundant of which are homomeric α7 nAChRs and heteromeric β2 containing nAChRs (Fig.

2). These latter subtypes generally also contain α4 or α6 subunits to form two primary

subpopulations, the α4β2* and α6β2* nAChRs (the asterisk denoting the possible presence

of other subunits in the receptor complex). The α4β2* nAChRs are widely distributed

throughout the brain, including the nigrostriatal pathway, while α6β2* nAChRs exhibit a

more restricted CNS distribution that includes the nigrostriatal system 59, 74, 75. Homomeric

α7 nAChRs, like the α4β2* nAChRs, are also extensively localized throughout the brain

although α7 receptors are expressed at a very low density in the nigrostriatal system of rats

and monkeys. These findings suggest that, if α7 receptors influence nigrostriatal function, it

would be through secondary effects on other brain regions.

Evidence derived from studies using multiple experimental strategies have further helped

define the composition of the α4β2* and α6β2* nAChR populations (Fig. 2). This includes

immunoprecipitation experiments with nAChR subtype selective antibodies, lesions of
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specific neuronal pathways and the use of genetically modified nAChR mice. These

combined approaches indicate that the primary populations in the nigrostriatal system are

composed of α4β2, α4α5β2, α6α4β2β3 and α6β2β3 subunits 60, 76

Nicotinic receptor subtypes that mediate neuroprotection

Our understanding of the specific nAChR subtypes involved in nicotine-mediated protection

against neurotoxic insults is primarily derived from studies with cells in culture 61, 62, 77–79.

Experiments using neuronal cell lines or primary cultures from striatal, nigral, cortical,

cerebellar and other brain regions show that nicotine pre-treatment can reduce damage from

toxic insults by acting at α4β2* or α7 nAChRs 61, 62, 77–79. This includes nicotine-mediated

protection against glutamate-, β-amyloid- and ethanol-induced toxicity, as well as against

nerve growth factor deprivation. The diversity of nicotine’s action against varying toxic

insults in cultures from different brain regions suggests that nicotine has the capacity to

exert a widespread protective action. This could be important for Parkinson’s disease since

the neuronal deficits in this disorder are known to extend throughout the peripheral and

central nervous system 80–82.

Knowledge concerning the specific nAChR subtypes through which nicotine protects

nigrostriatal damage in parkinsonian animal models is much more limited because of the

scarcity of subtype selective nAChR drugs currently available. However, the use of

nonselective nAChR antagonists demonstrates that the effect of nicotine is mediated through

nAChR 65. Furthermore, work with α4 nAChR null mutant mice indicate that protection is

reduced in striatum of such animals suggesting that the α4β2* nAChR subtype is

important 68. Other studies using rats with nigrostriatal lesions show that nicotine-mediated

protection is not observed when the α6α4β2β3 nAChR subtype is lost, providing indirect

evidence for an involvement of this receptor subtype66.

The combined results of the in vitro and in vivo studies suggest that both β2* and α7

nAChR drugs may be useful for protection against the motor and non-motor deficits

associated with Parkinson’s disease pathology.

Molecular signaling mechanisms that mediate effects of nicotine

The next question is how an interaction at nAChRs leads to overall functional effects such as

protection against neuronal damage. Although the intracellular mechanisms whereby

nicotine mediates neuroprotection are only beginning to be understood, an important first

step most likely involves alterations in calcium signaling, although calcium independent

nAChR-mediated mechanisms have also been reported (Fig. 3) 62, 77, 79, 83–87. Increased

intracellular calcium may occur via an influx of calcium through nAChRs, secondarily via

other membrane channels and/or through local increases in cellular calcium.

nAChR-mediated increases in calcium then trigger diverse downstream signaling molecules

to ultimately modify neuronal function (Fig. 3) 62, 77, 79, 83–87. Cellular molecules activated

in response to nAChR-mediated changes in calcium include kinases such as protein kinase A

(PKA) and extracellular signal-regulated mitogen-activated protein kinase (ERK/MAPK).

Another signal transduction pathway activated by nicotine is one involving the calcium

effector protein calmodulin (CaM) and phosphatidylinositol 3-kinase (PI3K)/Akt-or protein

kinase B-dependent signaling 69. There may also be modifications in the JAK2 (Janus kinase

2)/PI3K and/or JAK2/STAT3 (signal transducer and activator of transcription 3) pathways,

with the latter possibly being calcium independent 83. Activation of these diverse signalling

cascades has been reported to modulate caspase activity (3, 8 and 9), cell survival proteins

such as Bcl-2 (B-cell lymphoma 2) and Bcl-x, NFκB (nuclear factor-kappaB), CREB

(cAMP response element-binding), tyrosine hydroxylase and other molecular
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components 62, 77, 79, 83–87. These in turn may lead to decreased apoptosis, enhanced

neuronal survival, modified immune responsiveness and alterations in synaptic plasticity. Of

specific relevance to neuroprotection are nicotine-induced changes in basic fibroblast

growth factor-2 (FGF-2), brain-derived neurotrophic factor (BDNF) and nerve growth factor

(NGF) in brain dopaminergic and other regions, which could attenuate neuronal

damage 88–91. Nicotine may also act by modulating immune function, as cytokine

production has been shown to protect against toxic insults and promote neuronal

repair 83, 92–94.

Although nicotine mediates its effects primarily by interacting at nAChRs, receptor-

independent mechanisms may also contribute to nicotine’s neuroprotective potential. These

include a reduction in mitochondrial complex 1 activity, inhibition of reactive oxygen

species generation, oxidative or anti-oxidative potential and radical scavenging

properties 95–99.

Overall, current evidence suggests that multiple molecular transduction mechanisms may be

involved in nicotine-mediated adaptive changes, such as neuroprotection against neuronal

injury. This finding may reflect the interactive nature of these processes or suggest that

distinct signaling events are involved under various pathological conditions.

Usefulness of nicotine for Parkinson’s disease therapeutics

In addition to a role for nicotine as a protectant against nigrostriatal damage, it may also be

useful in reducing the dyskinesias that arise with long term L-dopa use in Parkinson’s

disease. Evidence for this idea stems from data from parkinsonian animal models which

show that nicotine decreases L-dopa-induced dyskinesias in MPTP-lesioned monkeys, when

administered before the onset of dyskinesias or once they are established 63. There was also

an improvement in L-dopa-induced abnormal involuntary movements in parkinsonian

rodents treated with nicotine via several routes including drinking water, minipump or

injection 100–102. The mechanism whereby nicotine reduces L-dopa-induced dyskinesias is

currently uncertain, but may involve an interaction at nAChRs, specifically β2*

subtypes 102. This basic work in parkinsonian animal models has led to a clinical trial to test

nicotine against L-dopa-induced dyskinesias in Parkinson’s disease patients; the results

suggest that nicotine (designated NP002) may be beneficial (http://www.neuraltus.com).

An important question is whether nicotine directly affects Parkinson’s disease motor

symptoms. Our research studies indicate that acute nicotine administration did not modify

parkinsonism in monkeys, rats or mice either ON or OFF L-dopa 63, 100, 102. On the other

hand, it did enhance the effects of L-dopa in other reports 103, 104, leaving its effects on

parkinsonism in experimental animal models unclear. The role of nicotine for motor

symptoms in Parkinson’s disease patients are also uncertain. The results of clinical trials and

case studies showed that nicotine treatment improved symptoms in five of ten published

studies, with no effect in four and a worsening in one 105–113. The reason for these

differential outcomes may relate to variations in the mode of administration of nicotine

(patch, gum, intravenous), inadequate dosing, timing or duration (days to weeks) of

treatment, as well as differences in the degree of parkinsonism and type of trial (open-label

versus double-blinded). In summary, results from both animal and clinical studies shed

doubt on a direct beneficial effect of nicotine on motor symptoms 114, 115. By contrast,

current findings do yield compelling evidence that nicotine may be useful for the treatment

of L-dopa-induced dyskinesias and for neuroprotection against ongoing disease progression.

An important issue with respect to therapeutic management is what would be the most

effective nicotine delivery system for Parkinson’s disease patients. Tobacco use is not an

option since it leads to major health problems worldwide and decreases life expectancy due
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to tobacco-related cancers, cardiovascular disease, pulmonary disease and other adverse

health conditions 116–120. However, nicotine itself exhibits a favorable safety profile and is

widely available over-the-counter as a smoking cessation aid, with several nicotine

formulations readily accessible at relatively low cost, including the transdermal nicotine

patch, gum, lozenge, inhaler and spray 116–120. With respect to optimal protective potential,

it should be noted that nicotine appears to reduce ongoing neuronal damage in parkinsonian

animal models but is not neurorestorative. These findings suggest that therapeutic

intervention would be most effective in early stage Parkinson’s disease. A double-blinded,

placebo-controlled clinical trial currently in progress to test the transdermal nicotine patch in

newly diagnosed patients (Table 2) should help evaluate nicotine’s neuroprotective potential

for Parkinson’s disease.

Concluding Remarks

Extensive evidence from epidemiological and basic research studies indicates that nicotine

may represent a drug with potential for protection against Parkinson’s disease. Since

nicotine acts at nAChRs, these data suggest that administration of nicotine and/or nAChR

agonists in early Parkinson’s disease may slow down and/or halt disease progression. This

would help retard declines in motor function and also in non-motor deficits, including

olfactory and autonomic problems, sleep disorders, cognitive declines, depression and

pain 4, 7, 121, 122. In addition to a neuroprotective role, nicotine treatment may directly

improve some of these non-motor complications as an extensive literature shows that acute

nicotine and/or nAChR drugs facilitate cognitive performance, reduce pain and alleviate

depression in experimental animal models 123–130.
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FIG. 1.
Nicotine is neuroprotective when administered before/during but not after nigrostriatal

damage. For the pre-treatment studies, rats were first given nicotine in drinking water (50

μg/ml) for 2 wk after which they were lesioned with 6-hydroxydopamine, with nicotine

maintained. Amphetamine-induced rotations were determined 2–3 wk later as an index of

motor disability. The rats were then killed 2–3 wk later and the dopamine transporter

measured. In the nicotine post-treatment study, rats were first lesioned and amphetamine-

induced rotation measured 2 wk later. Immediately after behavioral assessment, nicotine

treatment was initiated and maintained throughout. Rotational behavior was re-evaluated 3–

4 wk after the start of nicotine dosing and the rats killed 3–4 wk later, such that the total

number of wk on nicotine treatment was similar in the two paradigms. Top panels:

Parkinsonism assessed by amphetamine-induced ipsilateral turning. Three-way ANOVA

analyses showed a significant (p < 0.001) main effect of 6-OHDA lesioning and a significant

(p < 0.05) interaction between nicotine treatment and 6-OHDA lesioning in rats treated with

nicotine prior to the onset of nigrostriatal lesion. By contrast, nicotine treatment after

completion of nigrostriatal damage yielded a significant main effect of 6-OHDA lesioning

(p < 0.001) but no interaction. Bottom panels: Effects of nicotine pre- and post-treatment on

neuronal damage. Dopamine transporter expression was significantly elevated in lesioned

rats with nicotine pre- but not post-treatment. Significance of difference by two-way

ANOVA followed by a Bonferroni post hoc test from the saccharin-sham group, ***p <

0.001; from the saccharin-lesioned group, #p < 0.05. Values represent the mean ± SEM of

6–9 rats per group. Taken with permission 66.
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FIG. 2.
Primary nAChR subtypes in the mammalian CNS. The α6α4β2β3 and α6β2β3 nAChRs

have a relatively restricted distribution in the CNS, including the nigrostriatal system. By

contrast the α4β2 nAChRs, which exists in two unique conformations, and the α4α5β2
nAChR are widely present throughout the brain, including the nigrostriatal pathway. The

homomeric α7 nAChR also exhibits an extensive distribution in the mammalian CNS,

although this subtype is not densely expressed in the rat and monkey nigrostriatal system.
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FIG. 3.
Molecular mechanisms through which nicotine mediates its effects in the nervous system.
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TABLE 1

Difficulties in developing neuroprotective strategies against Parkinson’s disease

1 Multifactorial etiology, including genetic and environmental factors

2 Variability in the pathogenesis of Parkinson’s disease

3 Lack of an early biomarker

4 Animal models only partially mimic Parkinson’s disease with respect to etiology, pathology and behavioral measures

5 Discrepancies in drug pharmacokinetics and pharmacodynamics between the animal models and Parkinson’s disease

Mov Disord. Author manuscript; available in PMC 2013 July 01.
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