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Abstract

Purpose NiftySim, an open-source finite element toolkit, has

been designed to allow incorporation of high-performance

soft tissue simulation capabilities into biomedical applica-

tions. The toolkit provides the option of execution on fast

graphics processing unit (GPU) hardware, numerous consti-

tutive models and solid-element options, membrane and shell

elements, and contact modelling facilities, in a simple to use

library.

Methods The toolkit is founded on the total Lagrangian

explicit dynamics (TLEDs) algorithm, which has been shown

to be efficient and accurate for simulation of soft tissues. The

base code is written in C++, and GPU execution is achieved

using the nVidia CUDA framework. In most cases, interac-

tion with the underlying solvers can be achieved through a

single Simulator class, which may be embedded directly in

third-party applications such as, surgical guidance systems.

Advanced capabilities such as contact modelling and nonlin-

ear constitutive models are also provided, as are more exper-

imental technologies like reduced order modelling. A con-

sistent description of the underlying solution algorithm, its

implementation with a focus on GPU execution, and exam-

Zeike A. Taylor and Stian F. Johnsen have contributed equally to this

work.

S. F. Johnsen (B) · M. J. Clarkson · J. Hipwell · M. Modat ·

B. Eiben · L. Han · Y. Hu · T. Mertzanidou · D. J. Hawkes ·

S. Ourselin

Centre for Medical Image Computing, University College London,

London, UK

e-mail: rmapsfj@live.ucl.ac.uk; s.johnsen.09@ucl.ac.uk

Z. A. Taylor

Department of Mechanical Engineering, CISTIB Centre for

Computational Imaging and Simulation Technologies in Biomedicine,

Insigneo Institute for in silico Medicine, The University of Sheffield,

Sheffield, UK

ples of the toolkit’s usage in biomedical applications are pro-

vided.

Results Efficient mapping of the TLED algorithm to parallel

hardware results in very high computational performance,

far exceeding that available in commercial packages.

Conclusion The NiftySim toolkit provides high-performance

soft tissue simulation capabilities using GPU technology for

biomechanical simulation research applications in medical

image computing, surgical simulation, and surgical guidance

applications.

Keywords FEM · Total Lagrangian explicit dynamics ·

GPU · Software engineering · Soft tissue biomechanics

Introduction

In this paper, we describe the development and features of

the open-source finite element (FE) toolkit, NiftySim. The

toolkit’s key feature is its use of graphics processing unit

(GPU)-based execution, which allows it to outperform equiv-

alent central processing unit (CPU)-based implementations

by more than an order of magnitude, and commercial pack-

ages by significantly more again [9,29]. While the solver

may be used for the analysis of any solid materials, it has

been designed and optimised for simulation of soft tissues.

The motivation for its development is the growing need for

robust soft tissue modelling capabilities in medical imag-

ing and surgical simulation applications, and in particular,

in time-critical applications. The latter include, for example,

interactive simulation systems where real-time computation

is required [5,19,24], and intra-operative image registration

and image guidance systems [2,3,7] for which rapid, if not

real-time, computation is necessary.
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NiftySim was developed around the total Lagrangian

explicit dynamic (TLED) FE algorithm, first identified as

a potentially efficient approach for soft tissue simulation by

Miller et al. [21] (but, see also [24]). An important feature

of the presented algorithm is that it correctly accommodates

geometric and constitutive nonlinearities, both of which are

essential for this application; soft tissues generally can tol-

erate large deformations, and their stress–strain response is

seldom linear [11]. The efficiency of the algorithm derives

from two aspects: (1) the total Lagrangian framework allows

shape function derivatives to be precomputed and stored,

rather than re-computed at each time step and (2) the low

stiffness of biological tissues means the critical time steps

for explicit integration, normally a very restrictive constraint,

are relatively large. Since explicit methods involve compara-

tively inexpensive computations in each time step, the latter

feature can lead to very low overall computation times.

An additional virtue of explicit methods that is central to

NiftySim’s development is their amenability to parallel execu-

tion. Whereas the main computational task in implicit meth-

ods is solution of a large linear system (several times per

time step for nonlinear problems), computations in explicit

solution procedures are executed on an element- and node-

wise basis. The mapping to parallel hardware is thus direct

and efficient. This fact was exploited in our earlier work

[25,26] to produce a GPU-based solver using OpenGL and

the Cg graphics language. The introduction of the general-

purpose CUDA API [22] allowed a more flexible and efficient

implementation to be proposed subsequently, as described in

[27,28]. In separate work, we also described the incorpo-

ration of the technology in the SOFA framework [4]. The

underlying technology in NiftySim builds on the approach

described in [28], in particular.

NiftySim also includes a number of features that go beyond

the solid-element-based TLED algorithm, the most important

of which are: (1) membrane and shell formulations com-

patible with TLED’s explicit time integration (described in

[1] and [8], respectively) that can be used on their own or

in conjunction with solid-element-based meshes, (2) spe-

cialised contact models for the efficient simulation of inter-

actions between deformable geometry and simple, analyti-

cally describable surfaces, (3) a general-purpose mesh-based

contact model with a collision response formulation derived

from the work of Heinstein et al. [10,15]. The latter can

simulate contacts between multiple deformable bodies, self-

collisions, and contacts between deformable geometry and

rigid surfaces.

With its lightweight, yet consistent and flexible imple-

mentation of the TLED algorithm, written in C++ and

CUDA, NiftySim is primarily aimed at researchers develop-

ing algorithms in the area of medical image analysis, sur-

gical image guidance, and surgical simulation, requiring a

fast FE backend for the simulation of soft tissue mechan-

ics. It is mainly geared towards an algorithmic generation of

simulation descriptions and post-processing of results with

custom researcher-written code. Therefore, our goal is not

to compete with end-to-end toolkits like SOFA1 that pro-

vide their own tools for graphical simulation definition and

interaction, or general-purpose finite element analysis suites

like Abaqus FEA.2 Further, unlike the common commer-

cial packages, which must be accessed via the command

line, NiftySim can be used as a back-end library in C++

applications, thus allowing for the direct exchange of data

with client code. To aid the integration of NiftySim in such

specialised applications, it sports the following features: It

has been tested on various versions of Linux, Mac OS and

Windows. A command line application capable of executing

complete simulations and that can be used in conjunction

with scripting languages or for prototyping simulations is

included. Various features simplifying its use as a library

are also available, such as a wrapper simulator class, which

encapsulates all of the simulation technology and allows it to

be easily embedded in other libraries and applications, and

full support for CMake’s3 config mode.

In the remainder of the paper, we give a brief introduc-

tion to NiftySim’s usage (see section “NiftySim usage”). Full

details of the continuum formulation and solution algorithms

can be found in our earlier publications [26,28,30]; however,

a summary of the core algorithm is provided (see section “The

TLED algorithm”), followed by a description of the main

classes and their implementation in section “Implementa-

tion using C++/CUDA”, outline some example applications

taken from published research that employed NiftySim (see

section “Research applications of NiftySim”), and conclude

with a brief discussion (see section “Discussion and conclu-

sions”). A description of the constitutive models currently

available is provided in the “Appendix”.

The toolkit is available for download from SourceForge4

and subject only to the terms of a liberal BSD-style licence.

NiftySim usage

This section gives a brief overview of NiftySim’s usage by

means of two simple examples. For a more comprehensive

description, the reader is referred to NiftySim’s PDF user

manual that ships with the source code.

1 Simulation Open Framework Architecture, available from http://

www.sofa-framework.org.

2 Abaqus FEA is a product of Dassault Systèmes, http://www.3ds.com/

products-services/simulia/portfolio/abaqus/.

3 NiftySim supports CMake versions ≥2.8 obtainable from http://www.

cmake.org.

4 http://sourceforge.net/projects/niftysim/.
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Fig. 1 An annotated NiftySim simulation model

NiftySim can be used as a stand-alone application and as

a library. However, it is used, the quickest and most flexi-

ble way to create a simulation is to describe it using XML.

Figure 1 contains such a description, a model, for a simple

NiftySim simulation comprising all parts found in a realistic

simulation. The figure also introduces concepts such as sys-

tem parameters and element set that will reappear later in the

text.

Figure 2 contains the first example showing the usage of

NiftySim’s stand-alone executable. It also contains an illus-

tration of the constraints of the example model of Fig. 1.

Assuming the displacement field generated by the simula-

tion is to be used with custom C++ code, e.g.—as in many of

the research examples presented in section “Research appli-

cations of NiftySim”—to warp an image, using NiftySim as a

library in a C++ code is the most advantageous. The simple

C++ application in Fig. 3, consisting of a single compi-

lation unit, my_example.cpp, containing only a main

function, and a CMakeLists.txt for the build configura-

tion, accomplishes the task of running any NiftySim simula-

tion contained in the file residing at the hardcoded location

/path/to/my/sim.xml.
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Fig. 2 Execution of the simulation defined in Fig. 1 via NiftySim’s stand-alone executable. Left Input geometry with constraints. Right Visual

output of final configuration via NiftySim’s in-built visualisation facilities. Centre Corresponding annotated command line

Fig. 3 Left A simple C++ application that uses displacements computed with NiftySim. Right The corresponding CMakeLists.txt that takes

care of the inclusion of the required NiftySim resources

The TLED algorithm

The basic TLED algorithm

At its core, TLED as described by Miller et al. [21] is an

algorithm for the treatment of large deformation dynamic

problems defined on a domain Ω ⊂ R
3 for a time period

[0, T ] given by an equilibrium equation of the form

ρ ü(x, t)
︸ ︷︷ ︸

inertia

+∇ · σ (u(x, t))
︸ ︷︷ ︸

internal forces

= f (x, t)
︸ ︷︷ ︸

body forces

, x ∈ Ω, t ∈ [0, T ]

(1)

where ρ is the material’s mass density, σ denotes the Cauchy

stress in the simulated body, and u is the displacement field

and ü the corresponding acceleration.

The Dirichlet and Neumann BCs corresponding to Eq. (1)

are given by:

u(x, t) = ut
constraint, x ∈ Γu

f (x, t) = f t
constraint, x ∈ Γ f (2)

Performing the usual substitution of a piece-wise linear

approximation for the displacement field u and casting into

the weak form via Galerkin weighting, the semi-discretised

form of Eq. (1) becomes

MÜ + DU̇ + Rint (U) = Rext (3)

where M is the lumped, i.e. diagonal, mass matrix and D

is a diagonal damping matrix, introduced for the numerical

stability of the time integration. In TLED the latter is linked

to the mass matrix via a damping coefficient αD: D = αD M .
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Rext are the discretised external loads, i.e. body forces and

Neumann BCs.

The internal force term, Rint in Eq. (3), is given by

Rint =

Nelements

A
e

f (e) (4)

where A is the assembly operator performing the accumula-

tion of the element internal forces, f (e), that are in turn given

by

f (e) =

∫

V e

∂X hSFT dV e (5)

where ∂X h are the derivatives of the shape functions h with

respect to the reference configuration coordinates X , S is the

second Piola–Kirchhoff stress computed with one of the con-

stitutive models given in the section “Constitutive models”

in Appendix, and V e denotes the volume of element e. The

deformation gradient F is defined as

F =
∂x

∂ X
= I +

Nnodes/element∑

i

U i · ∂X hi (6)

with x being the current and X the initial position of a mate-

rial point, and I denoting the 3 × 3 identity matrix

Use of the total Lagrangian evaluation of stresses means

the shape function derivatives ∂X h only need to be computed

once.

TLED employs one-point quadrature on the spatial

domain, meaning the numerical approximation of f (e) for

the internal forces are evaluated only at the initial configura-

tion centre of the corresponding element. One of the follow-

ing formulas is used, depending on the element type that is

employed in the discretisation of the problem:

Linear 8-node reduced-integration hexahedron This element

employs trilinear shape functions, and the formula for its

internal forces is given by

f (e) = 8 det(J)∂hSFT, (7)

where J is the element Jacobian matrix. A well known

deficiency of the element is its susceptibility to spurious

zero-energy modes—so-called hourglass modes. These are

controlled using the efficient method proposed by Joldes et

al. [16].

Linear 4-node tetrahedron This element employs linear

shape functions. The formula (5) for element nodal forces

is then

f (e) = V e∂hSFT. (8)

It should be noted that this element is generally overly stiff,

especially for nearly incompressible materials like soft tis-

sues [14]. The nodal-averaged pressure tetrahedron, below,

is preferable in most cases.

Nodal-averaged pressure 4-node tetrahedron Developed to

alleviate the volumetric locking problems that plague the

standard tetrahedron, this element employs the same shape

functions and nodal forces formula (Eq. 8). The stress Š,

however, is computed using a modified deformation gradient

whose volumetric component has been averaged over adja-

cent nodes—see [17]. The performance of this formulation

is generally superior to that of the standard tetrahedron.

The other major reason for the algorithm’s efficiency

is its treatment of the time ordinary differential equation

(ODE). Two distinct explicit ODE solvers are implemented

in NiftySim:

Explicit Central-Difference Method (CDM): With this

method solving for the next time-step displacements, Un+1,

at a given time step n, is achieved by substituting the follow-

ing approximations for the velocity, U̇ , and the acceleration,

Ü , into Eq. (3):

Ün ≈
1

Δt2
(Un+1 − 2Un + Un−1)

U̇n ≈
1

2Δt
(Un+1 − Un−1) (9)

with Δt denoting the time step size. Solving for the next

time-step displacements yields

Un+1 = A
(

Rext − Rint
)

+ BUn + CUn−1 (10)

where the following coefficient diagonal matrices have been

introduced:

Ai i = 1
/

(
Di i

2Δt
+

Mi i

Δt2

)

Bi i =
2Mi i

Δt2

/
(

Di i

2Δt
+

Mi i

Δt2

)

Ci i =

(
Di i

2Δt
−

Mi i

Δt2

)
/

(
Di i

2Δt
+

Mi i

Δt2

)

, i=1, . . . , Nnodes

(11)

These coefficients are time-invariant and can be precom-

puted.

Explicit Newmark Method (EDM) This method introduces a

numerical acceleration and velocity. It is summarised by the

following formulas:

Ün=
1

1+αDΔt/2

(

M−1 Reff−αDU̇n−1 −
αDΔt

2
Ün−1

)

U̇n = U̇n−1 +
Δt

2

(

Ün + Ün−1

)

(12)

Un+1 = Un + ΔtU̇n +
Δt2

2
Ün

As with CDM, coefficient diagonal matrices can be precom-

puted to accelerate the process.
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Dirichlet BCs are incorporated at the end of a time step via

a simple substitution of fixed values for the components of the

displacement vector U that are subject to such constraints.

Acceleration of TLED by means of reduced order

modelling

NiftySim also provides reduced order modelling (ROM)

capabilities, the mathematical underpinnings of which are

explained in detail in [29,30]. The key idea is to project

the full displacement field, defined by the usual vector of

nodal values U ∈ R
3Nnodes , onto a lower dimensional basis

� ∈ R
3Nnodes×M as follows:

U = �P, U̇ = �Ṗ, Ü = �P̈, (13)

where the latter two relations follow from the time-indepen-

dence of �, P ∈ R
M is a vector of so-called generalised

displacements, and M ≪ Nnodes. The reduced basis � is

computed using proper orthogonal decomposition of a train-

ing set of full model solutions. Each of the M columns of

� represents a mode of deformation of the structure and, as

shown in (13), the full order displacements U are approxi-

mated by a linear combination of these modes, weighted by

the generalised displacements P.

Substitution of (13) into (3) and pre-multiplying by �T

yields

M̂P̈ + αDM̂Ṗ = R̂eff (14)

where D = αDM has been used, and M̂ ∈ R
M×M and R̂eff ∈

R
M are the reduced mass matrix and effective nodal load

vector, respectively, given by:

M̂ = �T M�

R̂eff = �T Reff
(15)

with Reff = Rext − Rint. Integrating the reduced equilibrium

Eq. (14) using CDM results in a new incremental displace-

ment update formula:

Un+1 = γ1�M̂−1�T Reff + γ2Un + γ3Un−1, (16)

where γ1 = 2Δt2/(αDΔt + 2), γ2 = 4/(αDΔt + 2) and

γ3 = 1 − γ2.

The benefit conferred by this process is a substantial

enlargement of the critical time step Δtcr, meaning many

fewer time steps are required for a given simulation. In

ref. [30], it was shown that speed improvements of around

an order of magnitude are feasible, with an error below 5 %

compared with full model solutions.

Incorporation of membranes and shells in TLED

The membrane element implemented in NiftySim is based on

ref. [1]. It is an iso-parametric triangle element in which the

strain is computed via the usual reference triangle

Tref = {(0, 0), (1, 0), (0, 1)} (17)

from the Jacobian matrices of the mappings from the refer-

ence to the current and the initial configurations

F0 =
dX

dξ
, Fn =

dx

dξ

C0 = FT
0 F0, Cn = FT

n Fn

(18)

The only available constitutive model for this element as of

NiftySim version 2.3 is incompressible neo-Hookean, whose

SPK stress is given by

Sξ = μ

(

C0
−1 −

IIC0

IICn

Cn
−1

)

(19)

where μ is the shear modulus, and the strain invariant IIC =

det(C) was introduced.

The membrane internal forces are then given by

f (e) = Ae H e(Fn Sξ ) : ∂ξ h (20)

with Ae and H e denoting the initial element area and thick-

ness, respectively, and the subscript ξ indicating quantities

evaluated on the reference triangle.

The shell element supported by NiftySim is the rotation-

free EBST1 described in [8]. Computations with this element

are based on quadratic shape functions defined on patches

consisting of four triangles (Fig. 4) with deformation and

curvature functions being sampled at the midpoints of the

edges of patches’ central triangle and subsequently averaged.

With this shell element, the curvature giving rise to its bend-

ing stiffness is computed from standard nodal displacements;

therefore, there is no need for modifications to the time-ODE

solver algorithms employed with TLED.

The standard neo-Hookean model is currently the only

available constitutive model for the membrane component;

the bending moments are computed from the linear expres-

sion:

m =
E H e3

12(1 − ν2)

⎛

⎝

1 ν 0

ν 1 0

0 0 (1 − ν)/2

⎞

⎠ κ (21)

with E and ν denoting Young’s modulus and the Poisson

ratio, κ being the curvature. The constitutive models for the

membrane and bending component were taken from [23].
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Fig. 4 The 4-triangle patch underlying the calculations with the

EBST1 shell element. The central triangle and its sampling points are

highlighted in red. The blue boxes show the location of the six quadratic

shape functions

Contact modelling

All contact modelling in NiftySim is based on prediction–

correction, i.e. the basic TLED algorithm is used compute a

prediction for the next time-step displacement, which is then

used to search for potential contacts. If contacts are found,

corrections must be computed. These can either be displace-

ment corrections, directly applied to the displacement value

of offending nodes, or collision response forces which are

incorporated in the effective load vector, Reff .

In the simpler of the two contact modelling algorithms

implemented in NiftySim, the penetration of deformable-

geometry nodes into the master surface is found by eval-

uating an analytical expression. In this contact modelling

context, the deformable geometry surface is referred to as

the slave surface.

The master-surface description must allow for the evalua-

tion of a gap function, denoted with g, whose value represents

the signed distance to the closest point on the master surface,

and if negative, indicates that the slave node has penetrated

the master surface. This also implies that there must be a

means of computing the surface normal, nm, at every point

on the master surface. The latter two quantities, g and nm,

can then be used to compute a displacement correction, Δu:

Δu = −gnm (22)

The pipeline for modelling mesh–mesh contacts imple-

mented in NiftySim detects collisions of slave-surface nodes

and the interior of master-surface facets and intersection of

slave and master surface edges with bounding volume hier-

archies (BVHs). The contact search algorithm returns a pro-

jection of slave nodes onto the master surface, here denoted

with (ξ, η), as well as the corresponding gap function value,

and in the case of edge–edge intersections, the signed short-

est distance between the two edges at the end of the time step

along with the corresponding edge parameters, labelled r, q.

The formulas for the forces applied in response to collisions

are derived from the explicit Lagrange-multiplier method

of Heinstein et al. [10]. In the case of contacts between

deformable bodies, the node-facet collision response forces

are given by

fs = −nm(ξ, η)βs

ms g

Δt2

( fm)i = nm(ξ, η)βm

(mm)i gγi (ξ, η)

Δt2
,

i ∈ {master-facet vertices}

βs =
mm

ms + mm

, βm = 1 − βs =
ms

ms + mm

(23)

where fs and fm denote the forces applied to the slave node

and the master facet, respectively, mm is the mass associated

with a virtual node placed at the point on the master facet

that is closest to the slave node, ms denotes the mass of the

slave node.

γi (ξ, η) :=
hi (ξ, η)

∑Nnodes/facet

j h j (ξ, η)2
, i ∈ 1, . . . , Nnodes/facet

(24)

Is a coefficient computed from shape-function values, used

to distribute forces among the vertices of the master facets,

and is derived in [18].

The corresponding formulas for edge–edge collisions read

( f s)i = −n(r)βs

(ms)iγ (q)i g

Δt2
, i ∈ {0, 1}

( f m)i = n(r)βm

(mm)iγ (r)i g

Δt2
, i ∈ {0, 1} (25)

These collision response forces can be directly incorpo-

rated in the effective loads and used to update the displace-

ment vector through a second evaluation of the CDM/EDM

formulas (10)/(11).

Implementation overview

The processing of a simulation with NiftySim consists of three

main stages. The first stage deals with the parsing of the sim-

ulation XML description and the loading of the simulation

geometry. In the precomputation step, the spatial derivatives

of the shape functions, the node masses, and constraint and

contact modelling-related data are computed. In typical usage

scenarios, the precomputation happens absolutely transpar-

ently to the user in the simulator class’s constructor.

When the precomputation is finished, the simulator ini-

tialises the solution variables and constraints and enters the

main loop. The main loop iterates over the simulation time
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Fig. 5 Flowchart

representation of NiftySim’s

simulation pipeline
E

 

steps. In every time step, at the very least, the internal forces

of the structure and, based on these forces, displacements

must be updated. Figure 5 shows a graphic representation of

NiftySim’s workflow.

In a minimal, sequential TLED implementation, Eq. (4)

can be evaluated in one loop over all elements, computing in

every element its deformation gradient, strains, stresses and

from that internal forces, and accumulating the per-element

internal forces in a global internal-force vector. With this

done, the effective loads can be computed by subtracting

the internal forces from the applied external loads. A second

loop is then invoked, iterating over the nodes in the mesh and

updating their displacements based on Eq. (10). Thanks to the

lumping of the mass matrix, this last step can be done for each

node individually. Parallel implementations require a more

complex memory layout to efficiently avoid race conditions

on the internal-force accumulation buffer. The basic pattern

of two main loops, one over all elements and one over all

nodes, remains the same, though. A more detailed description

of the strategies employed in NiftySim’s parallel solvers is

given in section “The solver classes”.

Implementation using C++/CUDA

This section introduces the most important modules and con-

cepts of NiftySim’s TLED implementation. A more complete

list and technical description of NiftySim’s modules can be

found in the source code’s Doxygen5 documentation.

Coding guidelines and naming conventions

NiftySim follows VTK6 naming conventions, where class

names have a “tled” prefix and are camel-cased, e.g.

tledExampleNiftySimClass. Member names are also

5 Doxygen is a tool for the extraction of inline API documentation,

available from http://www.doxygen.org.

6 Visualisation Toolkit: http://www.vtk.org.

camel-cased and start with a capital letter. Names of func-

tions normally begin with an appropriate verb.

Function signatures were until recently also based on

VTK’s style with no function arguments and member func-

tions having const modifiers. Motivated by the addition

of CPU parallel solvers and the potential race conditions

it entails, a move towards a style more similar to that

of the Insight Segmentation and Registration Toolkit7 has

been undertaken, where certain member functions such as

getters have const modifiers, as do all read-only function

arguments.

The CUDA portion of NiftySim was designed to be as far as

possible backward compatible; the use of complex classes in

CUDA device code is therefore avoided. Instead, namespaces

are used extensively to provide modularity and prevent name

collisions, so that all functions and variables belonging to a

particular module are wrapped in the same namespace, whose

name is derived from the name of the corresponding module

in the host portion of the code.

The simulator class

tledSimulator is the normal entry point for anyone

wanting to use NiftySim as an FEM backend. A major moti-

vation for the introduction of this class was the encapsulation

of all simulation components except the model, and thus, the

facilitation of the integration of NiftySim as an FE backend

in C++ code, as was illustrated with the example in Fig. 3.

Its most important member function, Simulate, contains

the time stepping loop.

The model class

The tledModel class is the in-memory representation of

the simulation description, usable by the other components

of NiftySim. Internally, it stores the XML description of

7 http://www.itk.org.
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the simulation as a Document Object Model (DOM) tree

whose contents are accessible through member functions of

tledModel.

A model can be defined recursively in XML through the

notion of sub-models. Each sub-model is represented by its

own tledModel instance whose management is done by

tledSubModelManager.

The mesh representation

The tledMesh class only provides basic information about

the mesh, such as node positions and element connectiv-

ity; for more complicated topological queries, tledMesh

Topology can be used. There is one instance of tledMesh

accessible through the simulation’s model whose purpose is

to hold all solid-element geometry in the simulation, even if

a simulation contains multiple disjoint bodies, as is the case

with many contact problems.

NiftySim provides its own mesh file format, which is based

on an inline definition of meshes through a block of node

positions and a block of element connectivities, in the simu-

lation XML description, but it also supports reading of VTK

unstructured grid files and the MSH8 ASCII file format. Fur-

ther, it can output simulation results in VTK unstructured

grid files (see section “Output”).

NiftySim also has some limited mesh manipulation capa-

bilities, allowing it to apply affine transforms to meshes read

from files and to assemble larger connected meshes from

the meshes contained in sub-models. The sub-model man-

ager performs this mesh merging operation incrementally by

searching for nodes whose positions are less than a user-

specified distance apart. Therefore, its use is recommended

only on conforming meshes.

There are dedicated surface-mesh classes for holding

membrane and shell elements (see section “tledShellSol

verCPU”) and contact modelling (see section “Contact mod-

elling”); all these classes are derived from tledSurface.

The geometrical information necessary for shell and mem-

brane computations is contained in a tledShellMesh

instance that in turn depends on a solid mesh for the ver-

tex positions. In cases where a solid body is wrapped in

a membrane, the 2D mesh’s connectivity information is

directly obtained from the solid mesh by extracting its sur-

face facets. tledRigidContactSurface is used for

the modelling of contacts with arbitrarily meshed rigid

bodies and tledDeformableContactSurface holds

the current-configuration surface for contact modelling pur-

poses.

8 MSH is the file format of the gmsh mesher available from http://

www.geuz.org/gmsh.

The solver classes

The purpose of tledSolver and its sub-classes is the coor-

dination of the time step calculations involved in completing

the simulation: compilation of internal forces and external

loads, imposition of BCs, and update of displacements.

tledSolverCPU

tledSolverCPU is the sequential C++ solver implemen-

tation of NiftySim. Precomputations of M, ∂h, etc., are per-

formed in the class’s constructor. The main computational

tasks in each time step are calculation of new internal nodal

forces and calculation of new nodal displacements. The latter

task is fully delegated to a dedicated CPU time-ODE solver

class (described in section “Time integration”). The sequen-

tial loop by which the former calculation is carried out is

summarised in the pseudo-code loop at the centre of Algo-

rithm 1.

The element-level calculations are performed by element

classes, each of which is derived from tledElement. Con-

crete classes are provided for the three solid-element types

described in section “The basic TLED algorithm”. The ele-

ment objects are managed by the solver object. Each ele-

ment object also has an associated material object (of base

class tledMaterial), which is responsible for the con-

stitutive behaviour of the element and enables evaluation of

stress, given the element deformation. The available consti-

tutive models are described in section “Constitutive models”

in Appendix. The task of computing BC values and body

forces for a given time is performed by a constraint man-

ager (described in section “Constraints”), but their accumu-

lation and application is done by the solver. If applicable, a

contact manager (tledContactManager) also resolves

contacts between bodies in the model (see section “Contact

modelling”).

tledParallelSolverCPU

tledParallelSolverCPU is a parallel CPU solver

based on Boost9 threads. It shares most of its code with

tledSolverCPU. Its main distinguishing feature is that it

splits the element array into blocks of equal size and assigns

these sub-arrays to different threads. To avoid race conditions

on the internal-forces buffer Rint, every thread is associated

with one intermediate force accumulation buffer, into which

the internal forces of the elements in its sub-array are written.

These temporary buffers are then summed up and the result

is written to the global internal-force array.

9 Boost is an open-source library available from http://www.boost.org.
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Algorithm 1 Sequential time-step solution computation

algorithm

Rext ← UpdateExternalLoads(t)

Rint ← 03×Nnodes

for all e ∈ Elements do

F ← ComputeDeformationGradient(e, U) {Performed

by tledElement}

S ← ComputeSPKStress(F,Mat) {Compute second Piola-

Kirchhoff stress based on constitutive model Mat, from deforma-

tion gradient F}

f ← ComputeInternalForces(F, S) {Compute element-

contribution to internal forces from stresses S, deformation gradient

F}

Rint ← Rint + f

end for

Un+1 ← UpdateDisplacements(Rext − Rint, Un, Un−1)

{Operation performed by tledTimeStepper}

Un+1 ← ApplyDisplacementBC(Un+1)

tledSolverGPU

The nVidia CUDA solver implementation is calledtledSol

verGPU. All its precomputations are performed on the CPU

with code resembling that of tledSolverCPU.

With most element types, only one kernel is required for

the computation of the internal forces, which is invoked with

one thread per-element. While conceptually there are few

differences between that kernel and the loop body in Algo-

rithm 1, the storage format for the element internal-forces

is significantly different in that every element is assigned a

float3 buffer of size Nnodes/element in which only the forces

computed by one thread for one element are held (Fig. 6).

These forces are later retrieved in the displacement update

stage. Thanks to this storage format, no inter-thread commu-

nication or atomic operations are required.

The second important solver kernel, the displacement

update kernel, is invoked by the solver with one thread for

every node. As is the case on the CPU, code associated

with the solver is responsible for computation of the effec-

tive loads. The accumulation of the internal forces acting

on a thread’s node is performed by querying two texture

arrays, one display array of type int2 holding an offset and

a range, and a second int2-array holding for every node

the indices of the elements to which it belongs and its vertex

index in those elements. Hence, these two arrays allow for

a retrieval of all internal forces computed per element from

the buffer that was filled by the internal-forces kernel. The

look-up process is illustrated in Fig. 6. The external loads are

computed on the CPU and passed as a global memory array

to the kernel. The kernel is templated with respect to the

tledTimeStepper sub-class used for displacement evo-

lution, and the effective forces are next passed to the appro-

priate tledTimeStepper function via template polymor-

phism that in turn returns a predictor displacement value for

the thread’s node. It is then checked if any of the node’s com-

ponents are subject to constraints through a binary mask held

in texture memory, with one entry for every component of

every node. If the component is constrained, the correspond-

ing value is retrieved from another texture array.

An example of the handling of contact constraints on

GPUs is given in section “Contact modelling”.

tledSolverGPU_ROM

Reduced Order Modelling is implemented in the tledSol

verGPU_ROM class, which follows a similar execution

model to the basic GPU-enabled solver described in the previ-

ous section. In particular, computation of element nodal force

contributions is identical to that in tledSolverGPU. The

subsequent displacements update, however, is divided into a

sequence of device and host computations: (i) effective nodal

loads Reff are assembled using a first kernel, launched over

Nnodes threads, then transferred to the host; (ii) the quantity

Φ M̂ΦT R
eff

is computed and the resulting vector is trans-

Fig. 6 Layout of the buffer used for storage of internal forces on the GPU and illustration of their retrieval during computation of the effective

loads
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ferred back to the device; and (iii) the final displacements

Un+1 are computed using a second kernel, also launched over

Nnodes threads. It is found to be more effective to perform step

(ii) on the host side, as the small sizes of the involved vectors

and matrices make GPU execution inefficient.

Matlab code for constructing the reduced basis from

training data using proper orthogonal decomposition is also

included in the NiftySim source code package.

tledShellSolverCPU

Similar to how tledSolverCPU is responsible for the

spatial discretisation with solid elements on the CPU, the

tledShellSolverCPU class performs the tasks of com-

puting the mass of shell and membrane elements and their

internal forces.

Element sets are implemented as classes templated with

respect to the membrane element type, so as to allow for a

mix of membrane/shell element types in the same simulation.

These templated classes are derived from a common abstract

classtledShellSolver::ElementSet that has a pure

virtual functionComputeForces that is responsible for the

computation of internal forces in one element set and receives

a reference to the same buffer Rint used for accumulation

of solid-element internal forces by tledSolverCPU. The

contents of this function and its method of operation are

largely analogous to the loop body of Algorithm 1, i.e. (i)

the computation of strain/curvature measures is delegated to

element classes derived from tledElementMembrane;

(ii) a shell/membrane constitutive model object associated

with the element set is used for computation of the stresses

arising from the strains/curvatures; (iii) the element class

converts the stresses to internal forces. Since the same

force accumulation buffer is used as for solid elements, all

BC and contact modelling operations can be performed by

tledSolverCPU.

A class tledParallelShellSolverCPU exists to

provide CPU parallelism. Its element set classes work by

splitting their element arrays into equal parts that are assigned

to different threads, very similar to how it is performed in

tledParallelSolverCPU.

tledShellSolverGPU

tledShellSolverGPU is the CUDA implementation of

tledShellSolverCPU. Its internal organisation and a

large amount of administrative and precomputation code

are shared with tledShellSolverCPU. As with its

CPU counterpart, one design goal of this class was to

reuse solid-element solver code for BCs, contact mod-

elling, etc. The strategy for force accumulation employed

by tledShellSolverGPU is largely identical to that

of tledSolverGPU, i.e. forces are computed and stored

element-wise, to be later retrieved by a dedicated kernel

invoked with one thread per node using the same type of

lookup tables. The aggregated forces are directly subtracted

from the external loads before these are passed to the dis-

placement update kernel of tledSolverGPU.

The internal-forces kernel is templated with respect to the

constitutive model and element class, and the appropriate

functions for computation of the deformation, stresses, and

internal forces are called via template polymorphism.

Time integration

The base class of all ODE solvers used for the time integra-

tion is tledTimeStepper. Two further abstract classes,

tledTimeStepperCPU and tledTimeStepperGPU,

exist to provide the CPU and GPU specific parts of the

ODE solver API, respectively. Mathematically, two types of

explicit time integration are supported: the central difference

method and explicit Newmark integration (see section “The

basic TLED algorithm”).

In order to maximise code reuse and consistency between

the CPU and GPU implementations a design pattern based

on templated decorators, which is used in several places

in NiftySim, was employed. In this case, the CDM/EDM-

specific but platform-independent parts of the implementa-

tion, e.g. getters for intermediate results such as velocity, are

contained in two templated decorator classes,tledCentra

lDifferenceTimeStepper andtledNewmarkTime

Stepper. These decorators derive from a solver base class

that is passed as a template argument, as follows

template <class TBaseTimeStepper>

class tledExampleDecoratorTimeStepper : public TBase

TimeStepper {

...

};

where TBaseTimeStepper is either tledTimeStep

perCPU or tledTimeStepperGPU. These decorated

CPU/GPU ODE solver base classes then serve as the par-

ent class for the actual solver implementations, such as

tledCentralDifferenceTimeStepperCPU.

The displacement evolution code of the GPU ODE solvers

is implemented as a device function that is directly called by

the displacement update kernel of the GPU solver. Unlike

with the internal force computation, no precautions need to

be taken to avoid race conditions, since the computation of

the next displacement value of a given node only depends

on its effective loads, and its current and previous time-step

displacements.

Constraints

Loads and boundary conditions are incorporated under the

common heading of constraints. All constraint types are
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represented by a sub-class of tledConstraint, e.g.

tledDispConstraint implements nonzero essential

boundary conditions. A class called tledConstraint

Manager is responsible for their management.

The constraint types accessible through the simulation

XML description were originally aimed at an algorith-

mic generation of boundary condition definitions. Mostly,

they are of a very basic type, such as displacement or

force constraint, and require an explicit specification of the

nodes directly affected by the constraint, thus making it

difficult for humans to read and manually specify. More

recently, we have added a method of geometric bound-

ary specification that allows the user to specify the sur-

face facets contained in a boundary through a combina-

tion of facet normal-orientation criteria and bounding vol-

umes. The processing and conversion to node index lists

of these descriptions is done in tledModel with the

aid of the classes tledMeshSurface, that can extract

surfaces of solid meshes and compute facet normals, and

tledNodeRejector and its sub-classes that are used to

filter nodes based on “is inside volume”-type criteria.

Contact modelling

Contacts with analytically described surfaces

This feature enables the efficient simulation of contacts

between soft tissue and geometries frequently encountered

in medical settings. Examples of analytical contact-surface

classes aretledContactCylinder andtledContact

Plate. There is no common interface for analytical contact

surfaces since these are very simple classes holding only a

few parameters necessary to describe the surface, such as the

radius, the axis and origin of the centre line in the case of the

contact cylinder.

For performance reasons, the actual computations related

to these contacts are performed by tledSolverGPU in the

displacement update kernel. Algorithm 2 shows the compu-

tations performed to detect and simulate a contact between

the deformable simulation geometry and a plate suitable for

simulation of the breast compression in mammography. No

CPU equivalent exists for the analytical contact-surface fea-

ture.

Mesh-based contact modelling

A wide-range contacts can be modelled with the mesh-based

code: contacts of multiple deformable bodies, deformable-

body self-collisions, contacts between moving and static

rigid bodies and deformable ones. A dedicated manager,

tledUnstructuredContactManager, exists to man-

age the surface meshes used in the collision queries, the con-

tact search bounding volumes, and the contact solvers that

Algorithm 2 Collision detection and resolution with an ana-

lytically described plate

A, B, C, D ← retrieve from global memory: plate corners

n ← (B − A) × (C − A) {Compute plate normal}

p ← input: node’s current position

d ← p − A

if dT · n < 0 then

{Node has penetrated the plane of the plate, need to check if it’s

within the bounds of the plate}

if 0 ≤ dT ·(B− A) ≤ ||B− A||2 and 0 ≤ dT ·(C− A) ≤ ||C− A||2

then

output ←
(

dT · n
)

n {Return displacement pushing the node

back to the plate surface}

return

end if

end if

output ← 0 {No displacement correction required}

compute the collision response forces. Similar to how the

constraint manager provides loads and boundary displace-

ments to the solver for a given point in time, this manager

provides member functions that can be called by the solver

to get the forces arising from collisions for a given displace-

ment configuration without needing any in-depth knowledge

of the type of contacts simulated or the number of bodies

involved in the contacts.

tledUnstructuredContactManager encapsu

lates one object holding the surface of the simulation geome-

try at the current time step, of the class tledDeformable

ContactSurface. This data structure provides the facil-

ities needed to construct a BVH for broad-phase con-

tact search, the connectivity and surface-geometry infor-

mation needed for the narrow-phase search and response-

force computation. The BVH is a data structure that recur-

sively partitions the geometry until every bounding volume

(BV) only contains one surface primitive (e.g. a triangle).

This partitioning is done such that when a BV is split,

its children are only assigned geometric primitives that are

connected.

The contact search is conducted in two phases: The

broad phase operates only on the BVH and, in the case of

deformable-body contacts, recursively checks sub-trees of

the BVH containing geometry between which there is no

topological connection, against each other. In this pair-wise

descent, the geometry bounded by one BVH subtree is con-

sidered the master surface, the other is the slave.

The subsequent narrow-phase distinguishes between two

types of contacts; mesh-intersections caused by slave nodes

penetrating into master-surface facets and edges intersecting.

The algorithm for the detection and correction of deformable-

body intersection is summarised in pseudo-code, in Algo-

rithm 3.

Conceptually, little changes with deformable and rigid

body contact. The main difference is that each rigid contact

surface is contained in its own data structure and has its own
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Algorithm 3 Deformable contact search and collision

response computation

U ← input: current time-step displacements

Surf ← UpdateSurface(U)

BVH ← UpdateBVH(Surf)

Iprimitives ← RunBroadPhase(BVH) {Conduct broad-phase on

BVH to determine pairs of potentially intersecting primitives}

(	, g,Icontacts) ← ComputeSlaveToMasterProjections

(Surf,Iprimitives) {Compute based on current surface configuration

the projections of the slave geometry onto the master geometry, 	,

the corresponding node, facet, edge indices, Icontacts, and penetration

depths g.}

Rcontact ← Rcontact+ComputeResponseForces(	, g,Icontacts)

Rcontact ← correct for overshoot on nodes involved in multiple con-

tacts

output ← Rcontact

BVH. In the contact search, the entire deformable-body BVH

is checked against the entire BVH of the rigid body. Further,

contact-response forces are applied to the deformable body

only.

In self-collision detection, the subtrees of the deformable-

geometry BVH that need to be checked against each other

are identified with the surface-cone method of Volino and

Magnenat-Thalmann [31]. Otherwise, the algorithm is iden-

tical to Algorithm 3.

The template-based decorator design pattern described in

section “Time integration” is used extensively to share code

between the various mesh-based contact modelling pipelines.

The mesh-based contact modelling is only available in the

development branch of the project and not part of the stable

releases, as of version 2.3.

Output

Visualisation

Some basic visualisation capabilities are included in

NiftySim ; these employ VTK for the rendering and win-

dow management. A custom render scene interactor, the

mesh sources, which handle the conversion of NiftySim mesh

objects and their attributes to VTK objects, and the source

code for the creation of the render scene itself are contained

in a separate library called libviz.

Mesh output

The same converters that are used in the visualisation module

can be used to export the simulation mesh with the final dis-

placement as an attribute in VTK’s vtkUnstructured

Grid format, or vtkPolyData in the case of mem-

brane meshes. This functionality can be invoked through the

NiftySim front-end with the -export-mesh, -export-

submesh, and-export-membrane switch for the export

of all simulation geometry as one mesh, as individual sub-

meshes, and surface meshes, respectively.

Displacement and internal force history

tledSimulator also encapsulates an instance of tled

SolutionWriter which can record the time step dis-

placements and internal forces. The displacements/forces

are recorded in a Matlab parsable ASCII format at a fre-

quency the user specifies through an attribute on the Output

XML element that is used to request the output of a variable

(F or U).

Research applications of NiftySim

In this section, we will look at a series of applications of

NiftySim in published research. The majority of these exam-

ples illustrate the use of NiftySim for soft tissue simulations

and exploit the speed of the GPU solver to run a large num-

ber of simulations with different parameters within a useful

timeframe, e.g. to compute optimal material parameters for

an image registration. However, in some cases NiftySim was

also chosen for its features that go beyond TLED, such as its

wide range of constitutive models or its contact modelling.

Biomechanically guided prone-to-supine image registration

of breast MRI using an estimated reference state

This example application by Eiben et al. [6] aims to improve

the results of registration of breast magnetic resonance

images (MRI) from a prone to a supine patient position. The

clinical motivation is that diagnostic images used in detect-

ing breast cancer and the planning of its surgical removal are

typically acquired with the patients lying on their stomach

(prone). The interventions are performed with the patients

lying on their back (supine) and may be guided with intra-

operative imaging. Due to the softness of breast tissue, the

deformation the breast undergoes between these two configu-

rations is too large for standard image registration algorithms

to cope with. For this reason, Eiben et al. proposed to esti-

mate an artificial zero-gravity state for the pre-operative as

well as the intra-operative images, in which correspondences

between the two configurations can be established more eas-

ily, and subsequently refined to provide a starting position

for standard B-spline nonrigid image registration. Figure 7

shows the algorithm as a diagram.

The implementation of this algorithm used NiftySim to

simulate the unloading of the breast. To this end models com-

prising three neo-Hookean element sets with distinct parame-

ters, taken from the literature, were constructed; correspond-

ing to the pectoral muscle, the adipose tissue, and the fibro-

glandular tissue. The reference state was obtained by using a
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Fig. 7 Overview of zero-gravity configuration estimation algorithm

from Ref. [6]

gravity constraint on a mesh obtained from the loaded con-

figurations and inverting the direction of gravity. This yields

the reference configuration for a subsequent iterative refine-

ment of the zero-gravity configuration. The refinement of

the reference state is carried out by reloading the estimated

zero-gravity mesh with the physical gravity direction and

computing the difference between the loaded estimate and

the configuration seen in the corresponding MR image. This

difference is subsequently transformed back into the coor-

dinate system of the reference configuration by means of a

nodally averaged deformation gradient, and directly added

to the vertex positions of the reference-configuration mesh:

Δxr = F−1Δxl

xr
(i+1) = xr

(i) + sΔxr

(26)

where the subscripts l and r are used to denote the loaded

and the zero-gravity reference configurations, respectively,

F is the deformation gradient for the deformation from zero-

gravity to loaded, xr denotes the node positions of the ref-

erence mesh, and s ∈]0, 1[ is a constant used to ensure con-

vergence of the method.

Performing a validation based on landmarks in actual clin-

ical data by tracking said landmarks from both the supine and

prone configurations into the simulated reference configura-

tion and measuring their distance, Eiben et al. obtained mean

target registration errors (TREs) of 5.3–6.8 mm which is well

below the clinically relevant threshold of 10 mm.

In their experiments, the algorithm required 19 simula-

tions to converge both from the supine and prone configu-

rations to the zero-gravity reference configuration. The sim-

ulations took an average 80 and 83 s on an nVidia GeForce

GTX 580, respectively, with meshes with 10,455 and 10,741

nodes, respectively.

Development of patient-specific biomechanical models

for predicting large breast deformation

Han et al. [9] presented an algorithm for recovering suitable

material parameters from MR images for the accurate mod-

elling of breasts undergoing large deformation, such as in the

previously discussed prone-to-supine registration. The algo-

rithm was used to estimate material parameters for up to four

different types of tissue within a model: fat, fibro-glandular,

muscle, and tumour tissue. The inputs were: a segmented

image of the initial (subsequently denoted by A) and final

configurations (called B), and a set of initial guesses for the

material parameters that were obtained from the literature.

The algorithm was implemented with the unmodified

stand-alone executable of NiftySim. It made heavy use of the

element set concept, and if the experimental setup demanded

it, NiftySim’s contact modelling features. A pseudo-code

description of the algorithm is given in Algorithm 4.

Algorithm 4 Estimation of patient-specific material parame-

ters from images

A ← initial configuration MRI

B ← final configuration MRI


fat,
fibro,
muscle,
tumour ← initial-guess material parameters,

e.g. from literature

Determine suitable loads, boundary conditions matching experimen-

tal setup

XMLtemp ← construct a simulation-XML template comprising the

geometry, boundary conditions, mass etc.

N M I ← −∞

while N M I < τ and max. iterations not reached do

XML ←WriteXML(XMLtemp, 
fat, 
fibro, 
muscle, 
tumour)

{Insert current 
fat, 
fibro, 
muscle, 
tumour and an appropriate

time step size in template XML}

U ←RunNiftySim(XML) {Run sim., save final displacement}

Â ←WarpImage(A, U)

N M I ←ComputeNormalisedMutualInformation( Â, B)


fat,
fibro,
muscle,
tumour ← Update parameters with appropri-

ate optimisation strategy, e.g. simulated annealing

end while

output 
fat,
fibro,
muscle,
tumour

This iterative optimisation process was effectively enabled

by the speed advantages of NiftySim’s GPU-enabled solver

over established commercial packages: individual simula-
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Fig. 8 Left Parallel TRUS images and the corresponding extracted

prostate gland surface mesh, and a simplified TRUS probe balloon indi-

cating the position of the probe during acquisition. Right Example of a

simulation mesh used by Hu et al. with the pelvis used for defining the

essential boundary conditions

tions took 19 s to complete with NiftySim, compared with

104 min with ABAQUS standard and 312 min with ABAQUS

explicit on an Intel dual-core 3.4 GHz CPU with a GeForce

GTX 285 GPU. They also ascertained that NiftySim’s solu-

tions are consistent with those obtained with the slower com-

mercial packages.

Modelling prostate motion for data fusion during

image-guided interventions

Hu et al. [13] described an approach to registering intra-

operative transrectal ultrasound (TRUS) images with, for

example, pre-operative MR images, for guidance of prostate

biopsy procedures. Statistical Motion Models (SMMs), con-

structed pre-operatively, are aligned to the intra-operative

TRUS images, which process may be performed in real-

time. In the process, they define a dense deformation field

throughout the image volume, which may be used as a high-

quality initialiser for a fine registration with an intensity-

based method. The SMMs are constructed off-line from the

results of a series of FE simulations, carefully designed to

ensure the parameter space of the problem is adequately sam-

pled. An example of a TRUS image with an extracted prostate

mesh and a simplified TRUS probe can be seen in Fig. 8.

Their FEM models consisted of a prostate gland embed-

ded in a rectangular block with a hole representing the rec-

tum. NiftySim’s tledContactUSProbe class was used

to simulate the ultrasound probe’s motion and interaction

with the tissue. The FEM models comprised four element

sets corresponding to the prostate inner and outer gland, rec-

tal wall, and other surrounding tissue. Further, they used a

generic pelvis model with random rotation, translation, and

scaling parameters to impose a homogeneous displacement

constraint on the model (Fig. 8). An outline of the imple-

mentation of the SMM generating algorithm can be found in

Algorithm 5

Algorithm 5 Algorithm for generation of statistical motion

models
Rsim ← Initialise material, ultrasound probe, and pelvis parameter

ranges w/ values deemed physically sensible

Mesh ← Perform segmentation of pre-interventionally acquired

MRI, meshing

XMLtemp ← Generate template XML file with geometrical informa-

tion, fixed simulation parameters

Utraining ← ∅, 
sim ← ∅

for i < number of desired simulations do

Gl , Kl ← SampleMatParams(Rsim) {sample material parame-

ters for element sets from corresponding input ranges, l = 1 · · · 4}

RUS, tUS, θUS ← SampleUS(Rsim) {sample ultrasound probe

radius, translation, rotation}

SPelv, tPelv, θPelv ← SamplePelvis(Rsim) {sample pelvis para-

meters}

Γfix ← ∅ {Initialise fixed constraint node index set}

for n < number of nodes in mesh do

if node n inside pelvis mesh transformed with SPelv, tPelv, θPelv

then

Γfix ← Γfix ∪ {n}

end if

end for

XML ←WriteXML
(

XMLtemp, Gl , Kl , RUS, tUS, θUS, Γfix

)

U ←RunNiftySim(XML)

Utraining ← Utraining ∪ {U}


sim ← 
sim ∪ {SPelv, tPelv, θPelv, Gl , Kl , RUS, tUS, θUS}

end for

SM M ←PCA
(

Utraining, 
sim

)

{Run PCA on displacements, corre-

sponding sim. settings}

Using NiftySim’s GPU-enabled solver, a full training set

of 500 simulations were completed in an average of 140 min

and with minimal user intervention, rendering the process

amenable to clinical use. By comparison, comparable (indi-

vidual) simulations using Ansys take between 10 and 30 min.

Using these statistical models Hu et al. were able to obtain

TREs of <3 mm, which is both below the clinically rele-

vant threshold of 4.92 mm and the TREs obtained with elas-
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tic registration that they identified as the primary competing

method.

MRI to X-ray mammography intensity-based registration

with simultaneous optimisation of pose and biomechanical

transformation parameters

Mertzanidou et al. [20] developed a method for registering 3D

MR images to 2D X-ray mammograms. The problem is par-

ticularly challenging as the X-ray images are acquired with

the breast being compressed between two plates. The MRIs

are also used diagnostically and for surgical planning, and

are acquired with the women lying prone with their breasts

pendulous. The algorithm aims to simulate the compression

on a mesh generated from an MRI, using the resulting dis-

placement field to warp the MRI, and generate a simulated

X-ray of the compressed MRI via ray-casting. Finally, the

simulated X-ray is repeatedly compared with the actual X-

ray mammogram, thus at convergence, providing correspon-

dences between the two images of the breast, as assessed

by the normalised cross- correlation (NCC) metric. Simu-

lations were performed using NiftySim and making use of

a transversely isotropic neo-Hookean constitutive model for

the breast tissue with a fixed Young’s modulus. The other

material parameters were optimised as part of the registra-

tion procedure, in a manner similar to that proposed by Han

et al. [9]. A pseudo-code summary of the algorithm is given

in Algorithm 6.

The algorithm was implemented in a dedicated appli-

cation using NiftySim’s GPU solver as a backend to save

the time required to reload the simulation model, by sub-

stituting material parameters, using tledSolverGPU’s

UpdateMaterialParams function, and the displace-

ment settings of the tledContactPlate contact surfaces

in every iteration of the hill-climbing optimisation. How-

ever, it could be implemented using the niftysim stand-

alone application without making any functional sacrifices.

Further, computational costs can be significantly reduced by

performing the warping on-the-fly as part of the raycasting

process.

The NCC evaluation function is given in Algorithm 7.

The use of NiftySim’s GPU solver allowed Mertzanidou et

al. to run approximately 420 simulations in one registration,

taking about 2 hours in total.

They obtained TREs of 11.6 ± 3.8 and 11 ± 5.4 mm

for the registration of the MRI to the cranio-caudal and the

medio-lateral oblique X-ray, respectively.

The algorithm presented by Mertzanidou et al. aims to

solve one of the most difficult problems commonly encoun-

tered in medical image registration, but for the purposes of

this paper, it is also notable for its use of some of NiftySim’s

newer features. In addition to the above algorithm, that uses

a frictionless analytical model for the contact plates and a

Algorithm 6 Biomechanically informed X-ray to MRI reg-

istration
M RI, X Ray ← input

Mesh ← Segment MRI, generate mesh


opt ← {t, θ} {Compute initial guess rigid-body transform between

MRI and X-ray from image header data and centres of mass}


opt ← 
opt ∪ {ν, η, D} {Initialise parameters Poisson ratio and

material anisotropy, and compression}

Γfix ← Determine constrained degrees of freedom from M RI

InitSolver(Γfix, ν, η, D, Mesh) {Generate simulation XML

description for initialisation of the NiftySim components}

w, s ← parameter weights and initial step size

NCC ← EvaluateNCC(
opt)

while s > user threshold do

{Parameter optimisation with hill-climbing}


(test) ← 
opt/{p j } ∪ {p j ± s/w(p j )}, p j ∈ 
opt {Generate

test parameter sets by individually replacing each of the optimised

parameters ν, η, D, t, θ with hill-climbing value.}

NCC(test) ← EvaluateNCC(

(test)
j ) {Evaluate each of the test

parameter sets}

if NCCtest > max j NCC
(test)
j then

NCC ← max j NCC test
j


opt ← arg max



(test)
j

NCC(

(test)
j ) {Replace current parameter

baseline}

else

s ← decrease s {no improvement, decrease step size}

end if

end while

Algorithm 7 EvaluateNCC

UpdateSolverSettings(ν, η, D)

U ← RunSimulation()
ˆM RI ←WarpImage(M RI, U)
ˆM RI X ←RaycastMRI( ˆM RI , t, θ) {transform ˆM RI , create X-

ray}

NCC ← ComputeNCC( ˆM RI X , X Ray)

output NCC

homogeneous solid-element model, they also performed a

sensitivity analysis to assess the impact of a more sophisti-

cated model including a membrane representing the patient’s

skin, and friction between the contact plates and the breast

surface. The incorporation of friction requires using the

mesh-based contact model, and the creation of a surface mesh

for the contact plates. The “skinning” of the mesh with a

neo-Hookean membrane as done by Mertzanidou et al. can

be achieved with the following lines of XML code:

<ShellElements type=’’SURFACE’’ />

<ShellElementSet Size=’’all’’>

<Material Type=’’NeoHookean’’>

G

<Density>rho</Density>

</Material>

</ShellElementSet>

where G and rho are a suitable shear modulus and mass

density, respectively.
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Fig. 9 Qualitative comparison of simulations without (left) and with (centre) a skin-simulating membrane by means of final configuration cross

sections and their contours (right)

With a friction coefficient of μ = 0.3 and a skin shear

modulus twice that used for the breast solid mesh, they

observed the following effects when compared to the friction-

less homogeneous model: 4.89 mm mean difference in nodal

3D displacement, and 4.36 mm mean difference in axial dis-

placement. Figure 9 shows a qualitative assessment of the

effects of the skinning performed by Mertzanidou et al. in

which they looked at cross sections through the simulation

final configurations.

Discussion and conclusions

The NiftySim toolkit has been designed to enable efficient

integration of simulation technology into applications in

medical image computing and computer-assisted interven-

tions. This integration is facilitated by both a command line

program capable of executing simulations in a stand-alone

fashion, and a library which enables simple embedding of the

simulation code in third-party software. High computational

performance is achieved by employing a highly data-parallel

FE algorithm and executing on massively parallel graphics

processing units. The underlying formulation is valid for fully

nonlinear problems, making it suitable for simulating mate-

rially nonlinear soft tissues undergoing large deformations.

Moreover, the codebase is relatively small and minimally

dependent on third-party libraries, allowing fast and easy

compilation on a range of platforms, and an uncomplicated

integration in client code. A series of example applications

from recently published work was used to demonstrate the

toolkit’s utility.
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Appendix: Constitutive models

Constitutive models in NiftySim are defined in terms of scalar

valued strain energy density functions Ψ . From these, the 2nd

Piola–Kirchhoff stress S may be computed using

S =
∂Ψ

∂ E
= 2

∂Ψ

∂C
. (27)

in which we have introduced the right Cauchy–Green defor-

mation C := FT F.

For isotropic elastic models, Ψ is a function of deforma-

tion only: Ψ = Ψ (C). We employ strain energy functions

with separated isochoric (volume-preserving) and volumet-

ric components [11], thus:

Ψ (C)=Ψ iso(C̄)+Ψ vol(J )=Ψ iso( Ī1, Ī2)+Ψ vol(J ), (28)

where J := det F is the Jacobian determinant, C̄ = J−2/3C

is the modified right Cauchy-Green deformation tensor, and

Ī1 = trC̄ and Ī2 =
[

(trC̄)2 − tr(C̄
2
)
]

/2 are invariants of C̄ .

Transversely isotropic models, characterised by a single

“preferred” direction a0 and symmetrical properties orthog-

onal to this, are formed through the addition of terms depen-

dent on the pseudo-invariant Ī4 = a0 · C̄a0.10 In this case Ψ

becomes

Ψ (C, a0) = Ψ iso( Ī1, Ī2, Ī4) + Ψ vol(J ). (29)

Finally, visco-hyperelastic models may be formed by aug-

menting elastic strain energy functions with time-dependent

relaxation functions α(t) and integrating over the history of

the loading:

Ψ̂ (Ψ, t) =

∫ t

0

α(t − s)
∂Ψ

∂s
ds. (30)

10 Strictly, terms involving Ī5 = a0 · C̄
2
a0 should be included also, but

these are frequently omitted because of their unclear physical interpre-

tation and the difficulty in their experimental identification—e.g. see

[12].
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NiftySim visco-hyperelastic constitutive models use the com-

mon Prony series form of relaxation function:

α(t) = α∞ +

N
∑

i=1

αi e
−t/τi , (31)

where α∞, αi , and τi are positive real constants.

Hyperelastic models

The following hyperelastic strain energy functions are cur-

rently available:

Neo-Hookean

ΨNH =
μ

2

(

Ī1 − 3
)

+
κ

2
(J − 1)2 , (32)

where μ and κ are the shear and bulk moduli, respectively.

Polynomial

ΨPY =

N
∑

i+ j=1

Ci j

(

Ī1 − 3
)i (

Ī2 − 3
) j

+

N
∑

i=1

1

Di

(J − 1)2i ,

(33)

where Ci j and Di are material parameters (related to the

initial shear and bulk moduli as μ = 2(C10 + C01) and

κ = 2/D1), and N = 2.

Arruda–Boyce

ΨAB = μ

5
∑

i=1

Ci

λ2i−2
m

(

Ī i
1 − 3i

)

+
κ

2

(
J 2 − 1

2
− ln J

)

,

(34)

where μ and κ are the initial shear and bulk moduli, respec-

tively, λm is the locking stretch, and Ci , (i = 1, . . . , 5)

are constants: C1 = 1/2, C2 = 1/20, C3 = 11/1050,

C4 = 19/7,000, C5 = 519/673,750.

Transversely isotropic

ΨTI =
μ

2

(

Ī1 − 3
)

+
η

2

(

Ī4 − 1
)2

+
κ

2
(J − 1)2 , (35)

where η is a material parameter (units of Pa) controlling the

additional stiffness in this direction.

Visco-hyperelastic models

Viscoelastic versions of the neo-Hookean and transversely

isotropic models are currently available. See [28] for a

description of the constitutive update procedure for visco-

hyperelastic materials.
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