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As inorganic nitrogen compounds are essential for basic building blocks of life

(e.g., nucleotides and amino acids), the role of biological nitrogen-fixation (BNF) is

indispensible. All nitrogen fixing microbes rely on the same nitrogenase enzyme for

nitrogen reduction, which is in fact an enzyme complex consists of as many as 20 genes.

However, the occurrence of six genes viz., nifB, nifD, nifE, nifH, nifK, and nifN has been

proposed to be essential for a functional nitrogenase enzyme. Therefore, identification

of these genes is important to understand the mechanism of BNF as well as to explore

the possibilities for improving BNF from agricultural sustainability point of view. Further,

though the computational tools are available for the annotation and phylogenetic analysis

of nifH gene sequences alone, to the best of our knowledge no tool is available for the

computational prediction of the above mentioned six categories of nitrogen-fixation (nif)

genes or proteins. Thus, we proposed an approach, which is first of its kind for the

computational identification of nif proteins encoded by the six categories of nif genes.

Sequence-derived features were employed to map the input sequences into vectors of

numeric observations that were subsequently fed to the support vector machine as input.

Two types of classifier were constructed: (i) a binary classifier for classification of nif and

non-nitrogen-fixation (non-nif) proteins, and (ii) a multi-class classifier for classification

of six categories of nif proteins. Higher accuracies were observed for the combination

of composition-transition-distribution (CTD) feature set and radial kernel, as compared

to the other feature-kernel combinations. The overall accuracies were observed >90%

in both binary and multi-class classifications. The developed approach further achieved

>92% accuracy, while evaluated with blind (independent) test datasets. The developed

approach also produced higher accuracy in identifying nif proteins, while evaluated
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using proteome-wide datasets of several species. Furthermore, we established a

prediction server nifPred (http://webapp.cabgrid.res.in/nifPred) to assist the scientific

community for proteome-wide identification of six categories of nif proteins. Besides,

the source code of nifPred is also available at https://github.com/PrabinaMeher/nifPred.

The developed web server is expected to supplement the transcriptional profiling and

comparative genomics studies for the identification and functional annotation of genes

related to BNF.

Keywords: nitrogenase, diaztroph, Fe protein, Fe-Mo protein, biological nitrogen fixation, di-nitrogenase

INTRODUCTION

Atmospheric nitrogen is the main natural source of nitrogen,
where the fixing of di-nitrogen gas (N2) into a more active
form (e.g., ammonia) is necessary before nitrogen molecules
can be consumed by any organism (Schimpl et al., 2003).
In this regard, biological-nitrogen-fixation (BNF) is a key
biogeochemical process (Ward et al., 2007), which contributes
maximum percentage to the total nitrogen fixation (Seefeldt
et al., 2009). Besides its role in the global nitrogen cycle, BNF
is also directly proportional to the agricultural sustainability
(Bohlool et al., 1992). Due to unavailability of fixed nitrogen in
soil, synthetic nitrogenous fertilizers (nitrogen fixation through
Haber-Bosch process) are applied as a common agricultural
practice to increase the production, which has hazardous impact
on plant, animal, and human health (Saikia and Jain, 2007).

The process of BNF is carried out by nitrogen fixing microbes,
also called diaztrophs. All the diaztrophs rely on the same
nitrogenase enzyme for nitrogen reduction. The nitrogenase is
rather an enzyme complex consists of two metallo proteins viz.,
iron-molybdenum (FeMo) protein that performs the reduction
and iron (Fe) protein which provides electron (Hamilton et al.,
2011; Frank, 2014). Though nitrogenase enzyme may contain
as many as 20 genes, the main structural genes are nifD, nifH,
and nifK. The nifH is the structural gene for Fe protein, whereas
nifD and nifK are the respective structural genes for α and β

subunits of FeMo protein. In addition to these three coding
genes, co-occurrences of three more genes viz., nifE, nifN, and
nifB are assumed to be essential for a functional nitrogenase
enzyme in diaztrophs (Dos Santos et al., 2012). The nifE, nifN,
and nifB encoded proteins play essential role in the assembly and
incorporation of Fe and Mo atoms into the nitrogenase subunits.
In particular, the product of nifB gene catalyzes the formation of
a FeMo cofactor precussor called the B-cofactor, whereas the nifE
and nifN function as scaffolds for Fe-Mo cofactor assembly (Roll
et al., 1995).

Most of the earlier studies have focussed either on the
annotation of nifH sequences or on the phylogenetic distribution
of diaztrophs by using nifH sequences as markers (Mondal
et al., 2008). In particular, Gaby and Buckley (2014) designed a
database that contains 32954 aligned nitrogenase nifH sequences
that facilitates phylogenetic and evolutionary studies of nitrogen-
fixing microorganism. Further, Heller et al. (2014) have
developed a software pipeline, ARBitrator, for retrieving auto-
curated nifH sequences from Genebank. Another computational

method based on classification and regression trees (CART)
was developed by Frank et al. (2016) for the annotation of
nifH gene sequences, where the classification of nifH protein
sequences into different phylogenetic clusters was performed.
Furthermore, to the best of our knowledge, no tool is available
in literature for the computational prediction of nif proteins
encoded by the above mentioned six categories of nif genes.
Though comparative genomic analysis (Dos Santos et al., 2012;
Xie et al., 2014; Inoue et al., 2015) and transcriptional profiling
(Yan et al., 2010; Orr et al., 2011; Sarkar and Reinhold-Hurek,
2014) studies have been carried out for identifying the nif
genes, establishment of a prediction tool for the computational
identification of nif genes would further add on to accelerate
the research in the area of BNF. Besides identifying nif genes,
the computational tool can also be useful to identify and
categorize potential diaztrophs. Moreover, identifying these
genes would further help in understanding the mechanism of
BNF. Although transcriptome and comparative genomics studies
are useful for identifying these genes, they are species-specific and
sometime computationally expensive as well. Thus, developing a
computational tool would certainly be helpful to identify the nif
genes in highthroughput sequence data.

In view of above prospects, here we made an attempt to
establish a novel predictor for computational identification of
nif proteins encoded by nifB, nifD, nifE, nifH, nifK, and nifN
genes. The sequences were first mapped into numeric feature
vectors and then the encoded vectors were supplied as input
to machine learning classsifier. Two types of classifiers were
constructed. In the first type, binary classifier was constructed
to classify nif and non-nif proteins, and in the second type,
multi-class classifier was built for classification of six categories
of nif proteins. Both types of classifiers were developed using
the sequence-based features of protein sequences. We have
further established a web server for proteome-wide identification
of proteins encoded by the considered six categories of nif
genes. The developed approach is believed to supplement
the existing efforts in identifying and annotating the nif
genes.

MATERIALS AND METHODS

Collection and Processing of Dataset
For binary classification, two classes of datasets are required
viz., positive (nif) and negative (non-nif). In this study, protein
sequences encoded by nifB, nifD, nifE, nifH, nifK, and nifN
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genes were considered as the positive dataset. These protein
sequences (102 nifH, 95 nifD, 100 nifK, 88 nifE, 86 nifN, and
81 nifB) were collected from the 82 diaztrophs reported in
Dos Santos et al. (2012). The dataset was then processed to
remove the sequences having non-standard amino acid residues.
Further, the negative dataset was constructed by using all other
protein sequences of the above mentioned 82 species which
were obtained from Uniprot (http://www.uniprot.org/). The
sequences with non-standard residues were also removed from
the negative dataset. Furthermore, to avoid homologous bias
in both positive and negative datasets, redundant sequences at
different levels of pair-wise sequence identities were removed
using CD-HIT (Fu et al., 2012). In particular, three different
positive sets were prepared having sequences with <60%,
<70%, and <90% pair-wise sequence identities. The number
of instances for the positive sets at three different levels of
pair-wise sequence identities can be seen from Table 1. For the
negative class, one dataset of 135525 sequences was prepared
in which each sequence was <40% identical to any other
sequences.

Feature Generation
Feature representation plays a significant role on the prediction
accuracy of machine learning-based predictor/classifier.
Moreover, the amino acid sequences are required to be
transformed into vectors containing numeric observations
before being supplied as input to machine learning techniques
(Zhang et al., 2006). In the present study, we used six different
sequence-based features to map the amino acid sequences into
vectors of numeric observations. The features are compositions
of amino acids (AAC; Bhasin and Raghava, 2004; Cai and Chou,
2006), compositions of di-peptides (DPC; Bhasin and Raghava,
2004; Meher et al., 2017), pseudo amino acid compositions
(PseAAC; Chou, 2001), composition-transition-distribution
(CTD; Dubchak et al., 1995; Cai et al., 2003; Govindan and
Nair, 2011), gap-pair compositions (GPC; Yu et al., 2006), and
auto-correlation function (ACF; Liu and Chou, 1998; Zhang
et al., 1998). Succinct descriptions about computation of the
above mentioned features are given in the following sub-sections.

TABLE 1 | Summary of the collected dataset with different percentage of

sequence identity.

Pair-wise sequence

identity (%)

#Sequence Total

nifH nifD nifK nifE nifN nifB

60 8 13 24 20 41 25 116

70 13 24 37 39 57 38 193

90 59 72 86 80 80 74 438

Three different datasets were prepared, where the sequences having higher pair-wise

sequence identities than the considered threshold were excluded using CD-HIT program.

The number of sequences at different level of identities show that the nifH sequences are

more conserved and nifN sequences are least conserved among six categories of protein

sequences. The last column represents the total number of sequences in the dataset at

different level of pair-wise sequence identity.

Amino Acid Composition (AAC)

AAC is the simplest and most widely used feature for
representing the protein sequences. It is nothing but the
proportions of amino acid residues present in the sequence.
Based on AAC, every protein sequence can be converted to a
vector of 20 numeric observations. For a protein sequence with
N residues, AAC for the ith amino acid can be computed as
AAC (i) = fi/N, where i = 1, 2, . . . , 20 and fi indicates the
number of times ith amino acid present in the sequence.

Di-peptide Composition (DPC)

Unlike AAC, DPC takes the ordering effects of amino acid
residues within a short range into consideration (Ding et al.,
2004). Anticipating improvement in accuracy by accounting the
local-ordering of residues, DPC were considered as features. For
any di-peptideMj, DPC can be computed asDPC

(

j
)

= Mj/(N−

1), where j = 1, 2,..., 400 and N denotes the sequence length.
Using DPC, each protein sequence can be transformed into a
400-dimensional numeric vector.

Gap-Pair Composition (GPC)

For a given sequence withN amino acid residues, GPC for amino

acid pair (i, j) with G-gap can be obtained as fG
(

i, j
)

=
DG(i,j)

(N−G−1)
,

where i, j = 1, 2, . . . , 20 and DG(i, j) is the number of times
the amino acid pair (i, j) appears in the sequence. Using GPC
features, every amino acid sequence can be encapsulated with a
numeric vector of 400 elements. Presently, we used 1 gap-pair
(GPC-1) and 2 gap-pair (GPC-2) compositions as features. More
clearly, for GPC-1 and GPC-2, the features are nothing but the
proportions of amino acid pairs (i, j) separated by one residue
(ixj), and two residues (ixxj) respectively, where x denotes any
residue.

Pseudo Amino Acid Composition (PseAAC)

The idea of PseAAC was brought up by Chou (2001). The
PseAAC not only takes into account the sequence-ordering
information within a local range but also the global sequence-
ordering effects. This feature has been proven effective in many
protein-related classifications (Wang et al., 2010). Using PseAAC,
every protein sequence can be encoded to a (20+d)-dimension
vector of numeric observations for d-tier correlation structure.
In the present study, 1st-tier correlation was only used to extract
PseAAC features. For more details on PseAAC, earlier studies
(Chou, 2005, 2009) can be referred.

Composition-Transition-Distribution (CTD)

Dubchak et al. (1995) introduced the concept of CTD feature
while making the prediction for different classes of protein
folding. Since its introduction, the CTD feature has been
successfully employed in many functional and structural related
studies of proteins (Govindan and Nair, 2011). In CTD, C
(composition) stands for the compositions of amino acids, T
(transition) represents the percentage with which frequency of
amino acids with specific properties is followed by amino acids
with other properties and D (distribution) determines the length
of the sequence within which the 1st as well as 25, 50, and 75
percents of amino acids of certain characteristics are located.
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With CTD feature, each sequence ofN amino acid residues can be
encoded to a numeric vector ofN+

{

N∗
N−1
2

}

+ (N∗5) elements.

Auto-Correlation Function (ACF)

Auto-correlation takes into account the dependencies among
sequence features, which are computed by taking the distribution
of amino acid properties into account. Here, the ACF-based
features were computed by considering all 531 amino acid
properties obtained from AAindex database (Kawashima and
Kanehisa, 2000). Using ACF features, every sequence can
be encoded to a (531∗n)-dimensional vector of numeric
observations, for nth order autocorrelation. Here, we considered
the 1st order autocorrelation only, because with higher order
number of features will be very large.

Support Vector Machine (SVM) Classifier
In the present work, SVM (Vapnik, 2000) was employed
for classification purpose. Since SVM is non-parametric in
nature with a strong statistical background (based on the
statistical principle of structural risk minimization), it has been
efficiently employed in numerous biological studies including
bioinformatics (Guo et al., 2014; Chen et al., 2015; Liu et al.,
2015) and computational biology (Chen et al., 2013, 2016; Lin
et al., 2014; Qiu et al., 2014). The ability of SVM to handle large
and noisy input dataset further makes it an attractive machine
learning tool for computational studies. The performance of
SVM highly depends upon the type of kernel functions used. The
kernel function maps the input dataset into high-dimensional
feature space, where the optimal separating hyper plane linearly
separates the observations of different groups. By using a
subset of 100 nif and 100 non-nif protein sequences, four basic
kernels (radial, sigmoid, polynomial, and linear) with default
parameters were initially employed to choose the best fitted
kernel (for which highest accuracy was obtained) that was used
in the subsequent analysis. In this work, two different types
of classification task were carried out: (i) a binary classifier to
classify nif and non-nif proteins, and (ii) a multi-class classifier
to distinguish six categories of nif proteins from each other. The
svm function available in “e1071” package (Meyer et al., 2015) of
R-statistical software (R Development Core Team, 2012) was run
for implementing the SVMmodel.

Assessment Through Cross-Validation
For assessing the performance of newly established machine
learning predictor, cross-validation (CV) analysis is essential
(Henderson et al., 1996). More often, three different forms
of cross-validation viz., K-fold CV, jackknife-validation, and
validation with independent test set are preferred (Chou, 2011).
In fact, we used all the three CV techniques in our study. The
five-fold CV was employed for assessing the performance of
binary classifier, whereas the jackknife-validation was used for
evaluating the multi-class classifier. For five-fold CV, entire input
dataset was divided at random into 5 equal-sized sets containing
approximately same number of observations from both nif and
non-nif categories where in each fold four sets constituted the
training set and the remaining one was used as test set. This
procedure was repeated for five times in such a fashion that

every set got exactly one chance to be tested by the respective
trained model. In the jackknife-validation, the entire dataset
was partitioned into as many as training and test sets whose
number was same as the size of the dataset. In every step of the
jackknife validation, all the observations except one constituted
the training set and the remaining one observation was used
as the test instance. Besides, the developed predictor was also
evaluated with independent test datasets that were neither used
in model building nor in testing the model.

Classification Using Balanced Dataset
As the number of protein sequences in non-nif category aremuch
larger than that of nif category, the dataset is highly unbalanced.
With unbalanced dataset, machine learning-based classifier may
produce results biased toward the major class (having large
number of sequences than the other class). Therefore, the binary
classification was carried out using balanced dataset consisting of
approximately equal number of instances from both nif and non-
nif classes, where the non-nif sequences were drawn at random
from the whole non-nif dataset. Since the size of the negative
(non-nif) dataset is large, using one set of random observations
may not be adequate to assess the generalized performance
of the classification model. Therefore, the binary classifier was
evaluated with 100 random sample sets, where in each set almost
equal number of instances from both nif and non-nif classes
were present. Moreover, five-fold cross validation analysis was
performed in each sample set and the performance metrics for
the binary classifier weremeasured by taking average over the 100
sample sets. As the performance was measured using jackknife
validation, problem of unbalanced-ness was not considered for
the multi-class classification.

Evaluating the Performance
We considered the sensitivity (Sn), specificity (Sp), Precision
(Pre), Matthew’s correlation coefficient (MCC), and accuracy
(Ac) to measure the prediction accuracy of the proposed
computational model, because the same metrics have been used
for assessing the prediction accuracies of machine learning-
based predictors in numerous studies (Chou, 2002; Jia et al.,
2016a,b; Liu and Long, 2016; Liu et al., 2016). Instead of using
conventional formulae to define above mentioned metrics, Chen
et al. (2013) redefined these metrics with different notations
to make them easier to understand and more intuitive. The
redefined formulae of the metrics are given by
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p
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,

where Np, Nn, Nn
p , and N

p
n denote the number of nif

proteins observed, non-nif proteins observed, non-nif proteins
misclassified as nif proteins, and nif proteins misclassified as
non-nif proteins respectively.
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Evaluation Using Other Supervised
Learning Techniques
Besides SVM, a number of supervised learning techniques are
also available in literature. Out of those, Boosting (Drucker
et al., 1994), Artificial neural network (ANN; Haykin, 1999),
Bagging (Breiman, 1994), k-nearest neighbor (kNN; Hand et al.,
2001), Naive Bayes (NB; Mitchell, 1997), and Random forest (RF;
Breiman, 2001) are the important ones. Therefore, performances
of these approaches were also evaluated and compared with that
of SVM (with best combination of feature set and kernel function
for which highest accuracy was obtained). The performances
were assessed using the same 100 sample sets as mentioned in
the subsection “Classification using balanced dataset,” where in
each sample set approximately same number of nif and non-
nif sequences were present. The knn, bagging, ada, NaiveBayes,
randomForest, and mlp functions of the respective R-packages
“klaR” (Weihs et al., 2005), “class” (Venables and Ripley,
2002), “ada” (Culp et al., 2016), “ipred” (Peters and Hothorn,
2013), “randomForest” (Liaw and Wiener, 2002), and “RSNNS”
(Bergmeir and Benitez, 2012) were used to execute the kNN,
Bagging, Boosting, NB, RF, and ANN classification models
respectively.

Comparison With Blast Algorithms
The highly similar sequences are believed to share similar
structure and function, and this approach has been widely
adopted in the past for protein and peptide prediction (Frank
and Sippl, 2008). Keeping this in mind, two blast algorithms viz.,
BlastP (Altschul et al., 1990) and PSI-Blast (Altschul et al., 1997)
were employed for the classification of nif and non-nif proteins,
and their performances were compared with that of proposed
approach as well. The performances of the blast algorithms were
assessed using five-fold CV procedure. For CV, offline version of
blast from NCBI was first installed in a local server. Then the
BlastP and PSI-Blast algorithms were executed, where in each
fold the training set was designated as the database and the
respective test set as query. Every query sequence was matched
against the locally created databases using blast search. The query
sequence was predicted as nif if significant similarity was found
with nif proteins, else non-nif if found with non-nif proteins.

Comparison With Hidden Markov Model
(HMM)
The performance of the proposed model was also compared with
that of HMM. The HMM analysis was performed with the help
of standalone version of HMMER 3.1b2 (Johnson et al., 2010).
In each fold of the five-fold CV, the HMM profile was created
using the nif category of the training set by employing themodule
hmmbuild. The sequences of the corresponding query set having
instances from both nif and non-nif classes were then searched
against the respective constructedHMMprofile using themodule
hmmsearch in the HMMER suite.

Evaluating Performance With Blind
Datasets
To weigh up the generalized performance, the prediction
accuracy of the developed computational model was tested with

two different blind (independent) datasets. The first one (Test
set-I) consists of nif protein sequences from 67 diaztrophs that
has been predicted by Dos Santos et al. (2012). Since the number
of sequences in Test set-I were less and confined to a small
number of species, we further collected the nif protein sequences
from InterPro (https://www.ebi.ac.uk/interpro/) database and is
designated as Test set-II. The datasets were also processed to
remove the duplicate sequences as well as the sequences with
non-standard amino acid residues. The number of sequences
obtained after processing are given in Supplementary Table S1.
Further, prediction for the test instances was made in two stages.
In the first stage, protein sequences were classified as nif or non-
nif, and those sequences classified as nif were only subjected
to the second stage where they classified into any one of the
considered six categories of nif proteins. A flow diagram with the
steps involved for prediction of test instance is shown in Figure 1.

Proteome-Wide Identification
To assess the performance of the developed approach for
identifying nif proteins at whole genome level, prediction was
made using proteome-wide datasets of 10 nitrogen fixing and
10 non-fixing strains of genus Paenibacillus. We considered
this dataset because it has been used by Xie et al. (2014). The
protein sequences for these strains were collected from NCBI
(https://www.ncbi.nlm.nih.gov/), summary of which is provided
in Supplementary Table S2.

Development of Prediction Server
A web server was also established for proteome-wide
identification of nif proteins encoded by the six types of nif
genes. The front-end of the server was designed with hypertext
mark-up language (HTML), where an in-house R-script was
run at the back end using hypertext pre-processor (PHP) for
the prediction task. Besides, Java script was used for client side
customizations. Provisions are made to upload the files as well
as to paste the sequences in the text area. The sequences with
standard amino acid residues need to be supplied in FASTA
format for making prediction using the developed server.

RESULTS

Kernel and Feature Analysis
Except radial kernel, it is clearly seen that the classification
accuracy in terms of ROC curve (Figure 2A) is highest for the
CTD among all the feature sets. On the other hand, for the radial
kernel, though the accuracies in terms of AUC-ROC (Figure 2B)
are observed almost same for GPC-1, DPC, CTD, and ACF-1
feature sets, standard error is seen to be lowest for CTD feature
set. Besides, the number of features in CTD (310) is also less
than that of DPC (400) and ACF-1 (531) feature sets. It is
further observed that except CTD feature set the classification
accuracies are higher for the radial kernel than that of other
three kernels in AAC, DPC, PseAAC, GPC, and ACF feature sets.
On the other hand, in case of CTD features, though the ROC
curves for polynomial, sigmoid, and radial kernels (Figure 2C)
are seen very close to each other, performance metrics for radial
kernel are observed little higher followed by polynomial and
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FIGURE 1 | Flow diagram of the prediction process. This diagram shows the steps involved in construction of a binary and multiclass classifiers and the prediction of

the test instance in two stages.

sigmoid kernels (Figure 2D). Furthermore, it is observed that
the radial kernel is more robust to different feature sets as
compared to other three kernels (Figure 2A). From the above
analysis, it is inferred that the accuracies under the combination
of radial kernel and CTD feature set are higher than that of other
feature-kernel combinations, and hence the same combination is
followed in the subsequent analysis.

Performance Analysis of Supervised
Learning Techniques
Based on the CTD features, performance metrics of SVM
(with radial kernel) and other supervised learning techniques
computed by taking average over 100 sample sets (as mentioned
in section Classification Using Balanced Dataset) as well as five-
fold in each set are shown in Figure 3. From the figure, highest
and lowest values of performance metrics can be seen for the
dataset having <90% and <60% pair-wise sequence identities
respectively. Similarly, the accuracies are also seen to be more
stable (less standard error) for the dataset with nif protein
sequences at<90% pair-wise identity, and least stable with<60%

pair-wise identity. As far as the accuracies of supervised learning
approaches are accounted, kNN and NB achieved almost same
accuracy and is lowest among all the classifiers. On the other
hand, higher accuracies are obtained for SVM followed by RF.
It is further observed that the accuracies are least stable for
ANN, and most stable for SVM and RF. Interestingly, accuracies
for SVM are observed >0.9 in all the three datasets. Though
specificities of RF are seen at par with that of SVM, higher
accuracies are observed for SVM in terms of other metrics.
Overall, the performance metrics of SVM are observed better
than that of other machine learning classifiers.

Ono-to-One Prediction Analysis
Confusion matrix with regard to the classification of six
categories of nif proteins by employing jackknife validation is
shown in Figure 4A. It is observed that the sequences are mostly
misclassified into nifN category, whereas none of the sequences
are misclassified into nifH category and only one sequence
is misclassified into nifD category. From the performance
metrics (Figure 4B), it is further observed that the accuracies in
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FIGURE 2 | Graphical representation of performance metrics for different feature-kernel combinations. (A) ROC curves of four different kernels of SVM for

classification of nitrogen-fixation (nif) and non-nitrogen-fixation (non-nif) proteins with seven different feature sets. (B) Bar plots of AUC-ROC for radial kernel of SVM

with different combination of features. (C) ROC curves for different feature sets with respect to classification of nif and non-nif proteins using four different kernels of

SVM. (D) Bar plots of performance metrics for four different kernels with CTD feature set. The figures show that the combination of radial kernel and CTD feature set is

better than the other feature-kernel combinations for classification of nif and non-nif proteins.
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FIGURE 3 | Bar diagrams of the estimates of performance metrics for different supervised learning techniques. The performance of SVM was compared with other six

machine learning approaches with respect to classification of nif and non-nif proteins with CTD feature sets. Classification accuracies increased with increase in

pair-wise sequence identity level in the positive dataset. The accuracies of kNN and NB classifiers are observed to be lowest, whereas highest accuracies are observed

for SVM followed by RF classifier. The performance metrics of SVM are also found to be more stable (less standard error) as compared to the other classifiers.

discriminating nifH and nifD from other categories are higher,
whereas the accuracy is lowest for discriminating nifN from other
categories. In particular, the accuracy, precision and MCC for
nifH and nifD are seen >0.99, >0.98, and >0.96 respectively.

Comparative Analysis With Blast Algorithm
Based on 438 nif (Table 1) and 438 non-nif protein sequences
(randomly drawn from the available non-nif sequences),
the developed computational method was further compared
with homology-based algorithms BlastP and PSI-Blast. Blast
algorithms were first executed with three different e-values e.g.,

0.1, 1, and 10, but no hits were found for most of the sequences
belonging to the non-nif category for the e-values 0.1 and 1. Thus,
we could not perform blast with lesser e-values, and the blast
results are only reported here for e-value 10. The performance
metrics averaged over the five-folds of CV are given in Table 2.
From the table, the number of false positives (falsely predicted
in nif category) in BlastP and PSI-Blast are seen to be much
higher (low specificity) than that of proposed one. On the other
hand, the number of false negatives are higher for the proposed
one. Nonetheless, performance metrics of the proposed approach
in terms of overall accuracy, precison and MCC are observed
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FIGURE 4 | Graphical representation of the prediction accuracy of the developed approach under jackknife validation. (A) Confusion matrix and (B) bar plots of

performance metrics for classification of six categories of nitrogen fixation-proteins using jackknife validation technique. From the confusion matrix (color from light to

dark represents lower to higher numbers), it is seen that the protein sequences are mostly misclassified in nifN category, whereas no sequence is misclassified in nifH

category. From the performance metrics, accuracies in discriminating nifH, nifD, and nifK from rest of the sequences are found higher among the six categories of

protein sequences.

TABLE 2 | Performance metrics of the proposed approach and blast algorithms.

Approach Sensitivity Specificity Accuracy Precision MCC

Proposed 0.887 0.993 0.940 0.992 0.885

BlastP 0.995 0.538 0.767 0.683 0.600

PSI-Blast 0.995 0.545 0.770 0.686 0.605

The performance of the developed method was compared with that of BlastP and PSI-

Blast with respect to the classification of nitrogen-fixation (nif) and non-nitrogen-fixation

(non-nif) proteins, where the performances were measured over the 5-folds of the cross-

validation. The blast algorithms are observed highly biased toward the nif category.

Though the sensitivity of the proposed approach is seen to be less than that of BlastP and

PSI-Blast, specificity is observed much higher for the proposed approach. Nevertheless,

the overall accuracy, precision and MCC for the proposed approach are observed much

higher than that of blast algorithms.

much higher than that of blast algorithms. In particular, overall
accuracy of the proposed approach is observed ∼0.94, which is
>25% higher than that of BlastP and PSI-Blast. Similar trends
are also observed for precision and MCC.

Comparative Analysis With HMM
The performance of HMM was assessed using the same dataset
that was used to evaluate the performance of blast algorithms,
with two different e-values 1 and 10. The performance metrics
averaged over the 5-folds of CV are given in Table 3. From
the table it can be seen that all the performance metrics of the
proposed approach are higher than that of HMM for both e-
values. In particular, with lesser e-value, though the number of
false positives are seen to be declined (high precision), number
of true positives are also seen to be declined (less sensitivity).
However, the overall accuracy at e-value 1 (0.907) is observed
to be higher than that of e-value 10 (0.845). Nevertheless, the
overall accuracy of the proposed approach is found to be ∼3%
and ∼10% higher than that of HMM with e-values 1 and 10,

TABLE 3 | Performance metrics of the proposed approach and hidden Markov

model (HMM).

Approach e-value Sensitivity Specificity Accuracy Precision MCC

HMM 1 0.834 0.979 0.907 0.980 0.841

10 0.876 0.814 0.845 0.813 0.709

Proposed NA 0.887 0.993 0.94 0.992 0.885

The performance of the developed approach was also compared with that of HMM for

classification of nitrogen-fixation (nif) and non-nitrogen-fixation (non-nif) proteins. In terms

of all the performance metrics, the developed approach achieved higher accuracies than

that of HMM. NA, Not applicable.

respectively. In comparison to blast, the overall accuracies of the
HMM (Table 3) are found to be much higher than that of blast
algorithms (Table 2).

Analysis of the Independent Test Set
Prediction
For the prediction of test instances, the 438 nif and 438 non-
nif protein sequences (as mentioned in the previous subsection)
were used to train the model in the first stage, whereas all
the nif protein sequences at <90% pair-wise sequence identities
(Table 1) were used for training of the model in the second
stage. Further, the test sequences which were overlapped with
the training sets were also excluded. The number of correctly
and wrongly predicted test instances is shown in Figure 5. For
the first independent dataset (Test set-I), it is observed that 96%
(72/75) of nifB, 100% of nifD, 95.77% of nifE, 98.79% of nifH,
98.63% of nifK, and 100% of nifN are correctly predicted into
nif class in the first stage (Figure 5A), whereas 94.44% (68/72),
93.33%, 95.58%, 98.78%, 90.27%, and 84.61% of nifB, nifD, nifE,
nifH, nifK, and nifN respectively are correctly predicted into their
corresponding categories in the second stage. Similarly for the
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FIGURE 5 | Confusion matrices of the prediction results for the independent datasets. (A) Confusion matrix showing the prediction result for the Test set-I, and

(B) Confusion matrix showing the prediction result for the Test set-II, where the prediction was made in two stages. The color from light to dark represents lower to

higher numbers. For the Test set-I, except nifN category, >90% sequences are correctly predicted in other five categories. Similarly for the Test set-II, except nifB and

nifH, >90% accuracies are observed in other categories.

second dataset (Test set-II), 92.62% of nifB, 100% of nifD, 99.78%
of nifE, 72.48% of nifH, 99.69% of nifK, and 98.91% of nifN
are observed to be correctly predicted in the first stage, whereas
95.32% of nifB, 100% of nifD, 98.98% of nifE, 99.44% of nifH,
99.89% of nifK, and 94.77% of nifN are correctly predicted in
the second stage (Figure 5B). Similar to the jackknife prediction
results (section One-to-one Prediction Analysis), nif protein
sequences are mostly misclassified into nifN category for both
the test datasets, and none of the nifK, nifE, nifN, and nifB is
misclassified into nifH and nifD categories.

Proteome-Wide Prediction Analysis
With the same training dataset (438 nif and 438 non-nif)
as mentioned in the previous sub section, ∼97% and ∼96%
of non-nif sequences for non-diaztroph and diaztroph species
respectively are observed to be correctly predicted in the first
stage (Table 4). Though all the predicted nif sequences (∼3%)
in non-diaztrophs are false positives, all the sequences predicted
as nif in diaztrophs are not false positives. In other words, true
positives are also present along with the false positives. Among
false positives in both diaztroph and non-diaztroph categories,
more number of false positives are seen to be predicted in nifE,
nifN, and nifB as compared to nifH, nifD, and nifK in the second
stage of prediction (Table 4). It is also seen that except one nifE of
P. polymyxa TD94 and one nifN of P. azotofixansATCC35681, all
other nif sequences are correctly predicted for all the 10 species
and with higher probabilities as well (Figure 6). In particular,
nifH, nifD, and nifB are predicted with probabilities >0.9. Also
most of the false positives were predicted with <0.4 probabilities
(along with only two sequences of nifK), and hence the threshold
value for prediction of nif protein sequences is set at 0.4 for
the second stage with the aim to further reduce the number
of false positives. Surprisingly, with this threshold, no nifH

sequences are predicted in non-diaztroph categoryt except for
one species (Table 4). In addition, sequences are also not wrongly
predicted into nifD and nifK category for some non-diaztroph
species. Furthermore, the number of false positives which are
seen to be higher for nifE, nifN, and nifB at default threshold is
observed to be reduced by ∼60% in both diaztroph and non-
diaztroph categories (Table 4). It is also found that among the
predicted positives in diaztrophs, true positives are obtained with
higher probabilities as compared to the false positives, with some
exceptions in nifN category.

Prediction Analysis With Threshold 0.4
As the threshold value 0.4 is found appropriate for prediction
of nif sequences in the second stage for 10 different strains of
genus Paenibacillus, prediction was also made for other species
to further validate the determined threshold. For this purpose,
protein sequences were collected from four different species
viz., Azoarcus sp. BH72, Geofilum rubicundum JCM15548,
Bacteroides graminisolvens JCM15093, and P. Propionicigenes
WB4. We considered these species, because they have already
been used in earlier study. The first one is reported in Sarkar and
Reinhold-Hurek (2014) and the other two species are reported
in Inoue et al. (2015). Moreover, since the true positives were
predicted with higher probabilities for most of the times, we
considered only the top three predicted positives in each category
(nifH, nifD, nifK, nifE, nifN, and nifB). For Azoarcus sp. BH72, all
the true nif proteins are predicted with higher probabilities than
that of the false ones. In case ofGeofilum rubicundum JCM15548,
nifH, nifD, nifK, and nifE are predicted with higher probabilities
but nifB is observed at third place and nifN is not predicted
correctly. For Bacteroides graminisolvens JCM15093, all the nif
proteins except nifN are predicted correctly as well as with higher
probabilities. For P. Propionicigenes WB4, all the nif proteins
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TABLE 4 | Performance of the proposed approach for prediction of nitrogen-fixation (nif) proteins using proteome-wide datasets.

Category Species non-nif nif

Threshold: default at second stage Threshold: 0.4 at second stage

nifB nifD nifE nifH nifK nifN nifB nifD nifE nifH nifK nifN

Non-Diaztroph Paenibacillus sp. JDR 2 6032 19 0 25 3 3 131 8 0 13 0 0 38

Non-Diaztroph P. sp. Y412MC10 6012 24 1 37 1 8 155 8 0 16 0 1 55

Non-Diaztroph P.mucilaginosus KNP414 7582 19 1 40 1 7 154 4 1 24 0 2 59

Non-Diaztroph P. mucilaginosus K02 7137 19 2 41 1 8 146 4 1 22 0 2 59

Non-Diaztroph P. mucilaginosus 3016 6849 21 1 39 2 6 139 5 1 22 0 0 57

Non-Diaztroph P. polymyxa E681 4599 17 3 15 1 4 125 3 1 7 0 2 52

Non-Diaztroph P. polymyxa SC2 4692 14 3 17 0 3 133 2 1 8 0 0 50

Non-Diaztroph P. curdlanolyticus YK9 4662 12 1 24 1 1 114 3 1 13 1 0 53

Non-Diaztroph Paenibacillus sp. HGF5 6275 19 0 35 1 4 162 4 0 14 0 0 56

Non-Diaztroph Paenibacillus sp. HGF7 5816 13 1 27 0 3 132 4 1 14 0 1 40

Diaztroph P. polymyxa TD94 4773 21 4 20 1 3 142 7 2 7 1 3 53

Diaztroph P. polymyxa 1–43 4894 15 3 26 1 5 130 4 2 11 1 3 52

Diaztroph P.beijingensis 1–18 4291 21 2 26 1 6 124 7 1 13 1 3 37

Diaztroph Paenibacillus sp. 1–49 4604 18 3 23 2 4 116 4 2 12 1 1 40

Diaztroph P. terrae HPL-003 5319 20 3 24 1 8 150 4 2 12 1 4 44

Diaztroph P. azotofixans ATCC35681 5005 23 1 25 2 4 150 7 1 13 2 2 59

Diaztroph P. graminis RSA19 5542 17 2 38 1 4 128 5 1 18 1 2 46

Diaztroph P. sonchi X19-5 5792 19 2 37 2 2 131 7 2 20 1 1 44

Diaztroph P. zanthoxyli JH29 4261 18 2 38 2 3 135 5 2 21 2 2 44

Diaztroph P. sabinae T27 4559 23 2 47 5 3 147 9 1 27 5 2 46

The prediction of nif protein for 10 diaztrophs and 10 non-diaztrophs is made in two stages, where in the first stage the sequences are predicted as nif or non-nif types and the sequences

predicted as nif types are only subjected to the second stage in which they are classified into any one of the six categories of nif proteins. In the first stage, classification accuracies are

observed >96%. Though, the number of false positives predicted in the second stage are little larger at default threshold, it is reduced by ∼60% while predicted with threshold 0.4.

Interestingly, no sequences are predicted in nifH category except one species for non-diaztrophs at the threshold 0.4.

FIGURE 6 | Heat map of the prediction probabilities of nif protein sequences. It shows the probabilities with which the protein sequences of six categories of

nitrogen-fixation are predicted in the second stage for the proteome-wide dataset of 10 diaztrophs. The color from light to dark represents lower to higher probabilities,

and the blank cell indicates that no sequence was predicted in the corresponding category. Except one nifE and one nifN, all the nif sequences are correctly

predicted. Further with the threshold 0.4, it is observed that except two nifK sequences all other nif sequences are correctly predicted in their respective categories.

except nifN are also predicted correctly and that is with higher
probabilities as well. So, it can be said that the threshold value 0.4
can also be useful for prediction of nif proteins in other species
as well.

Online Prediction Server: nifPred
To help enable experimental scientists, particularly
microbiologists working in the area of nitrogen-fixation, an
online prediction server nifPred is developed for computational
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identification of nitrogen fixation proteins. Here, the prediction
is made in two stages: (i) the sequences are first classified as nif or
non-nif, and (ii) the sequences predicted as nif are only subjected
to the second phase, where they are classified into any one of the
six nif categories. The nifPred has been trained with 438 nif and
438 non-nif sequences as mentioned in the subsection “Analysis
of independent test set prediction” in the first stage, and all the
six categories of nif sequences with <90% pair-wise sequence
identities (Table 1) in the second stage. The prediction server
can be accessed freely at http://webapp.cabgrid.res.in/nifPred.
The results are displayed in a tabular format with four columns.
The columns from first to fourth respectively represent the serial
number, sequence identifier, types of predicted nif proteins, and
probabilities with which they are predicted in the corresponding
nif categories. Since true nif sequences are predicted with higher
probabilities as evidenced from earlier analysis, a maximum of 3
sequences are displayed for any predicted nif category. However,
user can download the result for all the supplied sequences
from the link “download complete result file” given in the result
page. For reproducibility of the proposed work, datasets used to
develop the prediction server along with the other datasets used
in this work can be obtained from http://webapp.cabgrid.res.in/
nifPred/dataset.html. The source code of the nifPred is also made
freely available at https://github.com/PrabinaMeher/nifPred.

Analysis of nifPred
To further assess the efficiency of nifPred, proteome-wide
identification of nif proteins was carried out using 49 diaztroph
species. The protein sequences for these species were obtained
from Uniprot (http://www.uniprot.org/) database. None of the
nif proteins of these species were used to train nifPred. It is
seen that 34 nifB, 49 nifH, 49 nifD, 49 nifE, 42 nifK, and
19 nifN are correctly identified (Table 5). Further, except one
nifE and two nifN that are correctly predicted with second
highest probabilities, all others (34 nifB, 49 nifH, 49 nifD, 48
nifE, 42 nifK, and 17 nifN) are correctly predicted with highest
probabilities (Table 5). Though the accuracy is not high for
predicting nifN sequences, these sequences can be mapped easily
on the genome as the six categories of genes occur adjacent to
each other. Most importantly, since all the nifH, nifD, and nifE
are correctly identified; identifying other nif gene sequences will
not be difficult as they occur in a cluster (Dos Santos et al., 2012).
Thus, the nifPred is believed to be an efficient tool for proteome-
wide identification of proteins encoded by six categories of nif
genes.

DISCUSSION

The study regarding functional genomics and proteomics of
diaztrophs has great importance in twenty-first century (Sur
et al., 2010). The works related to the genetics of nif was first
initiated in Klebseilla, where organization of nif genes were
reported (Arnold et al., 1988). Thereafter, many studies (Dixon
and Kahn, 2004; Hu et al., 2007; Rubio and Ludden, 2008)
have established that several nif genes are necessary for BNF
by diaztrophs. In particular, Dos Santos et al. (2012) proposed
the criteria of co-occurrence of six genes set (nifB, nifD, nifE,

nifH, nifK, and nifN) for the characterization of nitrogen fixing
microbes. Although BNF is confined to a subset of prokaryotes,
species-specific environmental, and metabolic conditions are
essential for the manifestation of biochemical pathways, and
thus obtaining a comprehensive census of this trait is not
easy (O’Carroll and Dos Santos, 2011). However, voluminous
structural information generated with the development of
efficient bioinformatics tools as well as proteomics technologies
guaranteed the acceleration in nitrogen-fixation (nif) research
(Sur et al., 2010). In this regard, the current study presents a
computational tool for the identification of protein sequences
encoded by the six categories of nif genes.

Six different kinds of sequence-based features viz., AAC,
DPC, PseAAC, CTD, GPC, and ACF were considered for
mapping the protein sequences onto numeric feature vectors,
which were then supplied to SVM as input for classification
using the four widely used kernel functions. Actually, two types
of classifications were made viz., binary and multi-class. In
binary classifier, classification was made between nif and non-
nif proteins, where the classification accuracy was found to be
higher for the combination of CTD features and radial kernel
as compared to the other feature-kernel combinations. Using
this feature-kernel combination, binary classification was also
carried out with six other machine learning classifiers viz., RF,
ANN, NB, kNN, Bagging and Boosting. From the results of
comparison, classification accuracies were not only found to be
higher for SVM but also most stable as compared to the other
classifiers. Using the same feature-kernel combination, multi-
class classification was further carried out for classification of six
categories of nif proteins encoded by nifB, nifD, nifE, nifH, nifK,
and nifN genes. Classification accuracies were found to be higher
for nifH and nifD categories, whereas lowest for nifN category.
Specifically, the sequences were mostly misclassified into nifN,
whereas no sequence was misclassified into nifH and only one
sequence was misclassified into nifD category. This implies that
the sequences of nifH and nifD share a higher degree of similarity
within the classes and lesser degree of similarity with other nif
categories, whereas the sequences of nifN share a lesser degree
of similarity within the classes. This similarity results can also
be inferred from the CD-HIT analysis. The higher degree of
similarity within nifH may be the reason that the nifH sequences
have been successfully used as markers for biodiversity study
of diaztrophs through phylogenetic analysis (Dos Santos et al.,
2012).

No computational approach is available for the prediction
of nif genes related to BNF, and on the other hand the blast
algorithms are useful for finding protein homologs. Hence,
the performance of the developed computational model was
compared with that of homology based method i.e., BlastP
and PSI-Blast algorithms. Both the algorithms were found to
be highly biased toward the positive class. In other words,
number of false positives were found much higher than that
of proposed approach. Moreover, blast algorithm depends upon
sequence alignment and may take more time for large number of
sequences. Besides, the performance of the proposed model was
also compared with that of HMM with e-values 1 and 10, where
the proposed approach was found to achieve higher accuracies in
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TABLE 5 | Performance of nifPred in identifying nif proteins in 49 diaztroph species.

Species nifBB nifDD nifEE nifHH nifKK nifNN

Alkaliphilus metalliredigens QYMF # # # # # ×

Anaeromyxobacter sp. Fw109-5 # # * # # ×

Anaeromyxobacter sp. K # # # # # #

Candidatus Accumulibacter phosphatis clade IIA str. UW-1 # # # # # #

Candidatus Azobacteroides pseudotrichonymphae genomovar. CFP2 # # # # # ×

Chlorobium chlorochromatii CaD3 # # # # × #

Chlorobium phaeovibrioides DSM 265 # # # # × ×

Chloroherpeton thalassium ATCC 35110 # # # # # ×

Clostridium cellulovorans 743B # # # # # ×

Denitrovibrio acetiphilus N2460, DSM 12809 # # # # # ×

Desulfatibacillum alkenivorans AK-01 × # # # # ×

Desulfobacca acetoxidans DSM 11109 # # # # # ×

Desulfomicrobium baculatum DSM 4028 # # # # # ×

Desulfotomaculum acetoxidans DSM 771 × # # # # ×

Desulfotomaculum carboxydivorans CO-1-SRB × # # # # ×

Desulfotomaculum kuznetsovii DSM 6115 × # # # # ×

Desulfotomaculum reducens MI-1 × # # # # ×

Desulfovibrio aespoeensis Aspo-2 # # # # # ×

Desulfovibrio magneticus RS-1 # # # # # ×

Desulfovibrio salexigens DSM 2638 # # # # # ×

Desulfurispirillum indicum S5 × # # # × #

Desulfurivibrio alkaliphilus AHT2 × # # # × #

Dickeya dadantii Ech703 × # # # # #

Erwinia carotovora atroseptica SCRI1043 × # # # # #

Ethanoligenens harbinense YUAN-3 # # # # # #

Geobacter bemidjiensis Bem # # # # # #

Hydrogenobacter thermophilus TK-6 × # # # x #

Hyphomicrobium sp. MC1 # # # # # #

Ilyobacter polytropus CuHBu1, DSM 2926 # # # # # ×

Leptothrix cholodnii SP-6 # # # # # ×

Methanoplanus petrolearius SEBR 4847, DSM 11571 × # # # # ×

Methanosaeta concilii GP6 × # # # # ×

Methylacidiphilum infernorum V4 # # # # # #

Paludibacter propionicigenes WB4 # # # # # ×

Pectobacterium atrosepticum SCRI1043 × # # # # #

Pelobacter carbinolicus DSM 2380 # # # # # ×

Pelodictyon luteolum DSM 273 # # # # # ×

Pelodictyon phaeoclathratiforme BU-1 # # # # # ×

Sideroxydans lithotrophicus ES-1 # # # # # #

Spirochaeta smaragdinae SEBR 4228, DSM 11293 × # # # # ×

Sulfuricurvum kujiense DSM 16994 # # # # # *

Syntrophobacter fumaroxidans MPOB # # # # # ×

Syntrophobotulus glycolicus DSM 8271 # # # # × ×

Thermincola potens JR # # # # # ×

Thermocrinis albus HI 11/12, DSM 14484 # # # # × #

Thermodesulfovibrio yellowstonii DSM 11347 # # # # × #

Thermosaccharolyticum DSM 571 × # # # # ×

Tolumonas auensis DSM 9187 # # # # # *

Zymomonas mobilis mobilis ZM4 # # # # # #

To assess the performance of nifPred with threshold value 0.4, prediction for nif proteins is made by using proteome-wide datasets of diaztrophs. The nifH, nifD, and nifE are correctly

predicted in all the 49 species. Besides, 42 nifK, 34 nifB, and 19 nifN are also correctly identified in 49 species.

×, wrongly predicted; #, predicted with highest probability; *, predicted with second highest probability.
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terms of all the considered performance metrics. Further, when
HMM was compared with blast algorithms, the overall accuracy
of the HMM was found higher than that of blast algorithms.
The proposed computational model was also evaluated with
independent datasets. Despite being trained with small number
of sequences at both stages, accuracies were found to be >90% in
both stages. This implies that the model was well-trained with the
CTD features and radial kernel of SVM.

Since each nifB, nifD, nifE, nifH, nifK, and nifN genes are
likely to be present in each diaztroph once (with certain exception
in case of gene duplication); prediction of these sequences
from whole genome data is very much challenging. Thus, the
developed methodology was also evaluated with proteome-wide
datasets of 10 diaztroph and 10 non-diaztroph species. With the
threshold value 0.4 at the second stage, nifH of all diaztrophs
were correctly predicted with 1 or 2 false positives. On the
other hand, no nifH sequences were predicted in non-diaztrophs
barring one species. Besides, a maximum of 1 or 2 false nifD
and nifK sequences were found in both diaztrophs and non-
diaztrophs. However, in case of diaztrophs, the true positives
were predicted with higher probabilities as compared to the false
positives. It was also found that the number of false positives
were higher for the biosynthetic components (nifE, nifN, and
nifB) as compared to the catalytic components (nifH, nifD, and
nifK). Therefore, it can be said that with a very few number
of false positives nif sequences can be correctly predicted using
proteome-wide datasets. Since no nifH sequences were predicted
in nine out of the 10 non-diaztrophs, it can be said the there is
a possibility of getting homologs of other nif sequences except
nifH. Thus, the proposed approach can be used to predict the
potential diaztrophs and supplement the transcriptome profiling
and comparative genomic approaches for identifying nif genes in
nitrogen fixing microbes.

In addition to the Mo-Fe nitrogenese (Nif), two types of
alternative nitrogenase have also been reported in literature
i.e., Vanadium dependent nitrogenase (Vnf) and Iron-only
nitrogenase (Anf). These Nif, Vnf, and Anf types of nitrogenase
are homologus and evolutionary related (Raymond et al., 2004;
Inoue et al., 2015). Despite differences in their metal content,
these nitrogenase types have common structural and mechanistic
features. The Fe-Mo nitrogenase has been reported to be
intrinsically more efficient in nitrogen reduction than either of
the nitrogenase (Joerger and Bishop, 1988; Miller and Eady,
1988). Since the conservation in primary sequences for all the
three types of nitrogenase are similar, the proposed approachmay
also be useful for predicting the proteins encoded by Vnf and Anf
genes.

Based on the developed methodology, an online prediction
server nifPred has also been established for the identification
of six categories of nif proteins. The server not only represents
the future direction for developing other computational methods
(Shen, 2009), but is also important for most of the experimental
scientists working in the field of nitrogen fixation. The nifPred
can be easily used by the researchers for proteome-wide
identification of nif proteins encoded by nifB, nifD, nifE, nifH,
nifK, and nifN genes, without going into details of the statistical
methods adopted in developing the approach. Since accuracy
is less as far as nifN is concerned, effort will be put in future
for further improvement in identifying nifN genes encoded
proteins.

In the current study, we propose the first methodology to
computationally identify the six categories of nitrogen fixation
proteins, which are assumed to be essential for any diaztroph
to fix the atmospheric nitrogen into ammonia. The developed
web server is expected to supplement the transcriptional profiling
and comparative genomics studies for the identification and
functional annotation of genes related to BNF. The server will not
only be useful for identification of diaztroph and non-diaztroph
species, but also support for the functional annotation of nif
genes on the genome of many nitrogen fixing microbes.
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