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Nightcap: A Home-Based Sleep 
Monitoring System 

Adam Mamelak and J. Allan Hobson 

Laboratory of Neurophysiology, Harvard Medical School, Boston, Massachusetts 

Summary: In an attempt to offer a home-based adjunct to traditional sleep 
laboratory methods, we developed a system to monitor sleep, and to predict 
algorithmically non-rapid-eye-movement (NREM) and rapid-eye-movement 
(REM) sleep states, using eye and body motility as the only parameters. Eye 
movement was measured using a strain gauge transducer applied to the eyelid 
of subjects, while body movement was measured using a piezo-ceramic phono 
cartridge. Both transducers were mounted on a tennis headband, along with 
electronics that amplified, filtered, and digitized the signals. Digital pulse sig
nals were input to a portable computer in minute-long epochs, and state
predicting algorithms were run based on this motility data. Four subjects were 
monitored in the sleep lab with both our headgear and standard polysomnog
raphy. Hand-scored sleep records were compared with those predicted by 
computer algorithms. Algorithm-predicted states agreed with hand-scored 
ones an average of 85.57% (SEM ± 1.7%). Mean values for sleep onset and 
REM latency were within 1.6 and 10.8 min of polysomnographic records, 
respectively. These results are encouraging, and suggest that this system could 
provide a comfortable, subject operable, and inexpensive method for the eval
uation of sleep at home. Key Words: Automated sleep scoring-Home
based-Transducers-Algorithm. 

Over the past 8 years this laboratory has sought a means to assess sleep stages in 
home settings. Ideally, such a device should be mountable and operable by the subject 
and impose minimum restrictions on the subject's freedom of movement or comfort. 
The device should also provide a means to assess sleep stages without a trained scorer 
or complicated data analysis. 

Since Aserinsky and Kleitman's original report of regular periods of rapid-eye-move
ment (REM) during sleep (1), it has been clear that motility correlates with the brain 
states that constitute the human wake-sleep cycle (2,3). Using time lapse photography 
to study the body position of sleeping subjects, Hobson et al. (4) showed that most 
major body posture shifts came at predictable phases of the sleep cycle: immediately 
before and after a REM period. Aaronson et al. (5) subsequently generated a sleep-
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staging algorithm based on posture shifts alone, which detected wake and non-rapid
eye-movement (NREM), but was unable to detect REM reliably. 

In related work, Kayed et al. (6) used submental electromyogram (EMG), eye move
ments (EMs), and limb movements to predict sleep onset, NREM, and REM periods 
very accurately (r = 0.98 against polysomnographically scored records). Although this 
method required a trained scorer, specialized polygraph equipment, and a submental 
EMG, it did suggest that scoring of sleep stages by way of EM and body movement 
(BM) transducers was possible. 

In 1986, Helfand et al. (7) developed an algorithm to predict REM periods on the 
basis of EM alone. Limb transducers helped differentiate EMs associated with posture 
shifts from EMs in the absence of BM. The resulting algorithm predicted REM 90% in 
agreement with polysomnographic data. 

The aforementioned reports are the basis for our concept of a two-channel movement 
detector whose data could be algorithmically analyzed to predict state. This article 
describes our technique of EM and BM monitoring, and reports results from our first 
tests of an algorithm based on these predictions. 

MATERIALS AND METHODS 

Sensors and electronic signal processing 
Figure 1 shows a schematic drawing of the monitoring system electronics. The EM 

transducer (Fig. lA) consisted of a semi-conductor strain gauge (Kulite Semi-
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FIG. 1. Schematic drawing of transducers and electronics used in the Nightcap headgear. The eye movement 
transducer (A), and the body movement transducer (B). 
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Conductor, SVDP-I000-300, Kulite Semiconductor Products, Inc., Leonia, NJ) at
tached to the eyelid with a 1" x 0.25" piece of surgical tape. The transducer measured 
7 mm x 3 mm and weighed 1 g-small enough to allow the subjects to open their eyes 
while wearing it. The gauge served as one arm of a wheatstone bridge circuit, and the 
bridge output signal was capacitively coupled to a differential amplifier (8,9). 

The bridge circuit output fed into a differential amplifier (Tandy TLC274 Quad op
AMP) with a gain of 10,000. The amplifier output signal was filtered and input to a 
transistor (Motorola 2N222A) that operated as a digital trigger, since any input signal 
>0.3 V caused the output voltage to switch from 4.5 to 0 V, signaling that an EM had 
occurred. 

Since our previous investigations had suggested that major postural shifts during 
sleep involved all parts of the body (4,5), we hypothesized that head movement would 
reliably detect such activity. A 2-cm, 4-g piezo-ceramic phonograph cartridge (EVG, 
Inc. EN 26D) was mounted on a printed circuit board containing the device electronics 
with the phonograph needle tip touching the surface of the board. Since the needle tip 
was not secured to the board, it acted as a vibration sensor when a head movement 
occurred, vibrating against the board and generating a voltage proportional to the size 
of the movement (10). The output signal was filtered to eliminate frequencies >5 Hz, 
and amplified to provide signals in the 1-2 V range for large posture shifts. Signals were 
then input to a transistor configured identically to that for EMs. When a signal >0.3 V 
was applied to the base, a pulse signal was generated. 

All electronic components were mounted on a 5 cm x 4 cm printed circuit (PC) 
board. A 9-V transistor battery powered the electronics. The board, its components, 
and the battery were mounted at the apex of headgear that consisted of two tennis 
headbands sewn together (Fig. 2A). A wire was run through the headband to interface 
with the EM transducer. The total weight of the system was 500 g. 

The EM and BM counts were input to a portable computer (Laser 128; Video Tech
nologies) through a digital interface card (Microport 32, Micro Systems Research). A 

A.SleeR Heodg=eo"--r ____ ----, B. Eye Movement 

A 
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FIG. 2. A: Artist's rendering of the Nightcap monitor. A = headband, B = eye movement transducer, and 
C = body movement transducer and all other device electronics. The broken line represents a wire running 
from the main electronics board to the eye movement sensor. B: Comparison of EOG and headgear-recorded 
eye movement counts. C: Comparison ofEMG and headgear-recorded body movement counts. In (B) and (C) 
each square hash mark on the lower tracing corresponds to one movement count. Correlation of EOG with 
eye transducer counts is low on an event-by-event basis, but the density of these counts across states is well 
correlated with density of EOGs. The same is true for EEG movement artifact and body movement counts. 
Chart speed for both tracings is 6 mmls. 
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data acquisition program stored the number of EM and BM counts that occurred every 
minute in computer memory, and transferred these data to disk for subsequent analysis. 

Experimental design 
Three of four healthy medical students studied (ages 23-25, two men and two women) 

slept in the sleep laboratory for four consecutive nights (one subject three nights only). 
Electroencephalogram (EEG) (C3/A2-02/AI-C4/A2-02/A2), electro-oculogram (EOG) 
(ROC/AI-LOC/A1), and submental EMG were recorded on a Grass Model8-lO poly
graph, while data was collected simultaneously from the Nightcap headgear worn by 
the subjects. Output signals from the headgear transducers were fed into the polygraph. 
Each movement count produced a square wave pulse on the polygraph record, allowing 
us to compare EEG/EOG/EMG and headgear data on an event-by-event basis (e.g., 
EOG vs. EM counts, posture shifts vs. BM counts) (Fig. 2B). Behavioral observations 
were also recorded. 

Before each sleep session, eye transducers were calibrated by asking the subject to 
look to the left, right, upper, and lower visual fields. Some EOG-measured EMs were 
not detected by the strain gauge because too little eyelid distortion occurred to activate 
the digital trigger. In exchange, many eyelid blinks not measured by the EOG were 
counted. Thus, while typically 80-90% of these "well-defined" calibration EMs were 
detected, a criterion of 60% was established as the level above which the sensor was 
considered to be a useful measure of oculomotor activity. Body movement transducers 
were calibrated by asking the subject to roll 90° to the left and right from a supine 
position, and testing that such large movements generated at least one movement count 
for each posture shift. 

Eleven of the 15 sleep records were analyzed. Technical problems with the headgear 
rendered the data incomplete for the remaining four nights. Sleep records were man
ually scored in I-min bins according to standard criteria (11) and spot-checked for 
consistency by a second scorer. The sleep stages were then input to the computer. 

Algorithm design 
The algorithm program scored each minute as an EM minute or a BM minute, by 

comparing minute counts with a predetermined threshold level. Any minute with EM 
counts greater than threshold was scored as an EM minute, and any minute with BM 
counts greater than threshold was scored a BM minute. Threshold values for EM and 
BM minutes were determined by testing the first night's count data for each subject 
until the highest agreement between algorithm and manual scoring was found. When 
both an EM and BM minute occurred simultaneously, the epoch was regarded as a BM 
minute. 

Previous investigations (5,7) suggested a general structure for the stage-scoring al
gorithm, and iterative testing of EM and BM minute data from two nights (SINI, S2N2) 
served as a training set to establish thresholds that yielded an algorithm that best agreed 
with manual scoring (85.75% overall). These thresholds were then applied to the re
mainder data. Some retesting of these thresholds with other nights of data confirmed 
that the thresholds established by the training subset were consistently reliable. 

The algorithm (Fig. 3) worked as follows: At the beginning of each sleep record the 
subject was assumed to be awake, and each successive minute was scored as awake 
until the point at which no BM or EM minute occurred for ~5 consecutive min. This 
point marked the transition from wake to sleep onset, and was scored as NREM. The 
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FIG. 3. Schematic representation of the two-channel sleep-stage-predicting algorithm. Solid vertical bars 
represent body movement minutes, stipled vertical bars represent eye movement minutes, and solid dots 
represent quiescent minutes. The numeric values listed are the optimal state predicting values found during 
data analysis. 

algorithm scored NREM until any period of ;;:;.3 consecutive EM min. This point 
marked the onset of REM. Once a REM period began, the algorithm scored REM until 
up to 5 consecutive min without an EM minute had elapsed. If >5 min elapsed, the 6th 
and succeeding minutes were scored NREM. The one exception to this rule was that if 
the time period between two consecutive REM onset periods was < 10 min, the inter
vening period was scored REM as well. 

Wake was scored at any time during the night if ;;:;.3 consecutive BM min occurred. 
A period of <3 BM min was scored as movement time (MT), and the minute following 
the MT minute was evaluated on the basis of the state prior tp it. On a minute-by-minute 
basis, algorithm-predicted sleep states were compared with those scored manually for 
agreement between the two methods. Time from wake to sleep onset, and from wake 
to the first REM period, were also compared. Reliability of the EM and BM transducers 
was evaluated. 

RESULTS 

Transducer sensitivities 
Eye movement transducer. On an event-by-event basis, EOG and EM transducer 

count were only weakly correlated (r = 0.35). We then calculated the density of EM 
counts across states as the number of counts in a state divided by the total number of 
minutes spent in that state during a night. The mean density of EM counts in REM was 
28.4 times as great as that in NREM (range, 12.9-93). This analysis suggests that the 
transducer apparatus was sufficiently sensitive to oculomotor activity to discriminate 
between REM and NREM, but not specific for EOG-related movement. 
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Body movement transducer. The BM detector proved to be sensitive to major pos
ture shifts and less sensitive to smaller ones. On average, the BM detector failed to 
detect 15.6 episodes of movement (as measured by EMG artifact of duration> 10-s) per 
night. Since sleep stages are scored in I-min epochs, this shortcoming rarely (2.2% of 
all epochs) resulted in a failure to score state correctly. All major posture shifts in
cluded head movement, justifying our decision to mount the BM transducer directly on 
the headgear. 

Algorithmic discrimination of sleep states 
Table 1 summarizes the results of 11 nights of data analysis. Thresholds used to 

determine an EM and BM minute are listed for each subject. Any minute with eye or 
body counts greater than threshold was scored an EM or BM minute, respectively. This 
value did not change across nights for each subject. Sleep onset and REM onset (in 
minutes) are listed for records scored by both the EEG parameters, and the predictive 
algorithm (ALGO). Also listed are the total number of minutes spent in each sleep state, 
as determined by polysomnography and algorithm-scoring procedures, and the percent
age of algorithm-predicted minute states that were identical to EEG scored states for 
each record. 

State-predicting strength. Across all 11 nights the algorithm was in agreement with 
85.6% ofEEG-determined sleep states on a minute-by-minute basis. Excluding the first 
nights of sleep (3 of the 11) caused <2% difference in predictive accuracy, indicating 
that the headgear may be useful in estimating sleep even in restless sleepers. The 
distribution of the total number of minutes spent in each state (wake/MT, NREM, 
REM) correlated highly with EEG-determined values (r = 0.97). 

Sleep onset and REM latency determination. The two-channel algorithm predicted 
sleep onsef to within 10 min of EEG criteria in 10 of 11 nights. Interestingly, cessation 
of EM better predicted sleep onset than cessation of BM. This finding may only be 

TABLE 1. Summary of results 

Latency measures Duration measures 

Sleep onset REM onset WakelMT NREMtime REM time 
Threshold (min) (min) (min) (min) (min) 

Percent 
Subject/night EM BM EEG ALGO EEG ALGO EEG ALGO EEG ALGO EEG ALGO agreement 

2 0 5 7 8 67 66 38 35 293 262 99 133 82.71 
3 0 5 1 I 63 63 10 24 276 284 97 73 86.68 
4 0 5 I 2 75 75 40 29 300 268 82 125 85.07 

2 1 I 2 6 26 150 211 14 79 270 252 112 65 74.49 
2 1 2 7 5 70 74 22 8 150 163 80 70 88.79 
3 1 2 3 10 97 101 20 39 283 253 91 100 80.96 

3 I 2 4 26 27 99 78 40 45 239 212 72 94 85.47 
3 2 4 19 17 151 72 24 26 233 255 126 101 89.03 

4 I 3 3 23 13 108 23 48 28 237 286 104 75 82.00 
3 3 3 2 1 62 61 6 13 233 230 124 120 95.04 
4 3 3 4 6 47 46 9 18 248 245 113 107 91.04 

(r = 0.97)a 

X 9.0 10.5 89.9 79.1 23.6 31.2 251.1 246.4 100 95.8 85.57 
SEM 2.8 2.8 10.6 14.5 4.6 5.8 12.5 10.6 5.4 7.1 1.7 

EEG, electroencephalographic, manually scored states; ALGO, algorithm-predicted states; EM, eye movement; BM, 
body movement; MT, movement time 

a Correlation derived from all 33 pairs of data. 
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characteristic of young, healthy sleepers. In more restless subjects BM may prove an 
equally good estimator of sleep onset. 

Onset of the first REM period was predicted to within 4 min of EEG criterion in seven 
of 11 nights. REM onset averaged 89.9 (± 10.6) min by EEG criterion, and 79.0 (± 14.5) 
min by algorithm prediction. On four nights, REM onset predictions differed from 
EEG-scored latencies by >20 min. Three of these were first nights of sleep, in which 
first REM periods contained little EOG activity compared with the first REM periods 
of subsequent nights. 

Overall system performance 

Figure 4 shows a comparison of manually scored and algorithm-predicted hypno
grams for the best and worst nights. Below each pair of hypnograms is a plot of EM and 
BM minutes, indicating the criteria used by the algorithm to score state. In the best case 
(Fig. 4A) the algorithm agreed with 95.04% of manually scored states. Sleep onset and 
REM onset were both predicted within 1 min of EEG-determined onset. In the worst 
case (Fig. 4B) the algorithm was 74.49% in agreement with polysomnographic data. 
Sleep onset was predicted 20 min later, and REM onset 61 min later than scored by 
polysomnography. Most cases fell in the middle of these extremes, as reflected by the 
85.57% mean agreement value. In three out of four cases in which REM onset predic
tions grossly disagreed with EEG-scored latencies (S3Nl, S3N3, S4Nl), overall agree
ment percent was still high because proportionally few minutes of the total were taken 
up by the first REM period, and all remaining minutes were scored with high agree
ment. 

Headgear comfort and convenience 

Subjects reported no serious discomfort with the headgear, and found it easy to 
self-apply. One subject reported a slight irritation from the eye transducer leads, but no 
subject felt the headgear disturbed their sleep. 

DISCUSSION 

Hardware problems and refinements 

The EM transducer detected oculomotor activity, but this activity did not always 
correlate with EOG potentials. This is because the transducer responds not only to 
horizontal and vertical eyeball movement, but also to eyelid twitches and blinks. Since 
the density of all these movements is increased in wake and REM, compared with 
NREM, the transducer works well to help discriminate state. 

The direct mounting of the BM transducer on the headgear provided a compact 
means to measure large posture shifts. The inability of the BM transducer to detect 
smaller BMs created a scoring problem in two instances in which the subject awoke but 
did not make a large posture shift. In these instances (twice in 11 nights), the EM 
detector counted EM, while the BM detector was silent, so REM was erroneously 
scored. Increasing BM transducer sensitivity should help eliminate this problem. 

While we are encouraged by our results, we believe that the technology present in 
commercially available wrist actigraphs and piezo-film transducers can be used to 
produce even more reliable and comfortable activity monitors. For example, replacing 
the strain gauge with a polyvinylidine difluoride (PVDF) piezo-electric film transducer 
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FIG. 4. Hypnograms comparing hand-scored and algorithm-predicted sleep states for both the best (95% 
agreement) (A) and worst (75% agreement) (B) cases analyzed. In both cases, A is the EEG-scored hypno
gram, while B is the computer-predicted hypnogram. C shows each minute's movement score (EM = eye 
movement, BM = body movement) and thus displays the criteria used by the algorithm to predict state. 

(Kynar Piezo Film, Pennwalt Co., King of Prussia, PA) should result in a more com
fortable and accurate means to detect EM. Success with on-board memory (12) and 
wireless telemetry units (13) in wrist actigraphs suggests that such modifications are 
also possible for the Nightcap system. 
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EM and BM minute threshold variability 
The EM and BM thresholds (unlike the fixed thresholds of the sleep-staging algo

rithm) were variable across subjects, ranging from 0 to 3 for EM and from 2 to 5 for BM 
min, but for each subject the threshold values that gave the highest agreement with 
manual scoring for the first night resulted in the highest agreement values for all sub
sequent nights. This indicates that while subject-to-subject variability of movement in 
sleep is great, within-subject variability is tolerably small. The optimal values for these 
thresholds can be predicted by plotting a histogram of EM and BM counts recorded in 
the first night. The most frequently recorded count determines the threshold level for 
future nights of scoring. 

Sleep onset and REM latency determination 
The determination of sleep onset is an important data point in the investigation of 

sleep disorders such as insomnia. The results of our study are encouraging in that 
regard. At present, wrist actigraphs are estimated to predict sleep onset to within 15 
min of true sleep onset (Dan Redmond, personal communication). The headgear algo
rithm was substantially more accurate, predicting sleep onset within 1.5 min of EEG
determined onset. 

Differentiation of REM from episodic arousal proved to be less accurate. Since the 
algorithm required at least 3 consecutive EM min to score REM onset, any period of 
REM <3 min was systematically scored incorrectly. Since headgear data can be col
lected inexpensively, and with minimal discomfort to the subject, these problems can 
be mitigated by collecting data on each subject for many (more than 5) nights and 
adding the results to produce an "average" sleep profile for each subject. This ap
proach should minimize the influence of any single night's data. 

Future prospects 
More data is needed to determine the full efficacy and limitations of this device. We 

plan to test the headgear on more healthy sleepers, as well as on patients with endog
enous depression (14,15) and central sleep apnea (16). Other clinical populations (17) 
should be tested as well to determine its widespread applicability. We anticipate the 
need for modifications of the current configuration in studies of narcolepsy (where 
sleep onset REM periods would escape detection) and nocturnal myoclonus (where 
limb movement would be missed). While it is impossible for the headgear to replace the 
wealth of EEG data collected in the sleep lab, it is likely that such a device will prove 
useful as a screening device for detecting sleep disorders such as endogenous depres
sion, and a useful research tool for the field investigation of many aspects of normal 
human sleep physiology that have proved costly or unwieldy with polygraphic meth
ods. 

Acknowledgment: The authors would like to thank Chris Lindsey for her assistance in preparing 
the manuscript. This work was supported by a grant from Roche Laboratories. 
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