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Abstract

Background—Alcohol is frequently co-abused with smoking. In humans, nicotine use can 

increase alcohol craving and consumption. The objectives of the current study were to assess the 

acute effects of nicotine on alcohol seeking and relapse at two different time points.

Method—Adult female alcohol-preferring (P) rats were trained in 2-lever operant chambers to 

self-administer 15% EtOH (v/v) and water on a concurrent fixed-ratio 5 – fixed-ratio 1 (FR5-FR1) 

schedule of reinforcement in daily 1-hr sessions. Following 10 weeks of daily 1-hr sessions, rats 

underwent 7 extinction sessions, followed by 2 weeks in their home cages. Rats were then 

returned to the operant chambers without EtOH or water being present for 4 sessions (Pavlovian 

Spontaneous Recovery [PSR]). Rats were then given a week in their home cage before being 

returned to the operant chambers with access to EtOH and water (relapse). Nicotine (0, 0.1, 0.3, or 

1.0 mg/kg) was injected s.c. immediately or 4-hr prior to PSR or relapse testing.

Results—Injections of nicotine immediately prior to testing reduced (5–10 responses PSR; 50–

60 responses relapse), whereas injections of nicotine 4-hr prior to testing increased (up to 150 

responses for PSR; up to 400 responses for relapse with 1.0 mg/kg dose) responses on the EtOH 

lever during PSR and relapse tests.

Discussion—The results of this study demonstrate that acute effects of nicotine on EtOH-

seeking and relapse behaviors may be time-dependent, with the immediate effects being a result of 

nicotine possibly acting as a substitute for EtOH whereas, with a delay of 4-hr, priming effects of 

nicotine alterations in nicotinic receptors, and/or the effects of nicotine’s metabolites (i.e., 

cotinine, nornicotine) may enhance the expression of EtOH-seeking and relapse behaviors.
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INTRODUCTION

Nicotine is commonly co-abused with alcohol. Epidemiological and clinical studies 

estimated that 50–80% of alcohol-dependent individuals are regular smokers (Hurt et al., 

1994; Pomerleau et al., 1997; Romberger and Grant, 2004). Alcohol dependent individuals 

also have higher rates of nicotine dependence (Hughes, 1996; Room, 2004) and twin studies 

have shown that there may be common genetic mechanisms between alcohol dependence 

and nicotine dependence (Nurnberger et al., 2004; True et al., 1999; Volk et al., 2007). 

Alcohol intake is also significantly higher in smokers compared to only alcohol users (York 

and Hirsch, 1995).

Human and animals studies have demonstrated that the effects of nicotine on alcohol intake 

are complex. For example, two recent double-blind clinical studies demonstrated that 

transdermal nicotine or nicotine delivered by tobacco smoke can increase alcohol 

consumption in men (Acheson et al., 2006 and Barrett et al., 2006). In contrast, transdermal 

nicotine has been shown to decrease alcohol intake in women (Acheson et al., 2006) and 

delay alcohol drinking in heavy drinkers (McKee et al., 2008). Pre-clinical findings have 

provided further evidence that nicotine can increase ethanol (EtOH)-intake (Blomqvist et al., 

1996; Clark et al., 2001; Ericson et al., 2000; Lallemand et al., 2007; Le et al., 2003; 

Olausson et al., 2001; Potthoff et al., 1983; Smith et al., 1999), as wells as decrease it (Dyr 

et al., 1999; Nadal et al., 1998; Sharpe and Samson, 2002) in rodents. It has been suggested 

that the different effects observed after nicotine administration may be time-dependent due 

to the length of nicotine exposure (i. e., acute vs. repeated) or to the length of EtOH access 

(30-min vs. 60-min) (see Le, 2002).

Previous studies primarily focused on examining the effects of nicotine on EtOH intake. 

However, the concurrent use of alcohol with nicotine is also thought to increase the risk of 

alcohol-seeking and relapse further than alcohol use alone (Taylor et al., 2000). Given that 

relapse is a major problem in the treatment of alcohol addiction, some attention has been 

focused on how nicotine may affect EtOH-seeking and relapse drinking (Le et al., 2003; 

Lopez-Moreno et al., 2004).

Le et al. (2003) demonstrated that nicotine can reinstate EtOH-seeking behavior in Long-

Evans rats under operant conditions, whereas Lopez-Moreno et al. (2004) showed that 

nicotine can dose-dependently increase operant EtOH intake during alcohol deprivation in 

Wistar rats. These studies provide some evidence that nicotine use may be involved in 

increasing EtOH-seeking and relapse drinking in non-selective rats. However, the effects of 

nicotine on EtOH-seeking and relapse drinking in selectively bred high alcohol consuming 

rats have not been studied.

The selectively bred alcohol-preferring (P) line of rat has been well characterized both 

behaviorally and neurobiologically (McBride and Li, 1998; Murphy et al., 2002) and 

satisfies criteria proposed as essential for an animal model of alcoholism (Cicero, 1979; 

Lester and Freed, 1973). Alcohol-naïve P rats readily self-administer more nicotine as well 

as express greater nicotine-seeking behavior than the alcohol non-preferring (NP) rats (Le et 

al., 2006). Nicotine also has greater reinforcing effects in P than NP rats (Le at al., 2006), 
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which supports the hypothesis that alcohol and nicotine addiction share some common 

genetic risk factors.

Research assessing EtOH-seeking behavior through the expression of Pavlovian 

Spontaneous Recovery (PSR) paradigm has been conducted in P rats (Rodd-Henricks et al., 

2002a, b). PSR is a unique phenomenon in that it is time dependent, and the behavior 

appears to be dependent on the re-exposure of the organism to cues in the behavioral 

environment previously associated with the reinforcer. The expression of a PSR is directly 

correlated to reward saliency (Robbins, 1990), contextual cues associated with first-learned 

signals, and the amount of first- and second-learned associations (Brooks, 2000). The PSR 

phenomenon has been asserted to be the result of an intrinsic shift away from the recent 

extinction (second-) learning to the initial reinforced learning responses, which reflects a 

motivation to obtain the previously administered reward (Bouton 2002, 2004; Rescorla 

2001). Therefore, the PSR model may represent a unique paradigm to study EtOH-seeking 

behaviors. P rats readily express a PSR for EtOH (Rodd-Henricks et al. 2002a, b; Rodd et al. 

2006) and this expression can be enhanced by exposure to EtOH odor cues or EtOH priming 

(Rodd-Henricks et al. 2002a, b). In addition, P rats express pronounced relapse drinking 

under 24-hr free choice and operant conditions (McKinzie et al 1998; Rodd-Henricks et al., 

2000; Rodd et al., 2003; Toalston et al., 2008).

The objective of the current study was to test the hypothesis that nicotine will increase 

EtOH-seeking behavior and EtOH-relapse of the alcohol preferring P rats in a time-

dependent manner.

MATERIALS AND METHODS

Animals

Adult female P rats from the 55th – 56th generations weighing 250–325g at the start of the 

experiment were used. Previous research indicated that EtOH intake of female P rats was not 

affected by the estrus cycle (McKinzie et al., 1998). Rats were maintained on a 12-hr 

reversed light-dark cycle (lights off at 0900-hr). Food and water were available ad libitum 

throughout the experiment, except during operant testing. The animals used in these 

experiments were maintained in facilities fully accredited by the Association for the 

Assessment and Accreditation of Laboratory Animal Care (AAALAC). All research 

protocols were approved by the institutional animal care and use committee and are in 

accordance with the guidelines of the Institutional Care and Use Committee of the National 

Institute on Drug Abuse, National Institutes of Health, and the Guide for the Care and Use 

of Laboratory Animals (Institute of Laboratory Animal Resources, Commission on Life 

Sciences, National Research Council 1996).

aOperant Apparatus

EtOH self-administration procedures were conducted in standard two-lever experimental 

chambers (Coulbourn Instruments, Whitehall, PA, USA) contained within ventilated, sound-

attenuated enclosures. Two operant levers, located on the same wall, were 15 cm above a 

grid floor and 13 cm apart. A trough was directly beneath each lever, from which a dipper 
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cup could raise to present fluid. Upon a reinforced response on the respective lever, a small 

light cue was illuminated in the drinking trough and 4 seconds of dipper cup (0.1 ml) access 

was presented. A personal computer controlled all operant chamber functions while 

recording lever responses and dipper presentations.

Operant Training

Without prior training, naïve P rats were placed into the operant chamber. Operant sessions 

were 60-min in duration and occurred daily (including weekends) for 10 weeks (Rodd et al., 

2006). The EtOH concentration used for operant administration was 15% (vol/vol). During 

the initial 4 weeks of daily operant access, both solutions (water and EtOH) were reinforced 

on an FR-1 schedule. At the end of this time, the response requirement for EtOH was 

increased to an FR-3 schedule for 3 weeks, and then to FR-5 schedule for 3 weeks. After the 

P rats had established stable levels of responding on the FR5 schedule for EtOH and FR1 for 

water, they underwent 7 days of extinction training (60-min/day), with neither water nor 

EtOH available (Rodd et al,. 2006). With the exception of no fluid being presented, the 

delivery system operated exactly as the preceding EtOH self-administration sessions.

Pavlovian Spontaneous Recovery (PSR) testing

After extinction training, all rats were maintained in the home cages for 14 days. Following 

the abstinence period, rats received additional operant sessions under the extinction protocol 

conditions. Lever contingencies and dipper functioning were maintained, but EtOH and 

water were absent. Rats were given 4 consecutive PSR test sessions (Rodd-Henricks et al., 

2002a, b; Rodd et al., 2006). There are 4 consecutive PSR session because previous studies 

have shown that exposure to EtOH odor cues or EtOH priming (Rodd-Henricks et al., 

2002a, b) and some drugs (Dhaher et al., 2009) may enhance PSR responding for more than 

one session.

Relapse

Following the PSR phase of the experiment, all rats were maintained in the home cages for 7 

days. Rats were then transferred to the operant chambers with both 15% EtOH and water 

available for the 60-min sessions. The EtOH lever was maintained on a FR5 schedule and 

the water lever on a FR1 schedule (Rodd et al., 2006).

Nicotine Effects on EtOH-Seeking and Relapse Drinking

Nicotine HCl was purchased from Sigma (St. Louis, USA). Nicotine HCl was dissolved in 

saline. Following extinction training, adult female P rats (n = 55) rats were randomly 

assigned to groups that received injections of nicotine (0, 0.1, 0.3, or 1.0 mg/kg, free base) 

immediately or 4-hr prior to the first PSR test session only (n = 6–10/dose/time point). Pilot 

testing revealed that nicotine injected 30-min prior to testing suppressed operant behaviors 

similar to that observed in the immediate condition; therefore, this time point was removed 

from the study. To reduce the number of rats used in the experiment, the saline group 

consisted of 9 rats distributed at each time point (n = 4–5/time point).

These same rats were also used to test the effects of nicotine during relapse responding, 

using a counterbalanced design (i.e., rats that were administered 1.0 mg/kg nicotine 
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immediately prior to PSR test sessions were randomly assigned to separate groups that 

received one of the 4 doses of nicotine). For relapse testing, rats received 0, 0.1, 0.3, or 1.0 

mg/kg nicotine (n = 7–9/group/time point) immediately or 4-hr prior to the 1st relapse 

session only. Similarly, to reduce the number of rats used in the experiment, the saline group 

consisted of 9 rats distributed at each time point (n = 4–5/time point).

Statistical Analyses

Overall operant responding (60-min) data were analyzed with a mixed factorial ANOVA 

with a between subject factors of dose and time point and a repeated measure of ‘session’. 

For the PSR experiments, the baseline measure for the factor of ‘session’ was the average 

number of responses on the EtOH lever for the last 3 extinction sessions. For the relapse 

studies, the baseline measure for the factor of ‘session’ was the average number of responses 

on the EtOH lever for the 3 sessions immediately prior to deprivation. Operant responding 

data were also analyzed in 10-min blocks, which required the additional repeated measure of 

time. Post-hoc Tukey’s b tests were performed to determine individual differences.

RESULTS

Nicotine administered immediately prior to PSR testing reduced operant responding on the 

EtOH lever (top panel, Fig. 1), whereas nicotine administered 4 hr prior to PSR testing 

increased responding on the EtOH lever (bottom panel, Fig. 1). There was a significant 

effect of ‘session’ (F4, 44 = 35.8; p < 0.001), ‘dose’ (F3, 47 = 4.5; p = 0.007), and ‘session’ by 

‘dose’ by ‘time of injection’ interaction (F12, 138 = 4.5; p < 0.001). Decomposing the 

interaction term by holding ‘time of injection’ constant revealed, for rats injected 

immediately prior to PSR testing, there was a significant ‘session’ by ‘dose’ interaction 

(F12, 63 = 2.7; p < 0.001). Individual One-way ANOVAs performed on each session 

indicated that only during the 1st PSR test session was there a significant ‘dose’ effect (F3, 22 

= 34.5; p < 0.001). Post-hoc comparisons indicated that all 3 nicotine groups responded less 

than the saline treated rats during the 1st PSR test session. Comparison with extinction 

baseline levels of responding indicated that the saline treated rats increased responding on 

the lever previously associated with the delivery of EtOH during the 1st PSR session, 

whereas rats treated with each dose of nicotine reduced responding (paired t-tests, p values < 

0.001).

For rats injected 4-hr prior to PSR testing, a significant ‘session’ by ‘dose’ interaction 

(F12, 72 = 2.9; p < 0.001) was revealed (Fig. 1). The ‘dose’ groups differed only during the 

1st PSR test session (F3,25 = 25.6; p < 0.001), and post-hoc comparisons indicated that rats 

administered 1.0 mg/kg nicotine 4-hr prior to testing increased EtOH-lever responses 

compared to all other groups. Comparison with extinction baseline levels of responding 

indicated that all groups increased responding on the lever previously associated with the 

delivery of EtOH during the 1st PSR session (paired t-tests, p values < 0.008).

Examining the time course effects of nicotine (in 10-minute blocks) within the first PSR 

session (Fig. 2), indicated a significant ‘time of injection’ x ‘dose’ x ‘session time’ block 

interaction (F15, 135 = 2.8; p < 0.001). Reducing the interaction term by holding ‘dose’ 

constant, indicated a significant ‘time of injection’ x ‘session time’ interaction (p values < 
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0.004) in rats administered 0.1, 0.3 or 1.0 mg/kg nicotine. Analysis performed on the saline 

group revealed no effect of ‘time of injection’ x ‘session time’ interaction (p values < 0.68) 

in rats administered 0.1, 0.3 or 1.0 mg/kg nicotine. Rats treated with nicotine immediately 

prior to testing (open circles, all panels Fig. 2) displayed a reduction in responding 

compared to saline during 0–20-min of PSR testing and this reduced responding continued 

throughout the 60-min session. The rats injected 4-hr prior to the 1st PSR session showed 

that saline, 0.1, 0.3, and 1.0 mg/kg all showed significantly more responding than the group 

given nicotine immediately prior to the session during the beginning of the 60-min sessions. 

Further, the rats administered 0.3 or 1.0 mg/kg nicotine 4-hr prior to PSR testing also 

displayed an increase in responding during the end of the 60-min test session compared to 

saline treated rats (middle and bottom panel, Fig. 2). The time pattern of high responding at 

the beginning and at end of the session for the 0.3 and 1.0 mg/kg groups resulted in the 

overall enhanced PSR responding for both groups compared to saline and 0.1 mg/kg.

Responding on the lever previously associated with water was significantly lower (paired t-

tests, p =0.033) in the 0.3 mg/kg nicotine group compared to extinction baseline values (top 

panel, Fig. 3). There were no a significant differences in water responding for the 1st PSR 

session for the saline, 0.1 mg/kg or 1.0 mg/kg nicotine groups compared to extinction 

baseline values (paired t-tests, p ≥ 0.060). In addition, there were no significant group 

differences (p values > 0.05) on water lever responses between saline, 0.1 mg/kg, 0.3 mg/kg, 

and 1.0 mg/kg nicotine during the 1st PSR session (top panel, Fig. 3).

Responding on the lever previously associated with water was significantly higher in the 

saline (paired t-tests, p =0.015) and 0.1 mg/kg nicotine (paired t-tests, p =0.021) groups 

compared to extinction baseline values (bottom panel, Fig. 3) for the 4-hr delay. There were 

no significant differences in responses on the water lever for the 0.3 mg/kg or 1.0 mg/kg 

nicotine groups compared to extinction baseline values during the 1st PSR session (paired t-

tests, p ≥ 0.456). When the 4-hr delay groups were compared to each other the analysis 

revealed that responding on the water lever for saline and 0.1 mg/kg nicotine groups were 

significantly higher (p values < 0.05) than 0.3 mg/kg and 1.0 mg/kg nicotine during the 

initial PSR session (bottom panel, Fig. 3).

A similar time-dependent pattern to that found during PSR testing was also observed when 

nicotine was administered immediately or 4-hr prior to EtOH relapse testing (top panel, Fig. 

4). Decomposing the interaction term by holding ‘time of injection’ constant indicated that 

in rats injected immediately prior to EtOH reinstatement (top panel, Fig. 4), there was a 

significant ‘session’ x ‘dose’ interaction (F18,57 = 5.3; p = 0.002). Individual ANOVAs 

indicated there was a significant ‘dose’ effect during the 1st relapse session (F3, 22 = 7.6; p < 

0.001). Post-hoc comparisons indicated that responding by the saline group was significantly 

higher than all nicotine groups and baseline values. There was no significant effect of group 

during the 2nd relapse session (p = 0.063) or subsequent sessions. In addition, responses on 

the EtOH lever for all nicotine groups were lower than baseline values during the 1st 

session; during the 2nd session only the 0.1 and 1.0 mg/kg nicotine doses reduced responses 

below baseline.
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For rats injected with nicotine 4-hr prior to EtOH relapse testing (bottom panel, Fig. 4), 

there was a significant ‘session’ effect (F6, 20 = 10.8; p < 0.001). An ANOVA performed on 

the 1st relapse session (p = 0.033) indicated that rats given 0.3 or 1.0 mg/kg nicotine 4-hr 

prior to the relapse session responded more on the EtOH lever than the saline group (Fig. 4). 

Comparison with baseline indicated that all rats in the 4-hr group responded more during the 

1st relapse session than during baseline (p values ≤ 0.03).

The average baseline for EtOH intake prior to relapse testing for both immediate and 4-hr 

groups was approximately 1.5 g/kg in a 60-min sessions. The immediate and 4-hr delay 

saline groups during EtOH relapse increased EtOH intakes to around 2 g/kg. The immediate 

effects of nicotine reduced EtOH intake to 0.4–0.6 g/kg. The 4-hr delay effects of nicotine 

increased EtOH intakes as high 3 g/kg.

Examining the time course effects (in 10-min bins) of administration of nicotine on EtOH 

relapse during the 1st relapse session (Fig. 5) indicated that the EtOH lever responding 

temporal profile was influenced by both nicotine dose and ‘time of injection’. An analysis of 

the EtOH relapse responding separated into 10-min blocks indicated a significant ‘time of 

injection’ x ‘session time’ interaction (F5, 43 = 10.4; p < 0.001). In general, nicotine 

administered immediately prior to the 1st relapse session reduced EtOH self-administration 

throughout the 60-min test session compared to saline values. In general, administration of 

nicotine 4-hr prior to the relapse session increased responding during the beginning and the 

end of the 1st relapse session. For rats administered 0.1 mg/kg nicotine 4-hr prior to relapse 

(top panel, Fig. 5), responding was greater than saline during the 1st 10-min block. For rats 

administered 0.3 mg/kg nicotine 4-hr prior to relapse (middle panel, Fig-5), responding was 

greater than saline during the 3rd and 6th 10-min blocks. For rats administered 1.0 mg/kg 

nicotine 4-hr prior to the 1st relapse session (bottom panel, Fig. 5), responding was greater 

than saline during the 1st, 2nd, and 6th 10-min blocks.

There were no significant differences in water relapse responding when the rats were 

administered saline or nicotine immediately prior to the 1st relapse session compared to 

baseline values (paired t-tests, p values ≥ 0.085), nor were there water responding 

differences when the groups were compared to each other (p values = 0.112, top panel, Fig. 

6). However, rats administered saline or 0.1 mg/kg of nicotine 4-hr prior to the 1st relapse 

session responded significantly (paired t-tests, p = 0.015) more on the water lever compared 

to baseline values (bottom panel, Fig. 6). There were no significant differences in water 

responding when rats were administered 0.3 or 1.0 mg/kg nicotine 4-hr prior to the 1st 

relapse session (paired t-tests, p values > 0.05). In addition, there were no significant group 

differences on water responding between rats administered saline or 0.1, 0.3 or 1.0 mg/kg 

nicotine 4-hr prior to the 1st relapse session (bottom panel, Fig. 6).

DISCUSSION

The major findings of this study demonstrated that the enhanced expression of EtOH-

seeking and EtOH-relapse by acute doses of nicotine is time-dependent. In the present study, 

the PSR and relapse paradigms were used to access EtOH-seeking and EtOH- relapse 

behaviors, respectively.
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The doses of nicotine are comparable to the nicotine doses used in previous experiments (Le 

et al., 2003; Lopez-Moreno et al., 2004). The 4-hr delay between nicotine administration and 

EtOH access showed that nicotine dose–dependently increased both PSR and EtOH-relapse 

(lower panels, Figs. 1 and 4), whereas the saline and 0.1 mg/kg of nicotine groups showed 

increased responses on the water lever for both PSR and water relapse (lower panels, Figs. 3 

and 6). The mid- (0.3 mg/kg) and high- (1.0 mg/kg) dose of nicotine did not have any effect 

on water lever responding for PSR or relapse (lower panels, Figs. 3 and 6). These results 

reveal that the 4-hr delay of nicotine did not lead to general enhancement of locomotor 

activity because water lever responses for the mid- and high-dose nicotine groups did not 

differ from baseline water lever responses. In addition, the saline group’s water lever 

responses were very similar to responses observed for the low-dose nicotine groups. The 

enhancement of EtOH-seeking and EtOH-relapse like self-administration that we observed 

is also not likely due to nicotine withdrawal because it was single administration of nicotine 

and the animals did not exhibit any of the somatic symptoms of nicotine withdrawal (i.e., 

abdominal constrictions, facial fasciculation, increased eye blinks, and ptosis).

Our results are in line with Le et al. (2003) findings that demonstrated repeated nicotine 

administration can increase EtOH-seeking behavior, as well as the findings of Lopez-

Moreno et al. (2004) that showed repeated nicotine administrations can enhance EtOH-

relapse-like drinking for up to two weeks. The difference between our study and the 

previous studies is that a single administration of nicotine and 4-hr delay prior to the operant 

sessions increased EtOH-seeking and relapse responding in P rats. Interestingly, Katner et 

al. (1997) showed that EtOH intake in P rats starts to recovery 4-hr after acute nicotine 

administration. Taken together, these studies suggest that nicotine’s acute priming effects 

may lead to enhancement of EtOH-seeking and relapse long after the dissipation of nicotine.

The desensitization or inactivation of nicotinic acetylcholine receptors (nAChRs) may be 

involved in the delayed enhancement of PSR and EtOH relapse responding by nicotine. 

Nicotine can rapidly desensitize nAChR subtypes (i.e., α4β2) for prolonged periods of time 

(Mansvelder et al., 2002; Pidoplichko et al., 1997, 2004). It has been reported that a single 

exposure of nicotine can reduce nAChRs function for 24-hr and that these receptors remain 

desensitized even after repeated exposure to nicotine (Vann et al., 2006). There is also 

evidence that EtOH can enhance desensitization of nAChRs caused by nicotine (Nagata et 

al., 1996), as well as the behavioral desensitization induced by pretreatment with nicotine 

(de Fiebre and Collins, 1989). Therefore, it is possible that the enhancement of EtOH-

seeking and EtOH-relapse observed in the current study may be due to the desensitization of 

nAChRs caused by nicotine.

An alternative reason for the enhancement of EtOH-seeking and EtOH-relapse drinking for 

the 4-hr delay group may be due to active nicotine metabolites. Nicotine has several 

metabolites that have a longer half-life than nicotine itself. Cotinine is major metabolite of 

nicotine and its half-life ranges from 5 to ~ 7 hours in rat plasma (Kyerematen et al., 1988; 

Miller et al., 1977) and 5.6 hours in the brain (Ghosheh et al., 1999). Studies have shown 

that cotinine can stimulate nicotinic mechanisms to release noradrenaline (Vainio et al., 

1998) and DA (Dwonski et al., 1999b), inhibit the binding of cholinergic receptors 

(Anderson and Arneric, 1994; Riah et al., 1999; Sloan et al., 1984), and desensitize nicotinic 
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receptors (Dwoskin et al., 1999b). However, the cotinine concentrations necessary to 

increase extracellular DA have to be relatively high (Dwoskin et al., 1999b). Interestingly, 

not all of cotinine actions are mediated through cholinergic receptors. Riah et al. (2000) 

results provided the first molecular evidence that cotinine may have its own distinctive 

cotinine receptors. Cotinine has also been shown to reduce neuronal 5-HT turnover (Fuxe et 

al., 1979). Nicotine’s second largest metabolite nornicotine has a half-life of 2.8 hours in the 

brain (Ghosheh et al., 1999) to 3.3 hours in plasma (Kyerematen and Vesell, 1991). 

Nornicotine can also cause nicotinic receptor desensitization (Dwoskin et al., 1999a, 2001); 

it has reinforcing actions similar to nicotine (Bardo et al., 1999), and can act as a substitute 

for nicotine (Reichel et al., 2010). Although there is no current research on how nicotine’s 

metabolites may affect EtOH-seeking behavior or relapse like drinking, it is possible that 

one of nicotine’s metabolites may enhance EtOH-seeking behavior and EtOH- relapse like 

drinking after the 4-hr delay.

The present results showed that all doses of nicotine injected immediately prior to testing 

reduced both PSR and EtOH-relapse responding of P rats (top panels, Figs. 1 and 4), 

whereas only 0.3 mg/kg of nicotine injected immediately prior to PSR testing reduced 

responses on the lever previously associated with water (top panel, Fig. 3). The low (0.1 

mg/kg) and the high (1.0 mg/kg) immediate doses of nicotine did not have any effect on 

water lever responding in the PSR test. None of the immediate doses of nicotine had any 

effect on water relapse responding when compared to baseline or among groups (top panel, 

Fig. 6). Interestingly, all doses of nicotine, given immediately before the operant session, 

reduced responding on the EtOH lever to approximately the same level in the PSR test and 

during relapse (upper panel, Figs. 1 and 4). This reduction is not likely due to a general 

suppressant effect on general locomotor activity since a dose of 0.8 mg/kg has been reported 

to enhance locomotor activity of P rats (Gordon et al., 1993b), and there was no definitive 

reduction in responding on the water lever during the PSR test or during relapse by P rats 

treated with nicotine (top panel, Figs. 3 and 6). The lack of a dose-dependent effect on EtOH 

lever responding during the PSR test and relapse by nicotine, when given immediately prior 

to the session, may be a result of the P rat being more sensitive to the stimulating and EtOH 

discriminative effects of nicotine (Gordon et al., 1993a, b). Therefore, it is possible that the 

EtOH PSR and relapse responding by the P rats may be sensitive to the immediate effects of 

nicotine, such that the 0.1 mg/kg dose is producing a maximal effect, which may reflect the 

greater EtOH discriminative stimulus and locomotor stimulating effects of nicotine for the P 

compared to the NP rat (Gordon et al., 1993a, b).

The current findings for the non-delayed groups of nicotine are in line with previous studies 

that showed when nicotine was administered immediately-to-30-min prior to EtOH access, 

there was a reduction in EtOH intake (see Le, 2002). Administration of nicotine into the 

lateral ventricles 15-min before limited EtOH access dose-dependently decreased EtOH 

intake within the first 30-min without altering saccharin intake of P rats (Katner et al., 

1997). Local application of nicotine into the nucleus accumbens 10-min prior to EtOH 

access decreased EtOH operant self-administration in Long-Evans rats without altering 

sucrose self-administrations (Nadal et al., 1998). Peripheral administration of nicotine 

immediately prior to EtOH-access has also been shown to decrease EtOH consumption (Dyr 

et al., 1999). On the other hand, Gauvin et al. (1993) found a biphasic effect of acute 
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nicotine on EtOH consumption in Sprague-Dawley rats. Low-dose nicotine (0.1 mg/kg), 

administered 15-min before EtOH access, increased EtOH intake, whereas higher doses 

(0.18 and 0.32 mg/kg), which are similar concentrations used in more recent studies, 

reduced EtOH intake. For P rats, a biphasic effect of nicotine on EtOH-seeking or EtOH 

relapse like self-administration was not observed (top panels, Figs. 1 and 4). The low-dose 

produced similar reductions as the mid and high doses of nicotine, suggesting that P rats 

may be more sensitive to the effects of nicotine than non-selective rats (top panels, Figs. 1 

and 4).

One possible explanation for the reduction of EtOH-seeking and EtOH-relapse responding 

by P rats is that the initial effects of nicotine may be to substitute for EtOH. Interestingly, 

drug discrimination studies have shown that EtOH discriminative stimulus generalizes to 

nicotine in P rats compared to the NP rats (Gordon et al., 1993a; McMillan et al., 1999) and 

that P rats are more likely to substitute nicotine for EtOH (McMillan et al., 1999). Le at al. 

(2006) findings showed that EtOH-naïve P rats will self-administer more nicotine and 

express greater nicotine-seeking behavior than NP rats. Le et al. (2006) findings in P rats 

provided support for the hypothesis that nicotine and alcohol addiction may share a common 

genetic vulnerability and this shared common genetic vulnerability may also help explain 

why the initial effects of nicotine reduced EtOH-seeking and EtOH-relapse self-

administration drinking behavior in P rats.

The mechanisms underlying nicotine’s effect on EtOH-seeking or relapse behavior are not 

understood. However, activation of the mesolimbic dopamine (DA) system is thought to be 

involved in mediating compulsive drug seeking and drug taking behaviors. EtOH can 

enhance DA neurotransmission by increasing the firing rate of DA neurons (Brodie et al., 

1990; Gessa et al., 1985) and somatodendritic DA release in the VTA (Campbell et al., 

1996; Kohl et al., 1998), subsequently leading to an increase in extracellular levels of DA in 

the nucleus accumbens (Imperato and Di Chiara, 1986; Kohl et al., 1998; Yoshida et al., 

1993). Similar findings have shown that nicotine can also enhance DA neurotransmission by 

increasing the firing rate of DA neurons (Grenhoff et al., 1986) and somatodendritic DA 

release in the VTA (Rahman et al., 2003, 2004), subsequently leading to an increase in 

extracellular levels of DA in the nucleus accumbens (Ferrari et al., 2002; Imperato et al., 

1986b; Nisell et al., 1994; Tizabi et al., 2002).

Nicotine has a half-life that ranges from 55 to 64-min in plasma (Miller et al., 1977) and 30 

to 60-min in brain (Ghosheh et al., 1999; Rossi et al., 2005; Sastry et al., 1995). Nicotine 

brain concentration levels can reach their peak in less than 10-min (Rossi et al., 2005). A 

single administration of nicotine can stimulate DA neurotransmission for over an hour after 

nicotine administration (Di Chiara and Imperato, 1988; Imperato et al., 1986b; Pidoplichko 

et al., 2004; Schilstrom et al., 1998). This prolonged DA neurotransmission is due to α7 

nAChRs on the presynaptic glutamate terminals, which do not desensitize to nicotine, but 

continue to enhance glutamatergic excitation in the presence of nicotine (Pidoplichko et al., 

2004).

Some studies have shown that blocking nAChR can decrease EtOH-self administrations in 

animals (Blomqvist et al., 1996; Farook et al., 2009; Hendrickson et al., 2009; Kuzmin et al., 
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2009; Le et al., 2000), alcohol drinking in humans (Chi and deWit, 2003), and block EtOH 

induced extracellular DA release (Blomqvist et al., 1993, 1997), thus providing evidence 

that some of EtOH reinforcing effects may be mediated via nAChRs. It is noteworthy to 

mention that the majority of pre-clinical studies, which observed nicotine increasing EtOH 

intake, administered nicotine repeatedly, or at a constant rate (Blomqvist et al., 1996; Clark 

et al., 2001; Ericson et al., 2000; Olausson et al., 2001; Pothoff et al., 1983; Smith et al. 

1999), whereas those that examine acute effects of nicotine on EtOH intake observed a 

reduction (Dyr et al., 1999; Gauvin et al., 1993; Katner et al., 1997; Nadal et al., 1998). 

Thus, it is possible that the initial DA stimulating effects of nicotine, when it is administered 

immediately prior to the tests, may be a viable substitute for EtOH under seeking and 

relapse conditions. However, taken into account that nicotine doses have significantly 

decreased after 4-hr suggests that enhancement of EtOH-seeking and EtOH-relapse 

responding are occurring long after the stimulatory effects of nicotine on DA release. 

Therefore, in the current study it seems unlikely that the enhancement of EtOH-seeking and 

EtOH-relapse responding by nicotine is due to increased DA release.

Another factor to take into consideration is that neuroadaptations can occur after chronic 

drinking and that repeated alcohol deprivations may produce further increases in the 

reinforcing effects and the sensitivity of EtOH within the mesolimbic DA system (Rodd et 

al., 2005a, b). Furthermore, it is thought that drugs of abuse can prime responding by 

activating the mesolimbic DA system, which has become sensitized with repeated drug use 

in a long lasting manner (Robinson and Berridge, 1993). Alcohol can also enhance the 

function of several subtypes of nAChRs (i.e., α4β2, α4β4, α2β2, and α2β4) (see Davis and 

de Fiebre, 2006; Cardoso et al. 1999; Narahashi et al., 1999, 2001), have little to no effect on 

other subtypes (i.e., α3β2 and α3β4) (see Davis and de Fiebre, 2006; Cardoso et al., 1999), 

or inhibit other nAChR subtypes (i.e., α7) (Cardoso et al. 1999; see Davis and de Fiebre, 

2006; de Fiebre and de Fiebre 2005; Narahashi et al., 1999, 2001; Yu et al. 1996). In the 

current study, PSR was examine after 21 days of EtOH deprivation and EtOH-relapse after 

32 days of EtOH deprivation, nicotine’s effects may be acting on a sensitized mesolimbic 

DA system with various nAChR alterations. Hence, further alterations of this system after 

chronic drinking and abstinence may also contribute to the effects of nicotine that were 

observed in these animals during PSR and EtOH relapse.

In order to obtain a better understanding of nicotine’s time-dependent effects on EtOH-

seeking and relapse behaviors, EtOH responding in 10-min bins was examined (Figs. 2 and 

5). Previous research demonstrated that only the 0.8 mg/kg dose of nicotine suppressed 

EtOH responding of non-selective Wistar rats in the first 20-min; however, EtOH 

responding started to increase after this time point, resulting in enhanced EtOH intake (Le et 

al., 2000). Le (2002) suggested that the suppression of EtOH intake observed in studies that 

administered nicotine acutely may be due to the length of EtOH access, suggesting that 

shorter durations (30-min) to EtOH access may mask nicotine’s effect on EtOH intake, 

because nicotine initially reduces EtOH intake in the first 20-min and increases EtOH intake 

towards the end of the 60-min session (Le et al., 2000; see Le, 2002). The current10-min bin 

data revealed that all nicotine doses suppressed the initial response of EtOH-seeking and 

relapse responding within the first 20-min in the non-delayed groups compared to the saline 

group (Fig. 2). However, unlike the Le et al. (2000) study, the suppression of these 
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behaviors in P rats continued throughout the entire 60-min session. Taken together, these 

results provide evidence that P rats are more sensitive to the effects of nicotine than non-

selective rats because the effects of nicotine did not rebound after the initial 20-min 

suppression. In addition, further examination of the time course for the 4-hr delayed group 

showed that the increase of EtOH-seeking and relapse generally occurred in the first 30-min 

and/or last 10-min of the 60-min sessions (Fig. 5). For example, the mid- (middle panels, 

Figs. 2 and 5) and high- (lower panels, Figs. 2 and 5) doses of nicotine for the 4-hr delayed 

group tended to increase EtOH-seeking and relapse at the beginning and towards the end of 

the 60-min sessions, whereas the saline group only increased EtOH-seeking at the beginning 

followed by reduction in responses from 30-min to the end of the session. This led to the 

overall enhancement of PSR and EtOH-relapse for 0.3 mg/kg and 1.0 mg/kg nicotine 4-hr 

delayed groups compared to saline and shows that priming effects of the higher doses of 

nicotine actively motivated the animals to obtain EtOH at beginning and end of the 60-min 

sessions even when EtOH was unavailable (PSR). The 0.1 mg/kg nicotine dose was similar 

to saline group and the enhancement of EtOH-seeking was only observed at the beginning of 

session regardless of time, whereas the enhancement of relapse drinking was observed at the 

beginning and towards the end for both saline and the 0.1 mg/kg nicotine groups. Taken 

together, these results suggest that time and dose of nicotine administration are important 

factors in the enhanced expression of EtOH-seeking and relapse in P rats.

In conclusion, these findings suggest that the effects of nicotine on EtOH-seeking and 

EtOH-relapse behaviors in P rats may depend on the temporal assessment of the behaviors 

post drug administration. Further alterations of neuronal systems after chronic drinking and 

abstinence may also contribute to nicotine’s effect on the enhancement of EtOH-seeking and 

EtOH-relapse responding observed in these animals.
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Fig. 1. 
Mean (± S.E.M.) responses per session on the lever previously associated with the delivery 

of EtOH in P rats given saline (n = 4–5/time point) or 0.1, 0.3, or 1.0 mg/kg nicotine (n = 6–

10/dose/time point) subcutaneously immediately or 4-hr prior to the first PSR session. 

Upper Panel: asterisk (*) indicates that rats administered saline responded significantly (p < 

0.05) more on the EtOH lever during the first PSR session compared to extinction baseline 

levels, whereas rats administered 0.1, 0.3, or 1.0 mg/kg nicotine immediately prior to the 

first PSR session responded significantly less than extinction baseline. Pound (#) indicates 

that all doses of nicotine reduced EtOH responding during the first PSR session compared to 

the saline group (p<0.05). Lower Panel: asterisk (*) indicates that rats administered saline, 

0.1, 0.3, or 1.0 mg/kg nicotine 4-hr prior to the first session responded significantly (p < 

0.05) more on the EtOH lever during the first PSR session compared to extinction baseline 

levels. Pound symbol (#) indicates that 1.0 mg/kg nicotine increased EtOH responding 

during the first PSR session compared to all other groups (p < 0.05).
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Fig. 2. 
Mean (± S.E.M.) responses per 10-min blocks on the lever previously associated with the 

delivery of EtOH in P rats given saline (n = 4–5/time point), or 0.1, 0.3, or 1.0 mg/kg 

nicotine (n = 6–10/dose/time point) immediately or 4-hr prior to only the first PSR session. 

Upper Panel: asterisk (*) indicates that rats administered 0.1 mg/kg nicotine immediately 

prior to the test session responded significantly (p < 0.05) less on the EtOH lever during 0–

20-min of PSR testing compared to saline. Middle Panel: asterisk (*) indicates that rats 

administered 0.3 mg/kg nicotine immediately prior to first the PSR session responded 

significantly (p < 0.05) less on the EtOH lever during 0–20-min of PSR testing compared to 

saline and rats administered 0.3 mg/kg nicotine 4-hr prior testing. Rats administered 0.3 

mg/kg nicotine 4-hr prior to PSR testing displayed an increase in EtOH lever responses 

during the 50–60 period. Lower Panel: asterisk (*) indicates that rats administered 1.0 

mg/kg nicotine immediately prior to test session responded significantly (p < 0.05) less on 
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the EtOH lever during 0–20-min of PSR testing compared to saline and rats administered 1.0 

mg/kg nicotine 4-hr prior testing. Rats administered 1.0 mg/kg nicotine 4-hr prior to PSR 

testing displayed an increase in EtOH responses during the 40–60 period.
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Fig. 3. 
Mean (± S.E.M.) responses per session on the lever previously associated with the delivery 

of water in P rats given saline (n = 4–5/time point), or 0.1, 0.3, or 1.0 mg/kg nicotine (n = 6–

10/dose/time point) subcutaneously immediately or 4-hr prior to the first PSR session. 

Upper Panel: asterisk (*) indicates that rats administered 0.3 mg/kg nicotine responded 

significantly (p < 0.05) less on the water lever during the first PSR session compared to 

extinction baseline levels. There were no significant water responding differences when 

animals were administered saline or 0.1 or 1.0 mg/kg of nicotine immediately prior to the 

first PSR session. Lower Panel: asterisk (*) indicates that rats administered saline or 0.1 

mg/kg nicotine 4-hr prior to the first session responded significantly (p < 0.05) more on the 
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water lever during the first PSR session compared to extinction baseline levels. There were 

no significant water responding differences when animals were administered 0.3 or 1.0 

mg/kg nicotine 4-hr prior to the first PSR session.
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Fig. 4. 
Mean (± S.E.M.) responses per session on the EtOH lever by P rats given saline (n = 4–5/

time point), or 0.1, 0.3, or 1.0 mg/kg nicotine (n = 7–9/group/time point) immediately or 4-

hr prior to only the first relapse session. Upper Panel: asterisk (*) indicates that rats 

administered 0.1, 0.3, or 1.0 mg/kg nicotine immediately prior to the first relapse session 

responded significantly (p < 0.05) less than baseline, and rats given saline had higher 

responding than baseline. Pound symbol (#) indicates that all doses of nicotine reduced 

EtOH responding during the first relapse session compared to the saline group (p<0.05). 

Lower Panel: asterisk (*) indicates that rats administered saline or 0.1, 0.3, or 1.0 mg/kg 

nicotine 4-hr prior to the first relapse session responded significantly (p < 0.05) more on the 

EtOH lever compared to baseline levels. Pound symbol (#) indicates that 0.3 and 1.0 mg/kg 

nicotine increased EtOH responding significantly more than the saline group (p < 0.05).
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Fig. 5. 
Mean (± S.E.M.) responses per 10-min blocks on the EtOH lever by P rats given saline (n = 

4–5/time point), or 0.1, 0.3, or 1.0 mg/kg nicotine (n = 7–9/group/time point) immediately or 

4-hr prior to the first relapse session. Upper Panel: asterisk (*) indicates that rats 

administered saline or 0.1 mg/kg 4-hr prior to test session responded significantly (p < 0.05) 

more on the EtOH lever during initial 0–20-min and final 10-min of relapse testing 

compared to rats injected with 0.1 mg/kg nicotine immediately prior to the test session. 

Middle Panel: asterisk (*) indicates that rats administered 0.3 mg/kg nicotine immediately 

responded significantly (p < 0.05) less on the EtOH lever during 0–20-min of relapse testing 

compared to saline, and rats administered 0.3 mg/kg nicotine 4-hr prior to relapse testing 

displayed an increase in EtOH responding during the 3rd and 6th 10-min block compared to 

saline. Lower Panel: asterisk (*) indicates that rats administered 1.0 mg/kg nicotine 

immediately responded significantly (p < 0.05) less on the EtOH lever during 0–20-min of 

relapse testing compared to saline, and rats administered 1.0 mg/kg nicotine 4-hr prior to 

relapse testing displayed an increase in EtOH lever responses during 1st, 2nd, and 6th 10-min 

block compared to saline.
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Fig. 6. 
Mean (± S.E.M.) responses per session on the water lever by P rats given saline (n = 4–5/

time point), or 0.1, 0.3, or 1.0 mg/kg nicotine (n = 7–9/group/time point) immediately or 4-

hr prior to only the first relapse session. Upper Panel: There were no significant differences 

in water responding when the rats were administered saline or 0.1, 0.3, or 1.0 mg/kg nicotine 

immediately prior to the first relapse. Lower Panel: asterisk (*) indicates that rats 

administered saline or 0.1 mg/kg of nicotine 4-hr prior to the first relapse session responded 

significantly (p < 0.05) more on the water lever compared to baseline levels. There were no 

significant differences water responding when rats were administered 0.3 or 1.0 mg/kg 

nicotine 4-hr prior to the first relapse test.
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