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ABSTRACT The development of non-contact patient monitoring applications for the neonatal intensive
care unit (NICU) is an active research area, particularly in facial video analysis. Recent studies have
used facial video data to estimate vital signs, assess pain from facial expression, differentiate sleep-wake
status, detect jaundice, and in face recognition. These applications depend on an accurate definition of
the patient’s face as a region of interest (ROI). Most studies have required manual ROI definition, while
others have leveraged automated face detectors developed for adult patients, without systematic validation
for the neonatal population. To overcome these issues, this paper first evaluates the state-of-the-art in face
detection in the NICU setting. Finding that such methods often fail in complex NICU environments, we
demonstrate how fine-tuning can increase neonatal face detector robustness, resulting in our NICUface
models. A large and diverse neonatal dataset was gathered from actual patients admitted to the NICU across
three studies and gold standard face annotations were completed. In comparison to state-of-the-art face
detectors, our NICUface models address NICU-specific challenges such as ongoing clinical intervention,
phototherapy lighting, occlusions from hospital equipment, etc. These analyses culminate in the creation
of robust NICUface detectors with improvements on our most challenging neonatal dataset of +36.14,
+35.86, and +32.19 in AP30, AP50, and mAP respectively, relative to state-of-the-art CE-CLM, MTCNN,
img2pose, RetinaFace, and YOLO5Face models. Face orientation estimation is also addressed, leading to
an accuracy of 99.45%. Fine-tuned NICUface models, gold-standard face annotation data, and the face
orientation estimation method are also released here.

INDEX TERMS face detection, neonatal dataset, NICU, complex care scenes, convolutional neural
networks, face orientation

I. INTRODUCTION

MANY neonatal non-contact monitoring approaches
utilize the patient’s facial area as a region of interest

(ROI) for diverse tasks including estimation of patient heart
rate (HR) or respiration rate (RR) [1]–[6], assessment of pain
from facial expression [7]–[9], detection of jaundice [10],
[11], sleep-wake detection from facial expression analysis
[12], [13], or face recognition to prevent baby swapping or
abductions [14], [15]. In these studies, facial ROI selection is
often a manual or semi-automated process (e.g., [1]–[3], [5]),
or relies on face detection methods developed for adult faces
(e.g., [6]) that have not been validated on neonates, especially

in complex care scenes.
When estimating HR from facial video data, Fernando

et al. [1] manually extracted the patient’s face to track the
changes in skin pixels using adaptive bandpass filtering and
principal component analysis. Klaessens et al. [2] extracted
regions of the face for subsequent HR estimation using
the Eulerian video magnification (EVM) technique [16];
although it is not discussed in detail, it appears that facial ROI
were manually selected. Kyrollos et al. [6] also used EVM on
facial video data, but for RR estimation. They leveraged the
RetinaNet model [17] for automatic face detection. However,
the automatic face detection was limited to within-patient
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testing and therefore the generalizability of their model is
untested. Villarroel et al. [3] automatically detected video
segments where patient skin is visible and manually identi-
fied a ROI (face, head, or neck) for subsequent HR estimation
using independent component analysis. They later trained a
multi-task convolutional neural network (CNN) for patient
detection and skin segmentation to automatically detect the
patient and all visible skin area for HR estimation [4]. Since
they only performed skin detection, it is unclear how face de-
tection would perform for their application given the varying
amounts of visible skin during occlusions from beddings or
hospital equipment.

More recently, Huang et al. [5] manually detected the
patient’s face in video recordings for HR estimation. They
discussed how challenging and inaccurate an automated face
detector would be, considering the variations in patient pos-
ture and camera perspectives. Hence, a manual approach was
used on the first video frame and a tracking algorithm would
perform detection on subsequent frames. Other studies have
adopted this approach (manual ROI detection followed by au-
tomated tracking) for continuous video-based face detection
[18]. This approach can be reliable for short videos [5], or
with robust tracking systems [18]; however, laborious manual
ROI definition must be repeated at the start of each video
and when tracking fails due to occlusions or excessive patient
motion.

Khanam et al. [19] aimed to overcome this manual task
by training a neonatal face detector as a preprocessing ROI
detection step for subsequent HR/RR estimation based on
colour and motion variations, respectively. They discussed
the challenges faced in utilizing a state-of-the-art face de-
tection model due to occlusions, baby poses, and complex
hospital settings. Moreover, these models are pretrained on
adult populations, often including only a few or no baby
images. They then leveraged 473 images collected from
online available sources to finetune the YOLOv3 model [20]
for neonatal face detection. They unfortunately did not report
the performance of their face detector preprocessing step,
focusing instead on evaluating the proposed HR/RR methods.
Khanam et al. discussed the need to obtain a larger neonatal
image dataset to improve their method’s reliability.

Neonatal facial expression recognition is another impor-
tant task for assessing patient status. Lin et al [21] aimed
to recognize when a 0-2 year old infant is happy, sad, or
normal, directly from facial video data. Data were collected
by asking parents to capture and submit images and videos
of their children using smartphones. For videos, one image
was extracted every 30 frames and a similarity matching
algorithm (SSIM) [22] was used to remove near-identical
images. As an image preprocessing step to standardize the
face orientation, they used the Dlib and OpenCV visual
libraries for face detection and cropping where the image was
rotated at 90°, 180°, and 270° until a face was detected. They
however did not report the performance of their face detector
nor of their rotation experiment.

Several studies have also examined patient faces for neona-

tal pain assessment [7]–[9]. Brahnam et al. [8] detected
painful events from images of swaddled newborns. Images
were carefully preprocessed to extract the facial area (i.e.
images were rotated for standardized face orientation, images
were cropped to only include the patient’s face). It is unclear
if these preprocessing steps were performed programmati-
cally or manually. They later automatically detected faces
from video recordings using a Discriminative Response Map
Fitting (DRMF) model [23] to analyze the temporal pattern of
facial expression during painful procedures [9]. In this latter
study, video recordings of occlusions from moving limbs
were included. No results from the performance of the face
detection step were reported.

Salekin et al. [7] also used video recordings for pain
assessment evaluated through facial expression, body move-
ment, and crying sound analysis. They leveraged the pre-
trained YOLOv3 model for face and body detection as a
preprocessing step before analyzing facial expression and
body motion. No results on the performance of the face/body
detectors were reported; they directly evaluated the pain
assessment methods from the face, body, and sound data
streams. These pain detection studies all share common key
points: face detection as a preprocessing ROI detection step
followed by feature extraction for facial expression estima-
tion; implementation using a dataset of newborns recorded
at a close distance such that the face fills the majority of the
frame, with minimal occlusions, and no dark environment.

Neonatal face detection has been applied for jaundice
detection that seeks to quantify the yellowing of the skin
[10], [11]. These studies use image processing approaches
based on the YCbCr color space for skin segmentation [10],
followed by a manual ROI detection step to identify a specific
facial region [11].

Several recent studies have used face video analysis for
sleep-wake state detection in neonates based on their facial
expression or opening of the eyes [12], [13], [24]. To detect
faces, Mukai et al. [12] first rotated images to standardize
the face orientation pointing North (unclear if done program-
matically or manually), then used the OpenFace library to
detect and align faces [25]. They did not report performance
of the face detection step; however, they discussed how facial
occlusion from bed sheets and lighting variations impeded
the accuracy of the detected face, and thereby impeded
the classification of sleep-wake cycles. They discussed how
neonatal face detection is a difficult task that requires addi-
tional research and development.

In comparison to relatively standard cameras used in
previously mentioned studies, Awais et al. [13] recorded
patients with the Fluke TiX580 camera which can capture
multiple color palettes. To that end, they leveraged the cam-
era’s unique specifications by detecting faces based on pixel
intensities in the CIELAB (Commission Internationale de
l’eclairage, L*a*b*) color space. Studies relying on pixel-
intensity based approaches for face detection can be useful
for specific neonatal monitoring applications; however, skin-
tone-based face detection performance can be limited for
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FIGURE 1. Face Detection Difficulty from Complex NICU Scenes

dark skin patients, different lighting conditions, or for images
including the patient’s full body and bed environment (as
opposed to a close up facial view).

Another sleep monitoring study was recently conducted
on baby manikins by Khan [24], where they created a smart
home baby monitor device that detects sleeping postures and
notifies the caregiver. Four different events were detected
including facial coverage due to prone position, patient re-
moving the blanket, frequent motion, and awake detection.
For the latter, they used the Multi-Task Cascaded Neural
Network (MTCNN) to detect the face, regression trees to
detect a 68-point facial landmarks including 6 landmarks
surrounding the eyes, and computed the eye aspect ratio to
detect when the eyes are continuously open (i.e. baby is
awake). Facial coverage due to prone position was detected
from nose detection; however, they did not use the MTCNN
and regression tree approach since this technique is severely
impacted by facial occlusions. Instead, they opted for a pose
detection model made of a body skeleton connected to facial
landmarks. A prone position is determined by the absence
of the connected facial landmarks. Their study was entirely
trained and largely tested on baby manikins. They did obtain
a few additional images of real babies and infants collected
from online available sources to test their methods. Although
results were promising on these few images, they discussed
how new challenges may arise from real babies with varying
facial occlusions, or more complex sleeping poses. The au-
thors emphasized the need to collect such a challenging real-
life dataset, to acquire reliable labelled data, and to retrain a
pretrained model accordingly.

Neonatal face recognition applications are evaluating new-
borns’ facial features to properly identify patients in hospital
as a prevention measure to baby swapping or abduction.
Bharadwaj et al. [15] performed manual face detection given
that existing detectors failed to identify newborn faces. To
overcome this issue, Awais et al. [14] leveraged the color
palettes from the Fluke TiX580 camera for automatic face
detection and reported an accuracy of 98.5%. Their dataset
used controlled head movements ( -45° to 45° in yaw head

tilt), close camera distance (0.25-0.36 m), and excluded
occlusions from limb movements to obtain best quality data
for face recognition. The present paper explores a different
task by systematically evaluating face detection in a variety
of complex NICU scenes for diverse neonatal monitoring
studies.

Among all the video-based neonatal monitoring research,
numerous approaches to face detection were adopted as a pre-
processing step for their specific application using different
NICU datasets. It is unclear if the various proposed methods
would be reliable in a complex clinical setting when the
camera is sometimes placed far from the patient, where the
face may be occluded due to ventilation support or other rea-
son, lighting conditions vary widely and change frequently,
patient pose can vary, and the scene may capture ongoing
clinical interventions. Some of these complex scenes are
depicted in Fig. I. In many previous studies, these challenges
are acknowledged and a manual ROI detection method was
adopted (e.g., [1]–[3], [5], [8], [11], [18]). In other cases,
studies used a state-of-the-art model pretrained on an adult
population for ROI detection without rigorous validation on
neonatal patients in complex NICU environments (e.g., [6],
[7], [9], [12], [13]). In rarer cases, studies have trained a
facial ROI detector using neonatal datasets including only a
few of the mentioned challenges to obtain a more reliable
ROI for their specific neonatal application [14], [19]. It is
however unclear if such models are robust and generalizable
since extensive evaluations of such detectors under varying
NICU conditions have not been reported.

These important limitations in neonatal face detection mo-
tivates the current study in which we (1) rigorously determine
conditions where pretrained state of the art face detection
models perform accurately and where they fail in complex
NICU scenes, and (2) create an improved neonatal face
detection model robust to these identified challenges using
transfer learning. This paper addresses these needs through
the following contributions:

1) Demonstrated limitations of the state-of-the-art pre-
trained face detection models for neonatal face de-
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tection during realistic patient monitoring conditions
by utilizing three different neonatal studies presenting
different patients and environments.

2) Created two neonatal face detection models (NICU-
face) by finetuning the most performant pretrained face
detection models on exceptionally challenging NICU
scenes.

3) Proposed a simple but reliable face orientation esti-
mation approach as a required preprocessing step in
neonatal face analysis applications.

4) Provided high quality face annotations for two publicly
available benchmark neonatal datasets to promote con-
tinued development of the state of the art in neonatal
face detection.

This study not only explores the limits of state-of-the-art
face detection models, but also overcomes the limitations
of neonatal face detection in a clinical setting. A plethora
of non-contact neonatal monitoring applications will likely
benefit from the robust NICUface detectors presented here.

II. BACKGROUND
A. OBJECT DETECTION
In the last few years, object detection models have improved
in both speed and accuracy. Notably, as part of state-of-the-
art two-stage object detectors, the R-CNN family has seen
various versions including the R-CNN [26], Fast R-CNN
[27], and Faster R-CNN [28]. Each edition demonstrates
advances in implementing a CNN where region proposal
methods suggest areas of the image where an object of
interest is suspected to reside, followed by object localization
using bounding box regression.

Instead of relying only on selected proposed regions of
the image, the You Only Look Once (YOLO) family of
object detectors looks at the entire image and simultaneously
generates class probabilities within each predicted bounding
box [20], [29], [30]. The object of interest corresponds to the
highest probability region, thus only requiring to “look once”
at the image before making a prediction. Such one-stage
object detectors have gained popularity due to their fast com-
putation, especially in real-time applications. Redmon et al.
created three versions of this YOLO architecture from 2015
to 2018, by incrementally improving the model’s speed and
accuracy [20], [29], [30]. In the past couple of years, other
researchers have extended Redmon’s work to achieve even
better and faster real-time performance with YOLOv4 [31]
by using "bag-of-freebies" (methods used during training)
and "bag-of-specials" (post-processing methods used during
inference). Among them, significant detection improvement
were noticed using a new mosaic data augmentation which
creates a tile of four training images thereby helping the
model detect small objects while reducing the required mini-
batch size during training. Compared the mean square er-
ror (MSE) used in YOLOv3 for bounding box regression,
YOLOv4 uses a complete IOU (CIOU) loss which compares
the predicted and ground truth bounding boxes area by con-
sidering the distance between each center points and aspect

ratio, in addition to evaluating their overlap from traditional
IOU. Compared to the four previous versions, Glenn Jocher
[32] introduced YOLOv5 implemented on PyTorch instead
of Darknet framework, thereby allowing the implementation
of models of various sizes including small and lightweight
ones for easy deployment to mobile devices. YOLOv5 also
introduces a Focus Layer made up of YOLOv3’s first three
layers to reduce layers, parameters, and CUDA memory,
while improving speed during forward propagation and back-
propagation. Overall, YOLOv5 is fastest, more lightweight,
and more accurate among the entire YOLO family.

Other prominent recent object detectors include the single-
stage object detector RetinaNet which introduces a new Fo-
cal Loss optimization that focuses on extreme foreground-
background class imbalance during training [17], the Ef-
ficientDet [33] model that uses the EfficientNet [34] clas-
sifier as a backbone for model scaling, and the DEtection
TRansformer (DETR) network that leverages a CNN and
transformer encoder-decoder architecture to perform end-to-
end object detection with bipartite matching for generating
direct predictions [35].

To train these above-mentioned detectors, research groups
have often relied on the PASCAL VOC dataset [36] and/or
the COCO dataset [37]. These two object detection bench-
mark datasets were created for various object recognition
challenges including classes such as person, cat, bicycle, etc.

B. FACE DETECTION
Detecting the facial area is often performed in three different
ways: the detection of the entire face enclosed within a
bounding box (face detection), the detection of the geometric
structure of the face outlined by specific landmarks (face
alignment), or the detection every pixel pertaining to the per-
son’s face (face segmentation). All of these applications are
depicted in Fig. 2. Facial alignment is typically applied using
5-point landmarks including the center of left eye, center of
right eye, tip of nose, left corner of mouth, and right corner
of mouth [38], [39]. In other cases, finer facial structure is
extracted with 68-point landmarks including eyebrow line,
eye contour, length and width of nose, upper and lower lip
contour, and jawline [40]. In face segmentation, the whole
face is either segmented as a whole [41] or is segregated
into different facial regions (e.g., eyes, nose, mouth, skin,
hair) [42]. Face alignment and segmentation are particularly
useful in further facial analysis applications such as face
recognition or facial expression detection; however, they
are more difficult tasks to achieve compared to detecting
bounding boxes. Only face detection results from bounding
box predictions are investigated quantitatively in this study,
while facial alignment methods are evaluated qualitatively.

1) Benchmark Datasets

To train and evaluate face detection models, several bench-
mark face image datasets are available.

Face detection benchmark datasets include:
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FIGURE 2. Face Detection Techniques

• WIDER FACE [43]: Images include faces with varia-
tions in scale, pose, occlusion, expression, makeup, and
illumination (393,703 annotated faces from 32,203 im-
ages). Different subsets are included as Easy, Medium,
and Hard data, based on the increasing level of difficulty
to detect the face due to varying scale, occlusion, and
pose.

• FDDB [44] (Face Detection Dataset and Benchmark):
Images including faces with variations in occlusions,
poses, resolution, and out-of-focus faces (5,171 anno-
tated faces from 2,845 images).

Face alignment benchmark datasets include:
• AFLW [45] (Annotated Facial Landmarks in the Wild):

Real-world images including faces with variations in
pose, lighting, expression, ethnicity, age, and gender
(25,993 annotated faces from 21,997 images).

• 300-W [46] (300 Faces-In-The-Wild): In-the-wild im-
ages from indoor and outdoor scenes including vari-
ations in identity, expression, illumination, pose, oc-
clusion, and face size (600 annotated faces from 399
images).

2) Face Detection and Alignment Methods
Among state-of-the-art face detection and alignment models,
the Multi-Task Cascaded Convolutional Network (MTCNN)
[38] has a cascaded CNN architecture of three different
networks: (1) A Proposal Network (P-Net) where several
facial regions in the image are proposed as candidates; (2)
A Refinement Network (R-Net) where all candidate regions
are rejected or retained for further analysis by the following
network; (3) An Output Network (O-Net) where remaining
candidates are further refined to obtain a final selected region
corresponding to the face region with landmarks. At each
stage, bounding box regression vectors and non-maximum
suppression are computed to obtain corresponding outputs.
This model was trained on three different datasets (WIDER
FACE, FDDB, and AFLW) and performs joint face detection
and alignment with resulting 5-point landmarks.

As opposed to MTCNN’s regression-based approach, the
Convolutional Experts Constrained Local Model (CE-CLM)
uses a model-based approach where the appearance of facial
landmarks are computed to obtain an output [40]. Traditional
CLMs use local detectors to model each facial landmark
and shape them from constrained optimization techniques.

Although this approach can be robust to occlusions or subject
pose (especially faces in profile), it is severely impeded by
complex variation in facial appearance such as facial hair,
makeup, or accessories. Most of these complex variations
should not occur in NICU-based data, thus warrants fur-
ther exploring for a neonatal population. The Convolutional
Experts Network (CEN) can model such variations using a
mixture of experts.

The CE-CLM framework can be considered a three-fold
process; first, a face detector is applied to obtain landmark
positions (CLM); second, each landmark is accurately local-
ized (CEN); and third, all landmarks are properly aligned
using point distribution models to create a 68-point facial
landmarks. CE-CLM can use different model architectures
for its backbone including cascade detectors, tree-structured
models, and more recently the MTCNN model. The CE-
CLM model was trained on four different datasets (300-W,
300-VW, IJB-FL, and Menpo Challenge), that were selected
due to the presence of challenging environment such as
varying lighting, occlusions, different image quality, varying
poses, profile faces, and video data [40].

Addressing the estimation of facial pose, the img2pose
model [47] proposes a 6-degree-of-freedom (6DoF) model
for each detected face in an input image. Compared to
common face detectors, the img2pose does not rely on face
bounding boxes or facial landmarks. Instead, it first aligns
the 6DoF facial model to the 3D face pose and then projects
the model onto the image to obtain a bounding box as a
by-product. The authors propose various settings of size
and shape for fitting the box around the person’s face. The
img2pose model leverages the Faster R-CNN detector [28]
(with ResNet-18 as a backbone [48]) to propose areas in the
image as candidates for face locations. From these proposed
regions, features are extracted for face classification and
6DoF face pose regression. The img2pose model is trained
and tested on the WIDER FACE dataset for 2D face detection
evaluation.

Aiming to obtain dense face localisation, the RetinaFace
model [49] is a single-stage detector that uses a multi-task
network for face classification, face box regression, 5-point
facial landmark regression and 1k 3D vertices regression. The
RetinaFace model uses the ResNet-50 model as a backbone
for generating a feature pyramid, applies a context module
to each pyramid level to increase the receptive field to help
detect smaller faces, and uses different anchor sizes at each
level to detect faces of varying sizes. A multi-task loss is
computed as a linear combination of the loss of each cor-
responding task. Deng et al. demonstrated that each of these
tasks can contribute to one another. The RetinaFace model
is trained and tested on the WIDER FACE dataset for face
detection evaluation, with an emphasis on the Hard subset.

Most recently, the YOLO5Face [39] has redesigned the
YOLOv5 [32] object detection model into a face detector.
Important modifications were implemented such as adding a
5-point landmark regression head to obtain facial alignment,
reducing the kernel sizes in the spatial pyramid pooling
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TABLE 1. Description of Datasets

Dataset Tot Imgs Unique Imgs Patients Age Resolution Avg. BBox Area Viewpoint

COPE 288 183 27 18h - 3d 3008 x 2000 23% Close up face
NBHR 889 565 257 0 - 6d 640 x 480 15% Close up face
CHEOoptimal 2,048 111 16* 4 - 64d 640 x 480 8% Full body
CHEOchallenging 11,517 1,855 33 4 - 64d 640 x 480 3% Full body

Total 14,742 2,714 317 18h - 64d – – Multiple views
*Subset of patients from the entire CHEO dataset, including only images representing optimal conditions (see text).

(SPP) block to enable detection of smaller faces, replacing
YOLOv5’s Focus layer with a Stem block to improve gener-
alization and reduce computational complexity, and tailoring
the data augmentation techniques to face detection. Qi et
al. have provided different YOLO5Face models based on
various YOLOv5 backbones for computer or mobile de-
vice applications. The overall loss function of YOLO5Face
extends from YOLOv5 as a compound loss of bounding
box location regression loss, confidence loss, classification
loss, plus a Wing loss for the added landmark regression.
YOLO5Face used WIDER FACE to train and test the face
detection task.

In this paper, we use the MTCNN, CE-CLM, img2pose,
RetinaFace, and YOLO5Face pretrained face detection mod-
els. These models were selected due to their variety in
architecture, different adult-based datasets used during their
development, different landmark regression approaches for
obtaining a sparse 5-point or dense 68-point facial landmark,
and different approaches for obtaining face bounding boxes.
In total, this collection represents a broad cross-section of the
state of the art in face detection models.

III. DATASETS
This section describes the three neonatal datasets used in this
paper. A summary of the datasets is provided in Table 1.

A. CHEO
This section describes the image data collection and prepa-
ration for face detection from video data collected at the
Children’s Hospital of Eastern Ontario (CHEO).

Data collection: As part of an overarching non-contact
neonatal monitoring research, about 153 hours of video
recordings and physiologic data were collected from 33
newborns admitted at the NICU of CHEO. A depth-sensing
camera, the Intel RealSense SR300, was placed above the
patient to capture color, depth, and near-infrared data for up
to 6 hours per patient during continuous neonatal monitoring.
Only RGB data was used in this study. Each patient was
recorded in one of the three different bed types: incubator,
crib, and overhead warmer. Given the purely observational
design of this study, video data captured challenging scenes
including complex patient poses, facial occlusions from hos-
pital equipment and free-moving limbs, diverse lighting con-
ditions, clinical interventions, routine care procedures, and
varying camera view points. This study was approved by the
Research Ethics Boards of both the hospital and Carleton

University (CU-117311, CU-107193). Unfortunately, we are
not able to publicly release the CHEO dataset due to restric-
tions from the hospital’s Research Ethics Board.

Data extraction: One image was extracted per 30 seconds
of video data. This provided substantial variation during
events (e.g., clinical intervention, patient motion) but insuf-
ficient variety when the patient is at rest. Therefore, images
were further filtered to eliminate highly similar images.

Image hashing: To remove visually similar images, an av-
erage hash method was used. Each image was resized to 8x8,
grayscaled, and the average of this new image is computed.
Each pixel is then compared to the calculated average to
compute a bit value (e.g., set to 1 if above the average, and 0
otherwise) and all bits are extracted sequentially to form a 64-
bit integer as the image hash. Images were then hierarchically
clustered using hamming distance to compare hash values
and only one image from each cluster was retained such that
no two images had a hamming distance ≤ 5.

Data curation: The CHEO image set was subdivided
into "optimal", "challenging", and "negative" data subsets.
The "optimal" subset (CHEOopt) includes images where the
patient’s face is clearly visible, with high lighting, no facial
occlusion, clear frontal view, close distance from the camera
(max 60 cm), no ongoing phototherapy treatment, no ongoing
clinical intervention, and no blur due to patient motion. The
"challenging" subset (CHEOch) included the opposite cases
from the "optimal" subset. The "negative" set was excluded
from further analysis and contained those images where the
face of the patient is not visible, such as complete facial
occlusion, face out of frame, patient absent from bed, or
complete darkness making it impossible to visualize the
patient’s face for a human observer.

Standardized face orientation: The camera is typically
at a fixed position and orientation for the entire recording
session, but the orientation varied between patients. As a
preprocessing step, all images were rotated such that the
head is at the top of the image (referred to as the "North"
orientation).

Face annotation: Faces within each image were manually
annotated. Bounding boxes captured the area from forehead
to chin and ear to ear, and only visible parts were selected in
cases of partial occlusions.

B. COPE
The Infant Classification of Pain Expressions (COPE) dataset
was obtained from Brahnam et al. [50], [51] where their
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research focused on neonatal pain assessment. The database
contains 288 images of 27 newborn faces in the NICU,
collected during a painful procedure (e.g., heel lancing), vs
non-painful ones (e.g., light puff of air on the nose, friction
from rubbing alcohol).

To finalize data preparation, standardized face orienta-
tion, image hashing, and face annotation were performed
similarly as described in Section III-A.

The face annotations created here are available at
github.com/GreenCUBIC/NICUface and researchers are in-
vited to inquire with Brahnam et al. [50], [51] for access to
the original image dataset.

C. NBHR
The newborn baby heart rate estimation database (NBHR)
was obtained from Huang et al. [5] where they collected syn-
chronized video recordings and physiologic signal for non-
contact neonatal heart rate estimation. The database includes
9.6 h of facial videos collected among 257 patients, with
photoplethysmograph (PPG) signals, heart rate values, and
oxygen saturation levels.

The dataset consisted of 1130 videos, where for each
video, the first frame was extracted as an image. To final-
ize data preparation, standardized face orientation, image
hashing, and face annotation were performed similarly as
described in Section III-A.

The face annotations corresponding to the NBHR ex-
tracted images and the detailed image extraction protocol
are available at github.com/GreenCUBIC/NICUface and re-
searchers are invited to inquire with Huang et al. [5] for
access to the video dataset.

IV. METHODS
This section describes the pretrained models used in this
study, in addition to supplemental analysis of complex scenes
(Section IV-A). Finetuned models are then created using the
best pretrained networks to create our NICUface models
(Section IV-B). Evaluation of all face detection models is
presented (Section IV-C), followed by the description of our
face orientation estimation methods.

A. DATA ANALYSIS FROM PRETRAINED MODELS
1) Pretrained Models
Five pretrained models are used here: MTCNN, CE-CLM,
img2pose, RetinaFace, and YOLO5Face.
MTCNN: The pretrained MTCNN model is tested without
modification on our neonatal datasets(see Section II-B-2 and
[38] for further details) .
CE-CLM: The CE-CLM can use different face detectors
as a backbone of the CEN network to obtain landmark
positions. This paper leverages the MTCNN model for the
CEN backbone. Predictions differ from the MTCNN model
in that they are further refined and also include the 68-point
face alignment.
img2pose: The pretrained img2pose is tested without modi-
fication (see Section II-B-2 and [47] for further details), and

using the bounding box setting encapsulating the face from
forehead to chin.
RetinaFace: The pretrained RetinaFace was used with a
ResNet-50 backbone model, as described in Section II-B-2
and [49].
YOLO5Face: The YOLO5Face model was used with the
"large" Stem block since this was shown to be one of the
most accurate by Qi et al. [39]. The YOLOv5l6 is not used
here since they reported that, while the P6 block addition
improved performance on the WIDER FACE’s Easy and
Medium subsets, it can decrease the performance on the Hard
subset (which more closely resembles our data).

The five pretrained models were tested in MATLAB using
an NVIDIA GeForce GTX 1070 GPU, and with Python using
a Tesla P100-PCIE-16GB.

2) Complex NICU Scenes
Complex scenes are further analyzed by evaluating face de-
tection performance under various clinical challenges. Using
the CHEOch dataset, we extract challenging cases based
on varying levels of occlusions, viewpoints, and lighting.
In terms of occlusions, they can occur when the patient is
sucking on a soother, from the nurse’s hand or arm during a
clinical intervention, when the patient is wearing a photother-
apy eye mask during treatment, from a ventilation support
device, or from free-moving limbs or beddings. Viewpoints
are considered to be challenging when the camera is posi-
tioned at a far distance from the patient (> 1m); when the
patient is being held in the bed; or when the face is only
visible in profile view, from a near-top view, or from near-
back view when the patient is in prone position. Lighting
conditions are challenging during dimly lit periods (e.g.,
patient sleeping or reduced sensory input environments) or
during phototherapy treatment. To evaluate these complex
scenes, the best performing pretrained models (RetinaFace
and YOLO5Face) are tested on each challenging case before
being finetuned. Previous neonatal monitoring applications
have discussed how challenges from clinical scenes can pose
a problem to the face detection performance. This paper
quantifies the impact of these individual complex scenes.

B. FINETUNED MODELS
We create the NICUface detectors from finetuning pretrained
RetinaFace and YOLO5Face models. For both models, mod-
els were trained and evaluated on different patient subsets
to quantify model generalization, as described in Table 2.
Note that the same 16 patients from CHEOopt were present
in CHEOch, only with different challenging scenes. Split
1 therefore only trained on COPE + NBHR and tested on
CHEOopt to maintain testing this dataset with entirely dif-
ferent patients that were not seen during training. For the
CHEOch data, given its variety of challenging conditions, the
17 unique patients in this dataset (not present in CHEOopt)
were divided into three folds. Each fold contained a pro-
portional amount of complex scenes, especially considering
low lighting and patients on ventilation support. The final
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reported performance on the CHEOch dataset is reported
as the average of these three folds for the pretrained and
finetuned models to provide a fair comparison.

TABLE 2. Train & Test Sets

Split Train Test

1 COPE + NBHR CHEOopt

2 COPE + CHEOopt + CHEOch NBHR
3 NBHR + CHEOopt + CHEOch COPE
4 COPE + NBHR + CHEOopt + CHEOch_̸∈F1 CHEOch_F1

5 COPE + NBHR + CHEOopt + CHEOch_̸∈F2 CHEOch_F2

6 COPE + NBHR + CHEOopt + CHEOch_̸∈F3 CHEOch_F3

avg(4:6) — CHEOch

1) NICUface-RF
The RetinaFace model was finetuned using a ResNet50 back-
bone and the RetinaFace weights. Finetuning occurred over
10 epochs with a batch size of 8 with an initial learning
rate of 0.001 with a warmup to 0.1 at epoch 1 and then
0.1 decay for epochs 2 and 5. Anchors were matched to an
object when the intersection over union (IOU) was larger than
0.45 and to the background when the IOU was less than 0.3.
Training data were augmented with random horizontal flip
and photo-metric colour distortion. The loss function was
not changed from the original RetinaFace model; however,
during training landmark regression error was ignored by
setting all landmark inputs in the training data to -1. Only
bounding box error was used.

2) NICUface-Y5F
The YOLO5Face model was finetuned using the YOLOv5l
weights, trained over 10 epochs with batch size of 16, initial
learning rate of 0.0032 and final learning of 0.12, optimized
using stochastic gradient descent with 0.5 momentum in
the first 2 epochs and momentum of 0.843 after, and an
IOU threshold of 0.2 during training. The loss function of
NICUface-Y5F is similar to the loss function of YOLO5Face
as,

loss = lossbox + lossconf + losscls + λland · lossland (1)

where lossbox is the bounding box regression loss,
lossconf is the confidence loss, losscls is the classifica-
tion loss, and lossland is the landmark regression loss with
weighting factor λland. This λland was set to only 0.005
to pay less attention to the landmarks given the unsuper-
vised landmark localisation. Similarly to YOLO5Face, the
lossconf and losscls were optimized using the cross-entropy
loss function. In terms of data augmentation, YOLO5Face
reported that Mosaic augmentation and removal of up-down
flipping improved their performance, but only on the Hard
WIDER FACE subset without ignoring small faces or ran-
dom cropping. Given the difficulty of our neonatal dataset
we also applied Mosaic and removed up-down flipping.

The training set was divided into two sets of data used
during training and validation stages where different patients

were used for training and validation. As can be seen in Table
2, each face detector was tested on a completely different
dataset from that used to train the models.

C. FACE DETECTION EVALUATION
For face detection performance of pretrained and finetuned
models, all models are evaluated using the average precision
metrics with varying intersection over union (IOU) require-
ments. The AP is calculated with IOU ≥ 0.5 as a standard
evaluation metric (AP50), while the mAP captures the mean
over AP with IOU=0.5:0.05:0.95 to reward models producing
more specific bounding boxes. The facial landmarks are not
evaluated quantitatively here since no gold standard land-
mark annotations were performed on our neonatal datasets;
however, landmarks are reviewed qualitatively to generally
assess the performance of the face alignment task and to
identify challenging cases where the alignment would fail.

In evaluating all models, we opted to only output the
prediction with the highest confidence score. This approach
is feasible since only one face is assumed to be present
in each image. Given the difficult task of finding neonatal
faces in complex scenes, this approach allows low confidence
predictions of the patient’s face to still be considered while
ignoring other irrelevant false predictions in the scene.

We also look at cases where we decrease the IOU threshold
to 0.3 (AP30) to include slightly overestimated or under-
estimated bounding boxes around the face. Although most
object detectors report AP with IOU of at least 0.5, recent
applications leveraging these detectors have opted for lower
IOU threshold in cases where the objects are small and
hence the AP/mAP metric would be drastically impacted by
marginal errors [52], [53].

D. FACE ORIENTATION ESTIMATION
In many neonatal monitoring applications, a preprocessing
step is required where images are rotated to standardize the
orientation of the face. Having the patient’s face oriented
North facilitates the face detection and alignment task, and
this rotation step is often performed manually (laborious)
or programmatically through trial and error by rotating the
image at 90° increments until a face is detected (unreliable if

FIGURE 3. Face Orientation Estimation from Landmark Position
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a face is detected at non-North direction without providing
confidence from this orientation). We therefore propose a
face orientation estimation approach where the image is
rotated in four 90° increments. The "North" face orientation
is predicted as the direction that produces the most confident
bounding box, the most coherent facial landmark positions,
or both:

Face Orientation Estimation based on face box con-
fidence score: From the detected bounding boxes in all
four directions, we predict that the North-facing orientation
should have the highest confidence score.

Face Orientation Estimation based on facial landmark
position: From the detected 5-point facial landmarks in all
four directions, we predict that the North-facing orientation
should have landmarks positioned in manner where the nose
is below the eyes. We measure the Nose-to-Eye-Line Angle
(NELA) which measures the angle of a line that originates at
the nose landmark and intersects the inter-ocular line at 90°.
A North-facing orientation would result in a NELA of 90°
(± 45° to account for minor pose variations). This method is
illustrated in Fig. 3.

Face Orientation Estimation based on complete facial
detection: Given the strength and weaknesses of each tech-
nique presented above, a final and more comprehensive face
orientation estimation approach is presented by leveraging
both the face box confidence scores and the facial landmark
positions. The North orientation is determined by selecting
the detection with the highest confidence score that also has
a valid NELA.

V. RESULTS & DISCUSSION
This section assesses the state of the art in face detection
for neonatal patients in NICU environments. Experiments
cover neonatal face detection challenges from multiple ex-
periments with different pretrained models, datasets, and
complex NICU scenes (Section V-A to V-C). Face orientation
estimation is then evaluated (Section V-D).

A. PRETRAINED MODELS & NEONATAL DATASETS
Among all pretrained models presented in the top half of
Table 3, MTCNN performs worst, and interestingly, the CE-
CLM model using MTCNN as a backbone detector performs
better in comparison. The fact that landmark positions are
refined in the CE-CLM model before applying the denser
68-point distribution model strongly suggests the advantage
of the CEN layers in the localisation task. Figure 4 depicts
results from all models with increasing level of scene com-
plexity from left to right, and increasing performance of
each model from top to bottom. Bounding box predictions
are labelled as correct (IOU≥50, Green), partial (IOU≥30,
Yellow), or incorrect (IOU<30, Red). As illustrated in Fig. 4,
some false negatives with MTCNN have become true posi-
tives with CE-CLM for the COPE dataset (with correct detec-
tion and decent facial alignment despite the partial occlusion
by blanket), for the NBHR dataset (with partial detection
and misaligned facial landmarks due to profile view), and

for the CHEOopt dataset (with partial detection and proper
facial alignment). For the CHEOch dataset, no detection is
obtained with MTCNN and CE-CLM for most scenes, except
for a few with very minor occlusions and viewpoints where
all facial landmarks are visible (e.g., patient imaged from a
far distance).

While CE-CLM revealed improved results compared to
MTCNN, the value of generating 68-point landmarks is
likely to be application-dependent. For example, such fine-
detailed facial structure is not needed for HR estimation or
jaundice detection (which primarily look at the skin), but it
would be highly relevant for pain assessment or sleep-wake
detection (which primarily look at the facial expression). This
could open a door to retraining an 5- or 68-point landmark
distribution model suitable for the neonatal population with
5 or 68 salient facial features observed in newborns, respec-
tively.

Overall, the pretrained RetinaFace and YOLO5Face meth-
ods outperform all other approaches, with consistent detec-
tion (near 100% in AP30 and AP50) for the COPE, NBHR,
and CHEOopt datasets. For these three datasets, all detections
are correct, with proper facial alignment despite the minor
occlusions or the patient being viewed in profile. In a com-
plementary manner, RetinaFace performs best on NBHR,
CHEOopt, and CHEOch, while YOLO5Face performs best
on COPE, as demonstrated in Table 3.

Given that the pretrained RetinaFace and YOLO5Face
models consistently outperformed the MTCNN and CE-
CLM methods across all datasets, the MTCNN and CE-
CLM methods were not investigated further. Similarly, the
img2pose results are significantly worse than RetinaFace
and YOLO5Face on COPE, NBHR, and CHEOopt datasets.
However, at first glance, results for img2pose on the difficult
CHEOch dataset appear to be on par with RetinaFace, and
YOLO5Face. Performance of these three methods across
each individual complex scene are investigated in detail in the
following section, before implementing the ultimate solution:
NICUface.

Across all models, a consistent pattern exists in dataset
performance with COPE > NBHR > CHEOopt > CHEOch.
This pattern agrees with a qualitative assessment of the level
of difficulty among our datasets in analogous fashion to the
WIDER FACE dataset’s easy, medium, and hard subsets [43].
Our COPE data represent our "easy" subset with close up
facial views, NBHR has "medium" difficulty with close up
faces and more challenging poses and occlusions, CHEOopt

is "medium-hard" where the image includes the full body
and bed environment. Finally, CHEOch is a "hard" dataset as
it includes the entire bed environment and complex scenes,
such as low lighting, ventilation support, pose variation, etc.
Considering that the performance of all models is signifi-
cantly reduced on the CHEOch dataset, the complex scenes
therein are further analyzed in Section V-B. The datasets are
then leveraged for the implementation of NICUface using the
best competing pretrained models in Section V-C.
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TABLE 3. Face Detection Results

COPE NBHR CHEOoptimal CHEOchallenging

Model AP30 AP50 mAP AP30 AP50 mAP AP30 AP50 mAP AP30 AP50 mAP

MTCNN
74.31 74.31 51.79 60.07 59.74 38.18 49.95 48.83 26.41 7.32 4.93 1.62

CE-CLM
92.08 91.19 31.94 79.34 77.29 25.81 64.10 57.77 16.35 16.19 8.95 1.75

img2pose
88.85 94.36 65.90 87.18 92.37 56.42 87.21 94.49 65.14 49.13 50.46 26.76

RetinaFace
100 100 76.73 100 100 78.60 99.95 99.95 79.12 52.47 52.12 29.56

YOLO5Face
100 100 83.80 99.56 99.67 77.95 95.73 95.73 76.39 50.78 48.58 28.65

NICUface-RF
100 100 86.55 100 100 80.53 99.10 99.10 77.92 86.12 79.73 43.67

NICUface-Y5F
100 100 88.30 99.95 99.95 82.39 93.16 93.16 76.73 88.61 87.98 61.75

FIGURE 4. Face Detection Results from all neonatal datasets, pretrained models, and NICUface models.Increasing level of scene complexity is demonstrated from
left to right. Increasing performance of each model is presented from top to bottom. Predictions are labelled as correct (IOU≥50, Green), partial (IOU≥30, Yellow),
or incorrect (IOU<30, Red).
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B. COMPLEX NICU SCENES
Among all datasets, CHEOch had the lowest face detection
performance for all models due to the complexity of scenes
included therein. The increasing level of difficulty among
these complex scenes is presented in Table 4 and Fig. I
with varying levels of occlusions, viewpoints, and lighting.
Both RetinaFace and YOLO5Face demonstrated a similar
pattern of performance across the complex scenes. Mouth
occlusions from a soother are not as challenging as partial
occlusions from the nurse’s arm/hand or from beddings.
Near complete facial occlusions from the ventilation support
remain the most challenging occlusion-based scenes. Among
viewpoints, far distance and profile view performed best,
but near-top view or prone position are most challenging
given that only a small portion of the face is visible. From
lighting environment, a low lighting environment doesn’t
affect the model as severely as the phototherapy light. Note
that the phototherapy eye mask is also an occlusion-based
challenge; however, we dimmed the blue-colored lighting
more important to this unique scenario.

Interestingly, even though img2pose performed similary to
RetinaFace and YOLO5Face on the overall CHEOch dataset,
closer inspection of the performance of each model across
each of the NICU-specific challenges (see Table 4) reveals
that img2pose is only largely outperforming the other two
methods on the "near top view" scenario; in all other cases,
img2pose under-performs. For this reason, combined with its
inferior performance on the easier datasets (COPE, NBHR,
and CHEOopt), img2pose was not considered further in this
study.

Having established the limits of the state of the art in face
detection for complex NICU scenes, we turn our attention to
addressing the remaining NICU-specific challenges through
finetuning the most promising pretrained models (RetinaFace
and YOLO5Face), leading to the NICUface models.

TABLE 4. Face Detection from Complex NICU Scenes (AP30 on CHEOch

with RetinaFace & YOLO5Face)

Challenge img2pose RetinaFace YOLO5Face #Imgs

OCCLUSIONS
soother 83.72 99.50 96.58 24
intervention 52.99 60.96 64.48 88
bedding/self 50.18 61.29 53.95 286
ventilator 14.18 20.33 3.04 195

VIEWPOINT
far distance 59.35 67.90 84.17 134
profile 56.95 68.83 69.96 47
near top view 83.32 40.45 42.24 24
prone position 0 7.34 1.11 18

LIGHTING
low lighting 37.01 75.93 41.39 36
phototherapy 41.93 33.93 33.33 19

C. NICUFACE
In this section, we report on the performance of the NICU-
face models, where we have finetuned the top-performing

RetinaFace and YOLO5Face models for NICU-specific chal-
lenges (see Table 2 for datasets used for finetuning and
evaluation). From the results of the pretrained models, it
was established that the RetinaFace and YOLO5Face already
performed very well across COPE, NBHR, and CHEOopt

datasets. Given the near-perfect performance of these mod-
els across these datasets, it is unsurprising that comparable
results were obtained with the NICUface models, with near
100% AP30 and AP50 values among these three datasets.
The advantage of fine-tuning becomes apparent on the
CHEOch dataset, where the NICUface models demonstrated
large improvements on this challenging data. NICUface-
RF showed an increase of +33.65, +30.67, and +17.74 in
AP30, AP50, and mAP respectively compared to RetinaFace.
NICUface-Y5F showed an increase of +37.83, +39.40, and
+33.10 in AP30, AP50, and mAP respectively compared to
YOLO5Face. Between both NICUface models, NICUface-
Y5F slightly outperformed NICU-RF on CHEOch with a
difference of +2.49, +8.25, and +18.08 in AP30, AP50, and
mAP, respectively.

As illustrated in Fig. 4 and in Table 5, the NICUface mod-
els showed robustness to the presence of ventilation support
and patients in near-back view when in prone position, while
pretrained models were impaired by these scenes. Given that
these two complex scenes are the two most challenging ones,
NICUface-RF demonstrates impressive performance with an
improvement in AP30 of +68.74 and +35.47 for the prone po-
sition and ventilation support, respectively. NICUface-Y5F
also improves drastically with AP30 of +78.31 and +62.83
for the prone position and ventilation support, respectively.

Moreover, both models are highly complementary to one
another. NICUface-RF presents strengths in detecting pa-
tients in low lighting conditions (with +13.68 improvement
in AP30), while NICUface-Y5F is better at detecting smaller
faces (with +12.85 improvement in AP30). These conditions
are illustrated in Fig. 4, where NICUface-RF was able to
rectify RetinaFace’s false positive by correctly detecting the
face of the patient under very low lighting. In the same
scenario, YOLO5Face also made an incorrect prediction but
NICUface-Y5F was not able to rectify this error. On the other
hand, during a clinical intervention, the face of the patient
captured from a far distance was detected with NICUface-
Y5F, while NICUface-RF avoided a previous false positive
but overestimated the bounding box area. This improvement
is still remarkable, given that it was now able to make a
detection in the general location of the face, however it fails
to reach the precision of NICUface-Y5F. Future work could
investigate this complementary pairing through an ensemble
network combining both models’ strengths into one.

Among all evaluation metrics, the AP30 is the most reli-
able measure of model performance for neonatal monitoring
applications. In our case, the frequent presence of small
faces in the CHEO dataset warrants evaluating with a smaller
threshold than the standard AP50. As seen in Table 1, our
most challenging dataset has an average bounding box area
that only makes up 3% of the image. In such cases, NICU-
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TABLE 5. Face Detection from Complex NICU Scenes (AP30 on CHEOch

with NICUface-RF and NICUface-Y5F)

Challenge NICUface-RF Challenge NICUface-Y5F

profile 100 profile 100
soother 100 soother 99.23
near top view 100 near top view 98.24
bedding/self 98.79 bedding/self 97.57
low lighting 89.61 far distance 97.02
far distance 89.01 intervention 95.21
intervention 87.92 low lighting 87.42
prone position 76.08 prone position 79.42
ventilator 55.80 ventilator 65.87
phototherapy 0 phototherapy 0

face would tend to slightly overestimate the bounding box
area which would severely affect the AP metric, despite the
relevant prediction. Slight overestimation is not an issue for
monitoring applications requiring the entire face for facial
expression analysis in pain assessment, sleep-wake cycle
detection, or face recognition. Slight underestimation is also
not an issue when small facial ROI can be sufficient in some
applications such as HR estimation or jaundice detection
relying on visible skin patches. Due to high level of facial
occlusions in the NICU, some non-contact neonatal monitor-
ing applications have opted for different techniques to only
obtain visible facial area (e.g., skin segmentation). The AP30
metric is therefore a most reliable measure since lowering the
IOU threshold permits considering slightly overestimated or
underestimated predictions which can still be useful in a wide
array of neonatal applications.

Note that for RetinaFace and YOLO5Face, lightweight
models suitable for detections on embedded or mobile de-
vices were also implemented using MobileNet-0.25 and
ShuffleNet backbone models, respectively. These pretrained
models were not investigated here since in our application,
we are not limited in compute power, so these lightweight
models are not particularly useful. Future work could how-
ever use these models for the implementation of other neona-
tal monitoring applications (e.g., in home monitoring or in
intelligent monitoring applications from smartphones).

Training the NICUface models took approximately 1 hour
for each of the six cross validation sets (sets are listed
in Table 2). However, since training can typically be done
offline, when considering methods for real-time deployment
our biggest consideration is the inference time required to
process a single image. For the NICUface models, inference
time is currently ∼2 s per image. However, it is expected that
this time could be further reduced through careful optimiza-
tion, the use of low-cost face tracking with periodic de novo
detections, or the use of more powerful dedicated hardware
should more frequent face detections be required.

Among all neonatal monitoring applications presented
in Section I, Awais et al. [14] represents the only study
performing automatic face detection and reporting its per-
formance (to the best of our knowledge). They achieved
98.5% accuracy using the Fluke TiX580 camera for intensity-

based face detection on patients with 0 degree head tilt (i.e.,
frontal view). In comparison, NICUface-RF and NICUface-
Y5F achieve 100% on our COPE dataset which most closely
compared to their dataset. For more challenging scenes,
NICUface-RF still performs remarkably well with 100%,
99.1%, and 73.87% for NBHR, CHEOopt, and CHEOch,
respectively. NICUface-Y5F also performs well with our
most challenging data with 100%, 88.29%, and 83.77% for
NBHR, CHEOopt, and CHEOch, respectively.

For both NICUface models, the blue-colored light during
phototherapy treatment (in addition to the facial occlusion
from the eye mask) posed a challenge for face detection.
Interestingly, their pretrained counterparts were able to detect
a few images when the nose and face were visible, result-
ing in an AP30 of ∼ 33% for both. NICUface-Y5F shows
promise with very small detections from the visible skin
in a few images, however with an IOU < 0.3. To address
this challenge, a pre-processing technique is proposed to
reduce the blue hue. The detection of ongoing phototherapy
treatment (compared to patients under natural lighting) is a
problem previously solved by Souley Dosso et al. [54], and
we leverage that work to address face detection during this
complex scene in the following section.

1) Face Detection on Phototherapy Patients
This proposed technique to address face detection on pho-
totherapy patients can be performed in three simple steps:

1) Detect phototherapy images
2) Apply blue filtering for phototherapy images
3) Face detection using NICUface
Phototherapy Detection: The phototherapy classification

presented in [54] is leveraged here to differentiate photother-
apy images from those captured in natural lighting during
inference.

Blue Filtering: The phototherapy classification in [54]
demonstrated how the Red, Green, and Blue channels in the
natural images are almost uniformly distributed. In compar-
ison, phototherapy images are heavily weighted with blue-
colored pixels, relative to red-colored pixels. This impor-
tant knowledge is exploited here to perform a color space
transformation on the phototherapy images to equalize the
colour channels. Our “Blue Filtering” method scales pixel
intensities of the red and blue channels to match the pixel
intensities of the green channel to equalize the image as

ScaleR =
1

w × h

 w∑
i=1

h∑
j=1

Gij −
w∑
i=1

h∑
j=1

Rij

 (2)

ScaleB =
1

w × h

 w∑
i=1

h∑
j=1

Bij −
w∑
i=1

h∑
j=1

Gij

 (3)

R∗
ij = min (255, Rij + ScaleR) (4)

B∗
ij = max (0, Bij − ScaleB) (5)
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,where ScaleR measures the scaling factor using Gij and
Rij , the Green and Red channels, respectively, for pixels at
the ith position among image width (w), and jth position
among the image height (h). R∗

ij represents the updated Red
channel in the “equalized-phototherapy” image, as illustrated
in Fig. 5. Given that the ScaleR value is added to each pixels,
the updated R∗

ij caps all pixels exceeding 255 as an intensity
of 255. Similar steps are performed to obtain an updated
Blue channel B∗

ij by scaling down the pixels by ScaleB ,
and capping all pixels inferior to 0 as an intensity of 0. Note
that this Blue Filtering approach follows the intuition from
[54] where the Blue channel is over-expressed and the Red
channel is under-expressed, thereby scaling them to match
the Green channel aiming to equalize the image. Scaling the
Red and Green channel to match the Blue channel would
produce a similar outcome (as well as scaling the Blue and
Green channel to match the Red channel).

As we can see in Fig. 5, the predominant blue hue is
successfully reduced, especially in areas of visible skin.
Other surfaces still have a slight blue tint; this is apparent
in areas known to be truly white, such as the bedding or eye
mask.

Face Detection with NICUface and Blue Filtering: Dur-
ing inference, the phototherapy detection is applied directly
on the image to differentiate between lighting environments.
Images deemed to represent ongoing phototherapy are pro-
cessed using the Blue Filtering method and NICUface de-
tects the face in the modified image. Images deemed to
reflect natural lighting are unchanged. To validate this face
detection approach on phototherapy patients, the 19 images
from the only patient in our CHEOch dataset are used and
evaluated with AP30 metric. This method is validated using
the best performing face detectors (RetinaFace, YOLO5Face,
NICUface-RF, and NICUface-Y5F).

Face detection results are demonstrated in Table 6. For the
state-of-the-art models, results in AP30 improved by +2.47
and +16.22 for RetinaFace and YOLO5Face, respectively,
with Blue Filtering. The benefit of Blue Filtering is more
apparent with the NICUface models where AP30 is increased
by +50.00 and +41.49 for NICUface-RF and NICUface-Y5F,
respectively.

These results show great promise in the use of pre-
processing methodologies for color-based challenges in other
machine vision applications, without requiring retraining an
entire model. This is particularly useful in cases when obtain-
ing new data can be difficult or expensive.

TABLE 6. AP30 Face Detection Results on Phototherapy Patients

Model Without BlueFiltering With BlueFiltering

RetinaFace 33.93 36.40
NICUface-RF 0 50.00
YOLO5Face 33.33 49.55
NICUface-Y5F 0 41.49

FIGURE 5. Blue Filtering of Phototherapy Images. The average of each
corresponding RGB channel are sparse in the Phototherapy image, and
thereby attempts to narrow the gaps across channels in the
Equalized-Phototherapy image simulating the Natural Light condition.

D. FACE ORIENTATION ESTIMATION
Since the face detection algorithms performed best on the
COPE dataset, we use it with one of the best perform-
ing pretrained models, YOLO5Face, to evaluate our face
orientation estimation approach. The COPE dataset and its
annotations are artificially rotated at 90°, 180°, and 270° to
create sets of images with the face oriented North, West,
South, and East. As observed in Table 7 and Fig. V-D,
the face orientation estimation approach based on the con-
fidence scores alone predicts "North" as the North-facing
face orientation 80.88% of the time, and "West" or "East"
otherwise. It never predicts "South". The face orientation
estimation based solely on landmark positions performed less
accurately (50.97% precision for "North") since the South
orientation is heavily misclassified as North. Compared to
the confidence score based approach, this NELA method can
detect other orientations (West, South, East) based on the
NELA (at 180°, 270°, 360°/0°, respectively). However, if no
face is detected, it cannot make a prediction (predicts none),
while the confidence score approach is unaffected by this
limitation.

The fused approach leverages strengths from both face
confidence scores and NELA, and outperforms the individual
approaches with 99.45% precision.

TABLE 7. Face Orientation Estimation (COPE + YOLO5Face) using face
detection confidence score (conf), NELA, or both

Orientation AP30 Conf NELA Conf+NELA

North 100 80.88 50.97 99.45
West 96.09 – 87.43 –
South 93.08 – 72.86 –
East 92.67 – 91.20 –
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FIGURE 6. Sample Face Orientation Predictions with face detection confidence score (conf) and NELA

In ideal cases depicted in Fig. 6-A, the score-based and
NELA-based methods are both effective. With more vari-
ations in facial expression, the NELA-based technique can
be affected by the localisation of each landmark, as demon-
strated in 6-B. In many cases, it forces the position of the
landmarks to face North, no matter the actual orientation. In
other cases, it predicts "West" or "East" appropriately, but
the "South" orientation is often predicted to be "North". With
patient occlusions, the score-based technique can be affected
by a reduced face detected confidence, as demonstrated by
6-C. The combination of both confidence and NELA led to
the best performance.

It is important to note that even if the detector finds a
face in all orientations, facial alignment might be unreliable,
and therefore not suitable for facial expression analyses.
The top panel of Fig. 6-D demonstrates this, where the
highest confidence score is properly detected from the North
orientation compared to South. As for the landmarks, the
North orientation produces a correct NELA at 87°, while
the South produces an incorrect NELA at 78° given that the
location of eyes- and mouth-landmarks are incorrect. Our
proposed face orientation estimation approach is simple but
reliable when assuming that only one face is present in the
image. Additional faces might affect the desired patient’s
detection confidence score, as seen in the bottom panel of
Fig. 6-D, where the detector found the face of the clinical

FIGURE 7. Face Orientation Predictions from YOLO5Face Confidence Scores
and NELA with COPE dataset

staff from their ID. Despite this interesting detection, the
patient’s North-facing orientation still produced the highest
scoring confidence and our proposed face orientation estima-
tion method remains robust to the incorrect ID detection.

Standardizing the face orientation is an important prepro-
cessing step in neonatal monitoring applications since it is
often performed manually or as a trial-an-error approach.
It is important to note that the South-facing orientation
might be irrelevant for most adult-based detectors leveraging
mostly upright standing or lying adults; however, in neonatal
monitoring this direction is important since the patient could
be repositioned in the bed, especially in cribs. The face
orientation estimation model proposed here could therefore
be of value to these studies.

VI. CONCLUSIONS
This paper evaluated the state of the art in (adult-trained) face
detection models for complex NICU patient scenes. While
these models leveraged challenges from an adult population
including facial hair, makeup, and accessories, our neonatal
population present entirely different and unique challenges
such as phototherapy light, hospital equipment, clinical in-
tervention with nurse’s hands holding the face, and soother
usage.

MTCNN, CE-CLM (with MTCNN backbone), img2pose,
RetinaFace, and YOLO5Face performed adequately for sim-
ple scenes, where the patient face was clearly visible, in
bright light, forward facing, unoccluded, and of reasonable
size proportional to the image. However, these methods failed
to robustly identify patient faces in complex scenes involving
phototherapy lighting, ventilation support, near top view
when held in the bed, and near back view when in prone
position.

This study addressed these important shortcomings with
the NICUface models by finetuning highly performant Reti-
naFace and YOLO5Face pretrained models. Our proposed
NICUface models outperform previous state-of-the-art mod-
els for neonatal face detection and are robust to many iden-
tified complex NICU scenes. The most challenging scenes
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(prone position and ventilation support) showed exceptional
improvement, demonstrating the effectiveness of finetuning
state-of-the-art face detectors for our neonatal population. A
solution for addressing the blue hue images from patients
undergoing phototherapy treatment was also effective for
detecting neonatal faces from this complex scene. On our
most challenging dataset, both NICUface models are highly
complementary where NICUface-Y5F works best on smaller
faces and NICUface-RF on lighting environment. This paper
therefore strongly suggests leveraging both NICUface mod-
els in neonatal monitoring applications for various goals.

All gold standard face annotation data, finetuned NICU-
face models, and face orientation estimation method are
provided here at github.com/GreenCUBIC/NICUface. It is
hoped that the annotation data may be used by other groups
to continue to advance the state of the art in neonatal face
detection, while the finetuned NICUface models and face
orientation estimation will be useful to groups requiring face
ROI for a variety of non-contact neonatal patient monitoring
applications.
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