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Abstract: Sleep disturbance induced by night-time noise is a serious environmental problem that

can cause adverse health effects, such as hypertension and ischemic heart disease. Night-time noise

indices are used to facilitate the enforcement of permitted noise levels during night-time. However,

existing night-time noise indices, such as sound exposure level (SEL), maximum sound level (LAmax)

and night equivalent level (Lnight) are selected mainly because of practical reasons. Therefore, this

study proposes a noise index based on neurophysiological determinants of the awakening process.

These determinants have revealed that the potential on awakening is likely integrated into the

brainstem that dominates wakefulness and sleep. From this evidence, a night-time noise index,

Nawake,year, was redefined based on the integration of the awakening potential unit (punit) estimated

from the existing dose-response relationships of awakening. The newly-defined index considers the

total number of awakenings and covers a wide-range and number of noise events. We also presented

examples of its applicability to traffic noise. Although further studies are needed, it may reveal a

reasonable dose-response relationship between sleep disturbance and adverse health effects and

provide a consistent explanation for the risks of different sound sources where the characteristics of

noise exposure are quite different.

Keywords: night-time noise; sleep; sleep disturbance; awakening; neurophysiology;

Phillips-Robinson model

1. Introduction

1.1. Noise-Induced Sleep Disturbance and Indices of Night-Time Noise

Sleep disturbance induced by night-time noise is a serious environmental problem with

associated health concerns. The World Health Organization (WHO) Regional Office for Europe [1]

estimated the disability-adjusted life years (DALYs) lost from sleep disturbance to be 903,000 years

for the 285 million population living in agglomerations with >50,000 inhabitants. This DALYs value is

considered to be relatively high, while the total DALYs lost in Europe was estimated to be 151,461,000

years for the 883 million population there [2].

While night-time noise was evaluated based on “self-reported sleep disturbance” in this study,

night-time noise may also cause objective sleep disturbance where awakenings in response to

specific noise events occur repeatedly. Both subjective (self-reported) and objective (evaluated by

awakenings) sleep disturbances are environmental problems that can cause adverse health effects,

such as hypertension and ischemic heart disease [3–6]. The WHO Regional Office for Europe

considered their health implications and developed a guideline for night-time noise [4].
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Night-time noise-induced awakening (objective sleep disturbance) is measured and defined in

numerous ways, such as polysomnography, an actimeter and a button that provides a prescribed

signal of awakening [7].

Polysomnography remains the gold standard for evaluating sleep structures. Awakening is

measured using polysomnography and defined as arousal (short (≥3 s) and unconscious electric

activation) and electroencephalogram (EEG) awakening (sleep stage change to the wake states) [7].

Few field studies have been carried out using polysomnography, because it is expensive and may

influence sleep. However Basner et al. [8] performed a field study using polysomnography, which

showed a dose-response relationship between sound levels and the probability of EEG awakening.

In several field studies, awakenings have been measured using an actimeter (motility and onset

of motility) and by pressing a button (behavioral awakening). Motility and onset of motility are

non-invasive measurements of body movement performed during sleep using an actimeter [9,10],

and they are closely related to sleep duration and onset, as well as waking time [11]. In addition, the

number of body movements and EEG awakenings are correlated [8]. However, awakenings can occur

without body movements, while there are also body movements without awakening, which limit the

validity of the measurements [7].

Behavioral awakening is measured by the pressing of a button (or other ways that provide a

prescribed signal) by a subject awakened from sleep, which directly relates to conscious awakenings,

and has been used in numerous field studies [12–15]. However, the number of behavioral awakenings

would be much smaller than the EEG awakenings measured using polysomnography, because

consciousness is only regained following prolonged wake periods, which reduces its reliability [7].

Passchier-Vermeer et al. [15] reported a dose-response relationship between sound levels of aircraft

noise and the probability of behavioral awakening, which shows that the probability of awakening

is very low even when the sound level is high. Although this measurement has a disadvantage,

behavioral awakening is considered to be an important measurement related to sleep disturbance,

because it has been used in several field studies, directly relates to awakening during sleep and is the

strongest form of sleep activation.

Night-time noise indices are used to facilitate the enforcement of permitted noise levels during

sleep based on subjective and objective sleep disturbances. Noise indices such as sound exposure

level (SEL), maximum sound level (LAmax) and night equivalent level (Lnight) are widely used

empirically to evaluate a single noise event or overall noise exposure during night-time.

Both the SEL and LAmax have been used for evaluating and predicting the probability of

awakening in response to a single noise event. The SEL has been widely used in field studies [9,12–14]

because it provides information on the duration of a noise event and shows a higher correlation with

awakening than the LAmax [16]. However, no reasonable explanations could be provided for the sum

of the sound power being over the noise event. Meanwhile, the LAmax that is reported to be highly

correlated with sleep stage changes [16] has also been used in several studies [8]. These indices have

been introduced and used for evaluating and predicting an awakening in response to a single noise;

however, noise-induced sleep disturbances and adverse health effects are most likely to be caused by

long-term noise exposure.

The Lnight has been used to evaluate and predict the long-term effects of night-time noise

exposure [4,17], which is reported to be associated with self-reported sleep disturbance [1,10].

However, it was introduced for empirical reasons. Since the Lnight sums up the sound power during

night-time, the Lnight gains only 3 dB when the number of noise events doubles. The number of

awakenings in response to noise events is remarkably different depending on the number of noise

events even if the Lnight is the same value, which suggests that the number of noise events should

be accounted for [4,7]. To solve this problem, the total number of awakenings (Nawake,year) index was

proposed based on the probability of awakening in response to a single noise event [18,19]. Moreover,

Janssen et al. [10] included the SEL and the logarithm of the number of noise events simultaneously

into the statistical analysis of the number of noise events in sleep disturbance measured using motility
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and concluded that the number of noise events is largely represented in the Lnight. However, no effect

of the number of events was found after the sleep period was accounted for in the statistical analysis.

In addition to noise indices and the number of noise events, the distribution and sound source

of noise events are considered to affect sleep disturbance [7,20]. To account for the distribution of

noise events during sleep, time indicators such as time after falling asleep and sleep period, have

been included in the statistical analysis in numerous studies [8,10,18,21]. The American National

Standards Institute (ANSI) [18] defined a dose-response relationship between the probability of

behavioral awakening due to aircraft noise and SEL levels, where the time after falling asleep was

considered, which estimates the probability of awakening as much higher than the value based on

Passchier-Vermeer’s dose-response relationship [15]. The effect of sound sources on sleep is less clear,

although sleep disturbance due to aircraft noise has been reported to be higher than road traffic noise

and railway noise under the same noise level conditions [4,20].

We should note that since night-time noise studies are focused on noise-induced sleep

disturbance and sleep is a physiological function of the human body and a neurophysiological

function of the brain, these noise indices and confounding factors should be validated

neurophysiologically. However, especially regarding noise indices, the existing indices are not based

on neurophysiological findings of the awakening process and are mainly applied for practical reasons,

which means they might be inappropriate for evaluating night-time noise. We [22] investigated the

dynamic characteristics of the brainstem dominating sleep and wakefulness, which suggested that

the validity of the LAmax and SEL were limited as short-term noise indices for different durations

of noise events. A neurophysiologically-validated index for night-time noise should be proposed to

evaluate and predict noise-induced sleep disturbance.

1.2. Neurophysiology of Sleep and Awakening

Neurophysiologically, the modulation of wakefulness and sleep is dominated by the ascending

arousal system (AAS) nuclei in the brainstem and the ventrolateral preoptic (VLPO) nuclei in the

hypothalamus [23]. Furthermore, circadian and homeostatic drives control the activities of the nuclei,

and the sleep-awake switch is characterized by mutual inhibition by the nuclei [23].

Numerous mathematical models have been developed for explaining the activation of the

nuclei in the brainstem, such as the two-process model [24] and the mutual inhibition model [25].

The two-process model explains the sleep-wake cycle based on the two processes, which are the

homeostatic and circadian processes that increase sleep pressure and modulate the threshold of falling

asleep during wakefulness, respectively. In addition, a mutual inhibition model was developed

based on the subsequent physiological findings of the interaction in the brainstem, which revealed

that the monoaminergic (MA) nuclei in the AAS was activated during wakefulness and the VLPO

nuclei during sleep, while both nuclei mutually inhibit the activation of the other. These models not

only showed a calculated example that agreed with existing evidence, but also provided a helpful

explanation of the dynamics of sleep and wake, which shows significant insights into awakening due

to external stimuli [26,27], effects of caffeine [28] and chronotype [29].

The Phillips-Robinson model [25] is a mutual inhibition model, which explains the

neurophysiological dynamics of the brainstem. Only two numerical populations were included

in this simple mathematical model, namely the MA nuclei in the AAS, which is activated during

wakefulness and inactivated during sleep, and the VLPO nuclei, which exhibits the opposite effects.

The schematic diagram of this model is shown in Figure 1. This model enables the quantitative

evaluation of the sleep-awake switch, as well as any brief awakening due to external stimuli [26,27].

However, the ultradian rhythm was neglected, and rapid eye movement (REM) sleep is not explained

in this model, which is also used for evaluating the various effects on sleep, suggesting that this model

is useful for understanding physiological response during sleep and the structure of the sleep.
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Figure 1. Illustration of schematic diagram of the Phillips-Robinson model. Monoaminergic (MA) and

ventrolateral preoptic (VLPO) nuclei are activated by the external drives related to sleep stages and

external stimuli, as well as circadian and homeostatic drives. MA and VLPO nuclei mutually inhibit

each other, which constitutes the sleep-awake switch.

Based on the Phillips–Robinson model, awakening of the brainstem could be defined, which

lasts at least tens of seconds [26,27]. Awakening of the brainstem is assumed to relate to measurable

awakenings, such as motility, EEG and behavioral awakening, which may affect the endocrine system

and cause adverse health effects. We investigated the relationship between the neuro-electrical

thresholds of the awakenings and the duration of the external stimuli input into the brainstem [22].

In addition, the thresholds were converted to sound levels based on a previously-reported laboratory

experiment [30].

The calculated threshold levels of awakening gave the following results:

1. The brainstem integrates awakening potential, but not the sound energy of the external stimuli.
2. The brainstem integrates the potential with a first-order lag system and a time constant of

approximately 10–100 s.
3. The threshold levels of awakening due to short-duration noises are extremely high, while the

LAmax and SEL both overestimated this parameter.
4. The SEL index overestimates even for long-duration noises because the brainstem integrates the

awakening potential with a time constant of 10–100 s.

These results suggest that the existing night-time noise indices, SEL, LAmax and Lnight, are not

appropriate for the evaluation and prediction of awakening response, particularly because they tend

to overestimate evaluations of the awakening response.

Night-time noise indices and confounding factors were introduced empirically, although they

were intended to evaluate the effect of noise on sleep that is a neurophysiological function of the

brain. There are numerous neurophysiological findings on sleep and wakefulness, and moreover,

the implementation of the mathematical Phillips–Robinson model has revealed the dynamics of the

brainstem that integrates awakening potential, but not the sound energy. Therefore, in this study, we

introduced the awakening potential unit (punit) based on the results mentioned above and those of

existing studies on the relationship between noise and the probability of awakening. Furthermore,

we define a night-time noise index, Nawake,year, using the awakening potential, which can be

obtained from night-time sound level fluctuations and shows the expected number of awakenings

(or probability of awakening) per year. This index is based on neurophysiological findings of sleep

and covers a wide-range of night-time noise events. We also presented examples of the applicability

of the Nawake,year index to traffic noise.
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2. Method

2.1. Introduction of punit

In this section, we redefined the night-time noise index, Nawake,year, by introducing the punit,

which is based on the results of the simulated calculation of the Phillips–Robinson model mentioned

in the previous section.

The external neuro-electrical stimuli to the brainstem, D(t) (mV), is assumed to be a function, f ,

of the sound stimuli as follows:

D(t) = f (L(t)) (1)

where L(t) (dB) is the indoor sound level fluctuation of a single noise event, with t as the time

in seconds.

The external stimuli, D(t), is approximately integrated with a first-order lag system in the

brainstem. The integrated potential at t0, D(t0) is expressed by the following equation:

D(t0) =
∫ t0

−∞
e−(t0−t)/τ D(t) dt (2)

where τ is the time constant (10–100 s) of the lag system.

Most traffic noise that occurs during the night-time is considered a single event because there is

less traffic volume then. If the duration of the noise event is relatively shorter than the time constant of

the brainstem, τ, then the maximum value of D(t) due to the single noise event can be approximated

using the following equation:

Dmax ∼
∫ ∞

−∞
D(t) dt (3)

The awakening risk would correlate with the value of Dmax, and therefore, the dose-response

relationship with awakening should be expressed as a function of Dmax. Following the introducing

of a function, g, which depicts the dose-response relationship between the probability of awakening

and Dmax, the probability of awakening due to a single noise event (Psingle) may be formulated as:

Psingle = g
(

Dmax

)

(4)

= g

(

∫ ∞

−∞
D(t) dt

)

(5)

Under the assumption that the function g has linearity (additivity), the expression of Psingle can

be transformed into:

Psingle =
∫ ∞

−∞
g (D(t)) dt

=
∫ ∞

−∞
g ( f (L(t))) dt (6)

This equation is further simplified by substituting punit(L(t)) for g( f (L(t))),

Psingle =
∫ ∞

−∞
punit(L(t)) dt (7)

where the function, punit(L(t)) (s−1), is interpreted as a unit potential of awakening per second at

L(t) (dB).

Equation (7) means that the probability of awakening is calculated by the integral of the

awakening potential. This is fundamentally different from the existing indices where the probability

of awakening is calculated using the LAmax or the SEL.
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The function, punit(L(t)), should be determined using a field study or a laboratory experiment,

and in this study, three existing dose-response relationships involving awakening were used in

the estimation:

1. Passchier-Vermeer [15] reported a dose-response relationship between the probability of

behavioral awakening and the SEL of a single noise event, expressed as Equation (8).

This relationship is considered to be important, because it was based on field studies including a

recent field study [9,10], where motility and self-reported sleep disturbance were also measured,

and the number of noise events was considered to be represented in the Lnight when motility is

used for evaluating sleep disturbance. In addition, this Passchier-Vermeer relationship was used

to establish the “Night Noise Guideline for Europe” by the WHO Regional Office for Europe [4].
2. The ANSI [18] defined a dose-response relationship between the probability of behavioral

awakening and SEL, expressed as Equation (9). This relationship, which was authorized

for use by the ANSI, considered the effect of the elapsed time after falling asleep, and

therefore, the probability of awakening was calculated to be higher than that calculated using

Passchier-Vermeer’s equation.
3. Basner [8] reported a dose-response relationship between the probability of EEG awakening

and LAmax, expressed as Equation (10). This relationship was based on a field study using

polysomnography, and therefore, the result was fundamentally different from the other field

studies. EEG awakening was defined using polysomnography, which was expected to occur

spontaneously 8760 times per year. The effects of the elapsed time after falling asleep, sleep

stages and REM sleep were accounted for in the relationship.

The three dose-response relationships are expressed as follows:

Psingle,P =1.909 × 10−6 SEL2 − 5.64 × 10−3 (8)

Psingle,A =
1

1 + exp {− (−6.8884 + 0.04444SEL)}
(9)

Psingle,B =1.89 × 10−5L2
max + 4.01 × 10−4Lmax − 3.3243 × 10−2 (10)

where Equations (8)–(10) are confined to SEL > 54 (dB), SEL > 50 (dB) and Lmax > 32 (dB),

respectively.

In these relationships, a commercial aircraft was assumed to be the sound source.

Passchier-Vermeer reported a relationship of noise indices as follows:

SEL10 = 16.40 + 0.877Lmax (11)

where SEL10 is the equivalent sound level of a noise event normalized to 1 s and assessed over the

time the sound level of the noise event was larger than Lmax− 10 (dB). The values of SEL and SEL10

are similar, and therefore, Equations (8) and (9) were converted to:

Psingle,P =1.468 × 10−6L2
max + 5.491 × 10−5Lmax − 5.13 × 10−3 (12)

Psingle,A =
1

1 + exp {− (−6.1596 + 0.03897Lmax)}
(13)

where Equations (8) and (9) are confined to Lmax > 43 (dB) and Lmax > 38 (dB).

The following power function was assumed as punit(L(t));

punit(L(t)) = a(L(t)− b)c (14)

where, the symbols a and c are constants and b is the threshold level of awakening risk. A least-square

method was used to determine the set of constants using Equations (8), (9) or Equation (10) and

Equation (7), where linearly increasing and decreasing single noise events were assumed. Figure 2
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shows the assumed fluctuation of the sound level. The integral calculation of punit in Equation (7)

was carried out using LAmax − 30 (dB) to account for the effect of the low sound level. The sL and the

Td,10dB were determined as follows:

sL = 100.0123Lmax−0.747 (15)

Td,10dB = 10−0.0123Lmax+2.048 (16)

which correspond to Equation (11).

The constant b was set to the threshold levels used in Equations (12), (13) or

Equation (10), respectively.

Sound Level

L
Amax

 –10 [dB]

T
d,10dB

 /2 [s]

L
Amax

 [dB]
s
L
 [dB/s]

Time

–T
d,10dB

 /2 [s]

Figure 2. Assumed fluctuation of a single noise event, where sound level linearly increases and

decreases. The slope of a single noise event (sL) and the 10 dB-duration of a single noise event (Td,10dB)

correspond to Equation (11).

2.2. Redefinition of the Nawake,year Index

The punit was defined as the probability of awakening due to a single noise event, which was

equivalent to the probability calculated using the existing relationship. However, since chronic

adverse health effects are not induced by a single noise event and may be caused by long-term noise

exposure, the long-term night-time noise index, Nawake,year, is addressed in this section.

While the Lnight over- or under-estimates the number of awakenings in response to noise events

during night-time, the Nawake,year index considers the expected number of awakenings (or probability

of awakening) per year, which would be appropriate since awakenings during sleep might cause

adverse health effects. This index has already been defined as a summation of the awakening

probability due to a single noise event calculated using equations, such as Equations (8), (9) or

Equation (10). However, the calculation can only be performed under limited circumstances because

the equation for the probability of awakening is confined to a specific sound source.

The total number of awakenings per year is obtainable when the calculation is based on the

awakening potential introduced in the previous section. The low volume of night-time traffic enables

the associated noise level to be measured separately as a single event. Therefore, each awakening

potential due to a single noise event can be summed up to estimate the total awakening potential

during the night. Furthermore, the total awakening potential corresponded to the total number of

awakenings per year and were expressed as follows:

Nawake,year = ∑
night,year

Psingle (17)

=
∫

night,year
punit(L(t)) dt (18)

= ∑
night,year

g

(

∫

event
f (L(t)) dt

)

(19)
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A significant point worth emphasizing is that we included neurophysiological determinants

into the redefined Nawake,year in Equation (18). The neurophysiological meaning of this definition

is shown in Equation (19). Sound level input into the brainstem (L(t)) was converted to electrical

external stimuli (function f ) and integrated into the brainstem, though there is an assumption where

the integration system of the brainstem could be approximated to a simple integration system, since

night-time noise is relatively short. Integrated electrical external stimuli determine the probability

of awakening in response to a single noise event (function g), and Nawake,year is the sum of the

probability. Awakening potential (function punit) is a composite function of f and g as mentioned

in the previous section. This redefinition also implies that Nawake,year can be defined in various single

noise events despite specific noise events, such as the noise of a commercial aircraft.

Simulated calculations based on the existing dose-response relationship between SEL and the

awakening probability, depicted in Equation (8), were performed to examine the validity of the

developed noise index. The Passchier-Vermeer and ANSI relationships shown in Equations (8) and

(9) were used in this calculation. Some assumptions were made to perform the calculation: sound

levels that increase and decrease linearly during a noise event, 1–50 noise events during a night and

the difference in sound levels between outdoors and indoors of 15 (dB) [31].

2.3. Application: Community Noise in a Suburb

Two examples of the application of the redefined Nawake,year index are presented based on the

sound level measurements of traffic noise. The Passchier-Vermeer, ANSI and Basner relationships

shown in Equations (8)–(10) were used in this calculation.

Community noise measurements were carried out in a suburb of Kyoto City for 24 h [32], and

noise indices including the redefined Nawake,year index were calculated. The four measured points

are shown in Figure 3. At these points, the major sound sources were several automobiles passing

through an urban road that lies at the center of the figure. The difference between indoor and outdoor

noise levels was set at 15 (dB).

▲▲

0 50 100 (m)

↓
C

↓
D

↓
A

↓
B

Figure 3. Measurement points in a Kyoto city suburb (Ooenishinaga-chou, Nishikyou-ku, Kyoto city,

Japan). Measured Point A was located alongside a quiet road and opened to an urban road where a

number of automobiles passed through; B was located alongside the urban road; C was located near

a Y-shaped intersection where a few automobiles passed through and opened to the urban road; and

D was located in a residential district and not opened to any major roads.
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2.4. Application: Effect of a Noise Barrier along a Motorway

An additional noise measurement was performed along a trunk road of the “Daini Hanna Toll

Road” in Nara City (see Figure 4). Noise measurements were conducted at six points along the

motorway before and after a new barrier was set up to reduce the traffic noise there. Detailed

information of the measurement is shown below:

• Instruments: high-precision sound level meter, NL-31, RION (A-weighted, fast, 0.1-s interval

sampling) and digital recorder, R-09, Roland , with a binaural microphone, BME-200, ADPHOX

(pulse-code modulation (PCM) recording).
• Date: 1:00–4:00 a.m. 28 November 2007 (before), 1:00–4:00 a.m. 29 February 2008 (after).
• Procedure: Successive 20-min noise measurement and audio recording were performed at each

point, respectively. We determined a dominant sound source every moment [32], and night-time

noise indices were calculated with the available data where the dominant sound source was

road traffic noise.
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Figure 4. Measurement points alongside a trunk road of the “Daini Hanna Toll Road” in Nara city

(Naka-machi, Nara City, Japan). Sound levels were measured before and after setting up a noise

barrier (broken line).

The Lnight and redefined Nawake,year were calculated at these 6 measurement points, where the

difference between indoor and outdoor noise level was set at 15 (dB).
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3. Results

3.1. Overview of punit

The formula for determining the punit(L(t)) (s−1) as the function of indoor sound level L(t) was

obtained from each existing study, as follows:

punit,P = 4.545 × 10−6(L(t)− 43)1.300 for 43 dB ≤ L(t) (20)

punit,A = 6.972 × 10−6(L(t)− 39)1.610 for 39 dB ≤ L(t) (21)

punit,B = 5.617 × 10−6(L(t)− 32)1.831 for 32 dB ≤ L(t) (22)

Figure 5 shows the dose-response relationship between Lmax and the probability of awakening

calculated by the existing relationships depicted in Equations (12), (13) or Equation (10) against

the approximations using the integral calculation of the punit(L(t)) depicted in Equation (7) with

Equations (20), (21) or Equation (22). It should be noted that the ANSI relationship between the

sound level and the probability of awakening depicted in Equation (13) is confined to Lmax > 39 (dB),

which is equivalent to SEL> 50 (dB). Therefore, the relationship is discontinuous at the value of the

threshold, while the developed function does not include this function.
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LAmax
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Figure 5. Dose-response relationships between maximum sound level per event (Lmax) and the

probability of awakening. Each solid line was calculated from an existing dose-response relationship

expressed by Equations (12), (13) or Equation (10), and each dotted line was calculated from the

integration of awakening potential using Equation (7) with Equations (20), (21) or Equation (22).

ANSI, American National Standards Institute.

For each set of existing and approximated relationships, the dose-response curves agree

substantially, which means that the approximated relationships could be used as a substitute for

the existing one. However, there are a few qualitative differences between each existing and

approximated curve, which can be described as follows.

1. Each approximated curve has an inflexion point at the high sound level since the duration of a

single noise event calculated using Equation (16) is short when the maximum sound level is high.
2. The probability of awakening calculated using Equation (13) is discontinuous at the threshold of

39 (dB), since a logistic function was selected to understand the probability of awakening in the

ANSI method.
3. The probability of awakening calculated using Equation (10) rises steeply to the threshold, since

this curve was derived by subtracting a constant value from a logistic function.
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These differences would arise partly because of the assumptions made in this study and partly

because of the analytical methods used in previous studies.

3.2. Nawake,year Index

Three equations of the punit, Equations (20)–(22), cover a wide range of single noise events,

because they are based on the neurophysiological evidence garnered from sleep studies. These

equations were first derived from Equations (8)–(10), which means that the number of awakenings

per year could be estimated by redefining the Nawake,year expressed as Equation (18).

Figure 6 shows the results of the simulated calculations based on the Lnight, as well as the existing

and defined Nawake,night index.
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Figure 6. Night equivalent level (Lnight) versus number of awakenings per year from simulated

calculations based on Psingle (Equation (17)) with the Passchier-Vermeer equation (Equation (8), upper

left panel) and the ANSI equation (Equation (9), lower left panel). Comparison of the number of

awakenings redefined based on punit (Equation (18)) with approximation of the Passchier-Vermeer

equation (Equation (20)), upper right panel) and the ANSI equation (Equation (21), lower right panel).

Calculations were performed with various numbers of noise events from 1–50 times per night.

The left panels of Figure 6 show the relationship between Nawake,night based on Psingle depicted

in Equation (17)) and Lnight. Since the probability of awakening is calculated as zero if the SEL is

below 50 (dB) in the ANSI equation, the number of awakenings per year based on Equation (17) is
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discontinuous when Lnight is low and the number of sound events is high. There are remarkable

differences between the curves, where the number of awakenings is very high when the number of

noise events is high, even if the Lnight was calculated to be the same value.

The right panels in Figure 6 show the relationship between the Nawake,night based on Psingle and

punit depicted in Equations (17) and (18), respectively, where the former is the existing definition

and the latter is the redefinition. The redefined Nawake,year is larger than the existing definition of

Nawake,year based on the ANSI equation, because of their mathematical difference of continuity at the

value of threshold as described above. However, each pair of the estimations agrees strongly, even if

the number of noise events varies widely.

3.3. Application: Community Noise in a Suburb

Night-time noise indices (22:00–6:00) at measurement points shown in Figure 3 are listed in

Table 1.

Table 1. Night equivalent noise level (Lnight), maximum sound level (LAmax) and Nawake,year

night-time noise indices measured at the specific location of a Kyoto city suburb illustrated in Figure 3.

The Nawake,year index was calculated using an integral calculation of the punit derived from the

Passchier-Vermeer, ANSI and Basner equations. The difference between the indoor and outdoor

sound level was set at 15 (dB).

Measured Point

Index A B C D

Lnight,outside (dB) 49.8 55.7 51.7 46.0

LAmax,outside (dB) 86.6 84.1 80.0 70.7

Nawake,year (year−1)
using the Passchier-Vermeer equation 3.7 35.3 3.9 0.2

using the ANSI equation 21.4 205.7 49.1 1.2

using the Basner equation 76.8 733.6 829.1 44.0

It should be noted that the Nawake,year index based on the Passchier-Vermeer and the ANSI

relationships was established with the probability of behavioral awakenings while the Nawake,year

index based on the Basner relationship was associated with the probability of EEG awakening.

This means that the latter value is fundamentally different from the others. Basner [8] reported that

spontaneous EEG awakenings can be expected up to 8760 times per year, and the threshold value is

very low.

The difference between Points B and C is only 4 (dB), but the awakening risk at Point B was

4–8-times higher than that at Point C was when the calculation of awakening was based on the

Passchier-Vermeer or ANSI relationship, and the risk of sleep disturbance is considered significantly

high. The Nawake,year appeared to have a distinct advantage for evaluating night-time noise, as well

as sleep disturbance.

In contrast, the risk order is reversed and is almost the same when the calculation is based on

the Basner relationship. This means that the risk of sleep disturbance varies significantly depending

on whether it is caused by behavioral or EEG awakening. Furthermore, epidemiological studies may

reveal appropriate end-points and the Nawake,year index as mentioned in the previous section.

In addition, at all pf the measurement points, the sound levels evaluated using the Lnight and

the LAmax were higher than the WHO guideline values [17] and the EU night-time noise guideline

(40 (dB)) [4]. However, the Nawake,year index at Point D showed a low risk of sleep disturbance.
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3.4. Application: Effect of a Noise Barrier along a Motorway

Figure 7 shows the reduction of traffic noise evaluated using Lnight (dB) (22:00–6:00).

Although the Lnight decreased by 5–10 (dB) after the noise barrier was set up, we were unable to

evaluate the mitigation of sleep disturbance from these measurements alone.
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Figure 7. Decrease in night equivalent level (Lnight) by the noise barrier.

Meanwhile, Figure 8 shows the reduction of the number of awakenings using Nawake,year (year−1)

(22:00–6:00). The Nawake,year were decreased and were almost zero at all measurement points after the

barriers were set up, which means the awakening risk along this road decreased greatly and the effect

of noise barriers was beneficial, even though the Lnight at some measurement points after the barriers

were set up was higher than the guideline value of 40 dB.
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Figure 8. Cont.
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Figure 8. Decrease in Nawake,year by the noise barrier. Nawake,year was calculated based on awakening

potential unit (punit) with the approximation of the Passchier-Vermeer, ANSI and Basner equation

(Equations (20)–(22) in the upper, middle and lower panels), respectively.

4. Discussion

The aim of this study is to introduce a neurophysiologically-validated noise index for evaluating

awakenings in response to noise events, although currently-used indices, such as SEL, LAmax and

Lnight, were introduced mainly because of the statistically high correlation with sleep effects.

Simulated calculations [22] based on the mathematical modeling of the brainstem [25,26]

revealed that the brainstem integrates awakening potential, but not the sound energy of external

stimuli. In addition, the time constant integrating the potential was revealed to be approximately

10–100 s when a first-order lag system was assumed. This evidence facilitated the introduction of a

mathematical punit, as well as the redefinition of the Nawake,year index based on an integral calculation

of the awakening potential unit depicted in Equation (18).

The punit, as a function of the sound level depicted in Equations (20), (21) or Equation (22), was

derived using the existing dose-response relationship between the established SEL or LAmax index

and the probability of awakening due to a single noise event depicted in Equations (12), (13) or

Equation (10). Some assumptions were made in this study, including that the sound level linearly

increased and decreased during the noise event, and its duration was determined by the maximum

level. Although there are some small gaps between the existing and the approximation curves, these

likely appeared partly because of the assumptions made in this study and partly because of the

analytical methods used in the previous study. The approximated curves could be modified to fit the

existing ones by selecting another function or threshold; however, it is more appropriate to modify

the punit based on the existing or new studies where the sound level fluctuation is available, since

some assumptions were made in this study to derive the approximations.

In addition, a variable that provides an explanation for the distribution of individual noise events

over one night (i.e., elapsed time of falling asleep) should be accounted for in future studies, as

ANSI [18] and Basner et al. [8]. Neurophysiologically, the existence of the circadian rhythm was

accepted [23], and the Phillips-Robinson model [25] also includes a term of the circadian rhythm that

fluctuates as a sinusoidal curve, which considerably affects the thresholds of awakening.

The redefined Nawake,year index provided the expected total number of awakenings per year.

As shown in Figure 6, simulated calculations were carried out to compare the validity of the

Nawake,year and the Lnight, where a wide variety of the number of noise events during a night

was assumed. The Nawake,year index strongly agreed with the number of awakenings estimated

from the simulated calculations, while the Lnight induced remarkable variation in the relationship.

The redefined Nawake,year is based on neurophysiological sleep parameters and covers a wide-range

of cases associated with various types of noise.

Examples of the application of the redefined Nawake,year were presented using the measurements

of community noise. The Nawake,year appeared to have distinct advantages in evaluating night-time
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noise, as well as sleep disturbance compared to the other indices. The application of the Nawake,year

in epidemiological studies on adverse health effects would evaluate more efficiently than the

Lnight index would. In addition, countermeasures to mitigate deleterious health effects could be

applied effectively.

The total number of awakenings was also adopted by the ANSI [18] for evaluating cumulative

risk of noise-induced sleep disturbance. It has the advantage of showing the awakening responses

of residents directly, as opposed to the Lnight index, which shows just an average sound level in dB.

Moreover, our epidemiological study [33] showed that the risk of hypertension around two different

airfields could be consistently evaluated using the Nawake,year defined by the ANSI, but not the Lnight

or day-evening-night equivalent level (Lden), where the number, maximum sound level and duration

of noise events were different between the two airfields.

We propose that epidemiological studies using the Nawake,year index may reveal more reasonable

dose-response relationships between subjective sleep disturbance and adverse health effects than the

existing index of Lnight. In addition, since the Nawake was defined neurophysiologically in this study,

it may provide a consistent explanation for risks of aircraft, road traffic and railway noise where

characteristics of noise exposure are quite different though the risks of road traffic and railway noise

were not examined in this study. Further studies are required to elucidate and appropriately modify

the functionality of the punit and the Lnight in evaluating night-time noise-induced sleep disturbances.

In addition, the effects of the distribution and sound sources of noise events should be examined

using the Nawake,year.

5. Conclusions

This study proposes the total number of awakenings per year (Nawake,year) as a night-time

noise index based on the neurophysiological evidences elucidating the awakening process in the

brainstem. The Nawake,year is calculated by integrating the awakening potential (punit) introduced

neurophysiologically and derived using the existing dose-response relationship between sound levels

with the probability of awakening, which has distinct advantages in evaluating night-time noise, as

well as sleep disturbance compared to the other indices.

Acknowledgments: This work was supported in part by Japan Society for the Promotion of Science (JSPS)
KAKENHI Grant Number 25340058.

Author Contributions: Junta Tagusari performed the mathematical analyses and prepared the first manuscript
draft. Satoshi Furukawa and Tomoya Takashima performed the noise measurements and their analysis in Kyoto
and Nara City. Toshihito Matsui developed the study concept and design.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. World Health Organization Regional Office for Europe. Burden of Disease from Environmental Noise.

Quantification of Healthy Life Years Lost in Europe; World Health Organization Regional Office for Europe:

Copenhagen, Denmark, 2011.

2. World Health Organization. The Global Burden of Disease: 2004 Update; World Health Organization: Geneva,

Switzerland, 2008.

3. Babisch, W. The noise/stress concept, risk assessment and research needs. Noise Health 2002, 4, 1–11.

4. World Health Organization Regional Office for Europe. Night Noise Guidelines for Europe; World Health

Organization Regional Office for Europe: Copenhagen, Denmark, 2009.

5. Babisch, W. Updated exposure-response relationship between road traffic noise and coronary heart

diseases: A meta-analysis. Noise Health 2014, 16, 1–9.

6. Münzel, T.; Gori, T.; Babisch, W.; Basner, M. Cardiovascular effects of environmental noise exposure.

Eur. Heart J. 2014, 35, 829–836.

7. Basner, M.; Griefahn, B.; Berg, M.V.D. Aircraft noise effects on sleep: Mechanisms, mitigation and research

needs. Noise Health 2010, 12, 95–109.



Int. J. Environ. Res. Public Health 2016, 13, 272 16 of 17

8. Basner, M.; Samel, A.; Isermann, U. Aircraft noise effects on sleep: Application of the results of a large

polysomnographic field study. J. Acoust. Soc. Am. 2006, 119, 2772–2784.

9. Passchier-Vermeer, W.; Vos, H.; Steenbekkers, J.; van der Ploeg, F.; Groothuisoudshoorn, K. Sleep Disturbance

and Aircraft Noise Exposure; TNO Institute for Traffic and Transport: Delft, The Netherlands, 2002.

10. Janssen, S.A.; Centen, M.R.; Vos, H.; van Kamp, I. The effect of the number of aircraft noise events on sleep

quality. Appl. Acoust. 2014, 84, 9–16.

11. Morgenthaler, T.; Alessi, C.; Friedman, L.; Owens, J.; Kapur, V.; Boehlecke, B.; Brown, T.; Chesson, A., Jr.;

Coleman, J.; Lee-Chiong, T.; et al. Practice parameters for the use of actigraphy in the assessment of sleep

and sleep disorders: An update for 2007. Sleep 2007, 30, 519–529.

12. Fidell, S.; Pearsons, K.; Tabachnick, B.; Howe, R.; Silvati, L.; Barber, D.S. Field study of noise-induced sleep

disturbance. J. Acoust. Soc. Am. 1995, 98, 1025–1033.

13. Fidell, S.; Howe, R.R.; Tabachnick, B.G.; Pearsons, K.S.; Sneddon, M.D. Noise-Induced Sleep Disturbance in

Residences Near Two Civil Airports; NASA Langley Research Center: Hampton, VA, USA, 1995.

14. Fidell, S.; Howe, R.; Tabachnick, B.; Pearsons, K.; Silvati, L.; Sneddon, M.; Fletcher, E. Field Studies of

Habituation to Change in Nighttime Aircraft Noise and of Sleep Motility Measurement Methods; BBN Technologies:

Los Angeles, CA, USA, 1998.

15. Passchier-Vermeer, W. Night-Time Noise Events and Awakening; TNO Institute for Traffic and Transport: Delft,

The Netherlands, 2003.

16. Pearsons, K.S.; Barber, D.S.; Tabachnick, B.G.; Fidell, S. Predicting noise-induced sleep disturbance.

J. Acoust. Soc. Am. 1995, 97, 331–338.

17. World Health Organization. Guidelines for Community Noise; World Health Organization: Geneva,

Switzerland, 1999.

18. The American National Standards Institute, Inc. ANSI/ASA S12.9-2008 / Part 6 American National Standard

Quantities and Procedures for Description and Measurement of Environmental Sound—Part 6: Methods for

Estimation of Awakenings Associated with Outdoor Noise Events Heard in Homes; The American National

Standards Institute, Inc.: Washington, DC, USA, 2008.

19. Fidell, S.; Tabachnick, B.; Mestre, V.; Fidell, L. Aircraft noise-induced awakenings are more reasonably

predicted from relative than from absolute sound exposure levels. J. Acoust. Soc. Am. 2013, 134, 3645–3653.

20. Basner, M.; Brink, M.; Bristow, A.; de Kluizenaar, Y.; Finegold, L.; Hong, J.; Janssen, S.; Klaeboe, R.;

Leroux, T.; Liebl, A.; et al. ICBEN review of research on the biological effects of noise 2011–2014. Noise Health

2015, 17, 57–82.

21. Anderson, G.; Miller, N. Alternative analysis of sleep-awakening data. Noise Control Eng. J. 2007, 55,

224–245.

22. Tagusari, J.; Matsui, T.; Hiramatsu, K. Neuro-physiological approach for evaluating noise-induced sleep

disturbance: Time constant of the dynamic characteristics in the brainstem. In Proceedings of the Euronoise

2009, Edinburgh, UK, 26–28 October 2009.

23. Saper, C.B.; Fuller, P.M.; Pedersen, N.P.; Lu, J.; Scammell, T.E. Sleep state switching. Neuron 2010, 68,

1023–1042.

24. Borb, A.A.; Achermann, P. Sleep homeostasis and models of sleep regulation. J. Biol. Rhythm. 1999, 14,

559–570.

25. Phillips, A.; Robinson, P. A quantitative model of sleep-wake dynamics based on the physiology of the

brainstem ascending arousal system. J. Biol. Rhythm. 2007, 22, 167–179.

26. Phillips, A.; Robinson, P. Sleep deprivation in a quantitative physiologically based model of the ascending

arousal system. J. Theor. Biol. 2008, 255, 413–423.

27. Fulcher, B.D.; Phillips, A.J.K.; Robinson, P.A. Modeling the impact of impulsive stimuli on sleep-wake

dynamics. Phys. Rev. E 2008, 78, doi:10.1103/PhysRevE.78.051920.

28. Puckeridge, M.; Fulcher, B.D.; Phillips, A.J.K.; Robinson, P.A. Incorporation of caffeine into a quantitative

model of fatigue and sleep. J. Theor. Biol. 2011, 273, 44–54.

29. Phillips, A.; Chen, P.; Robinson, P. Probing the mechanisms of chronotype using quantitative modeling.

J. Biol. Rhythm. 2010, 25, 217–227.

30. Bonnet, M.; Webb, W.; Barnard, G. Effect of flurazepam, pentobarbital, and caffeine on arousal threshold.

Sleep 1979, 1, 271–279.



Int. J. Environ. Res. Public Health 2016, 13, 272 17 of 17

31. Miyakawa, M.; Matsui, T.; Uenoyama, S.; Murayama, R.; Uchiyama, I. Residents’ opinions on the

environmental quality standards for indoor noise. J. INCE Jpn. 2004, 28, 435–441.

32. Furukawa, S.; Matsui, T.; Uchiyama, I. Measurement of sonic environment considering the diversity of

sound sources: The concept of <sound source × sound level> time-component matrix chart. Soundscape J.

Soundscape Assoc. Jpn. 2008, 10, 57–65.

33. Matsui, T.; Hiramatsu, K. Dose-response relationships between hypertension and several night noise

indices of aircraft noise exposure around the Kadena US airfield in Okinawa. In Proceedings of the 10th

International Congress on Noise as a Public Health Problem (ICBEN) 2011, London, UK, 24–28 July 2011.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open

access article distributed under the terms and conditions of the Creative Commons by

Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Noise-Induced Sleep Disturbance and Indices of Night-Time Noise
	Neurophysiology of Sleep and Awakening

	Method
	Introduction of punit
	Redefinition of the Nawake,year Index
	Application: Community Noise in a Suburb
	Application: Effect of a Noise Barrier along a Motorway

	Results
	Overview of punit
	Nawake,year Index
	Application: Community Noise in a Suburb
	Application: Effect of a Noise Barrier along a Motorway

	Discussion
	Conclusions

