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Abstract. A good visibility of the road ahead is a major issue for safe
nighttime driving. However, high beams are sparsely used because drivers
are afraid of dazzling others. Thus, the intelligent automatic control of
vehicles’ headlight is of great relevance. It requires the detection of on-
coming and preceding vehicles up to such a distance that only camera
based approaches are reliable. At nighttime, detecting vehicles using a
camera requires to identify their head or tail lights. The main challenge
of this approach is to distinguish these lights from reflections due to
infrastructure elements. In this paper we confront such a challenge by
using a novel image sensor also suitable for other driver assistance ap-
plications. Different appearance features obtained from that sensor are
used as input to a novel classifier–based module which, for each detected
target, yields a degree of resemblance to a vehicle light. This resemblance
is integrated in time using a novel temporal coherence analysis which al-
lows to react in one single frame for targets that are clear vehicle lights,
or in only a few frames for those whose type is more difficult to discern.

1 Introduction

The fatal crash rate for nighttime driving is three to four times that of daytime,
even though the traffic volume is substantially less [1]. In order to be warned
early about hazards, drivers need to look far ahead to see traffic signs, road
geometry, other vehicles, pedestrians, etc. However, this task is difficult at night
because vision is severely limited: drivers lose the advantage of color and contrast
that is available during the day, and depth perception and peripheral vision are
also diminished. Accordingly, the headlight system of a vehicle has the aim of
providing a safe illumination for driving. The most common system in the market
is based on the manual switching between low and high beams (Fig. 1). In absence
of fog, drivers should use high beams under poor ambient lighting but without
disturbing others. However, high beams are used less than 25% of the time in
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114 A. López et al.

Fig. 1. Top: low beams point downward onto the road, while high beams point upward
to help drivers identifying far away objects. Bottom: nighttime scene imaged with high
beams off (left) and on (right). Notice how clear is the presence of close poles and traffic
signs because of the reflection of the light emitted by the car high beams. The energy
level of such reflections reaching the image sensor is equal or higher than the one of
mid to large distant head and tail lights of other vehicles.

which driving conditions justify their use [2], probably because drivers are afraid
of dazzling others by mistake. Thus, our motivation is to develop an intelligent
headlight controller for freeing the driver of such a task.

In order to address this problem we must start by selecting the proper sensor
technology. Notice that, to avoid dazzling other drivers, oncoming vehicles must
be detected up to at least 600 m ahead and preceding ones up to at least 400 m.
Such challenging distances rule out active sensors as radar or lidar. Fortunately,
vehicle detection at nighttime can be based on vision sensors, which have the
additional advantage of being passive and cheaper. In fact, we can already find a
monocular camera based system in the market that, according to the presence or
not of other vehicles, is able to switch between low and high beams automatically
[3]. However, in order to detect vehicles this system relies on a highly specialized
vision sensor which makes it difficult to use it for other driving assistance tasks
requiring lane markings detection, traffic sign recognition, etc.

Our aim is also to develop a real–time vehicle detector reaching the previ-
ously mentioned range of detection distances, but based on a monocular image
acquisition system such that it would be possible to automatically control the
headlight as well as to address other driving assistance applications. To the best
of our knowledge no such a system can be found in the market.

Vehicle detection at nighttime consists, in fact, in detecting the corresponding
head or tail lights, thus, it may seem a question of simple image thresholding.
However, such an intuition underestimates the actual difficulty of the problem:
it turns out that the own emitted light is reflected in different infrastructure
elements such as traffic signs, fences, poles, etc., in a way that are difficult
to distinguish from mid to far distant vehicles (Fig. 1). In order to tackle this
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problem we propose the analysis of both the appearance and motion of the
detected targets. In this paper, however, we focus on appearance analysis.

The proposed system presents several novelties. First, we use an image sensor
based on a novel pattern of color filters on the pixels. To detect taillights, red
color is a relevant cue but sensors based on Bayer patterns have poor sensitivity
compared to monochrome sensors, specially for our application. Hence, we em-
ploy a novel sensor where 75% of the pixels are monochrome and 25% are red.
No blue or green pixels are present. This sensor allows to address other driving
assistance applications. Second, we have designed a new classifier–based analysis
which takes into account that far away lights look different than close ones as well
as that head and tail lights look also different. The classifiers use a set of target
appearance features obtained from the new sensor. Whenever the previous set of
features is not sufficient to make a safe decision, additional appearance features
of the target neighborhood are computed. Third, for each detected target the
classifier–based analysis provides a degree of resemblance to a vehicle light that
is further integrated in time using a new proposed temporal coherence analysis
that allows to react in one single frame for targets that are clear vehicle lights,
or in only a few frames for targets whose type is more difficult to discern.

The paper is organized as follows. Section 2 summarizes different strategies
for automatic headlight control. Section 3 presents our image acquisition system.
In Sect. 4 we explain our vehicle detection method. Results are outlined in Sect.
5. Finally, Sect. 6 draws the main conclusions.

2 Intelligent Headlight

A standard headlight system only allows to manually switch between a short
range illumination (� 70 m) and a large one (≥ 150 m), i.e., the mentioned low
and high beams. Hence, a flexible adaptation of the headlight distribution to the
actual traffic situation would improve the scene visibility. In fact, we can find in
the market systems that use data from the ego–vehicle to provide illumination
distributions ranging from short–wide beams (at low speed) to large–narrow ones
(at high speed), swivelling in curves according to the steering angle.

However, such systems do not use environmental sensing to control the head-
light distribution. With a sensor detecting oncoming and preceding traffic, dif-
ferent headlight systems of increasing capabilities can be designed. The simplest
idea is the automatic switch between low and high beams. A more advanced
concept consists in dynamically adapting the position of the illumination cut–
off just below the next vehicle in front of the ego–vehicle [4]. Future headlight
systems will employ a fully variable light distribution to realize a dazzle–free
high beam. In such a system, small regions where other vehicles are detected
are dynamically masked out in the high beam light distribution (Fig. 2). These
systems can be build using arrays of LEDs [5]. The high beam is composed out
of several small LED spots. If another vehicle is detected only the LED which
generates the spot for the region of the detected vehicle is turned off, while the
rest of regions are still illuminated by the other LEDs.
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Fig. 2. Left: dazzle–free high beam based on arrays of LEDs. This headlight system
can mask out potential dazzling light by detecting vehicles with a vision system. Right:
the novel image acquisition sensor we employ combines the high sensitivity of three
monochrome detectors with the color information from a single red selective detector.

3 Acquisition System

It is clear that a robust nighttime vehicle detection method is essential for the
described advanced lighting systems. Such a system has been introduced into
the market by Gentex [3], however, it is based on a highly specialized image
sensor that limits its usefulness for addressing other driver assistance tasks.
Contrarily, we want to base our solution on a camera which could also be used
for other driver assistance applications addressable by a monocular monochrome
acquisition system, like lane departure warning or traffic sign recognition.

The camera requirements of these applications differ in terms of field of view,
sensitivity and exposure control. For example, traffic sign recognition requires a
wide opening angle, while to control the high beam we require a high resolution
in the far field rather than a wide opening angle. Settings like exposure control
are not a problem since nowadays cameras can work at a high acquisition ratio
accepting changes on such parameters in real–time, thus, each application can
set its own parameters in a way that inside the driver assistance cycle differ-
ent acquired images will be used by different applications. Other parameters,
however, can not be changed in real–time since these are physical properties of
the equipment. Most relevant ones are the lens properties as well as the sensor
sensitivity. Such parameters must be set following a trade–off for all the driver
assistance applications.

To meet the demands of all applications a horizontal opening angle of more
than 40◦ is required. Such an angle makes very challenging to detect far away
taillights. For instance, a taillight with a size of 10×10 cm2 at a distance of more
than 100 m is imaged by less than one pixel on the image sensor. Fortunately,
the emitted light forms a bigger cone so that a taillight at 400 m still hits areas
of about 4 to 10 pixels. However, if with the aim of exploiting color information
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we use an image sensor with a Bayer pattern, such a far away taillight can only
be detected at red pixels, which are only the 25% of the sensor. Accordingly, we
are using a new CMOS image sensor from Aptina Imaging(TM) with a resolution
of 752×480 pixels and a novel pattern that we call clear–red pattern. This sensor
is composed of 2 × 2 blocks having one single red selective detector and three
standard monochrome detectors, which have more sensitivity than color selective
ones and therefore also capture reddish light (Fig. 2). With this new pattern it
is possible to distinguish red lights from white ones, while maintaining high
sensitivity on the pixels without a color filter. It is also worth to mention that
this acquisition system is NIR–free and allows to work with 10 bits per pixel
using a logarithmic curve, which is essential to avoid fully saturated light spots,
i.e., with most of the appearance information lost.

4 Vehicle Detection

Vehicle detection based on vision sensors gives rise to two different problems
depending on whether we are in daytime or nighttime scenarios. At daytime
images there are a number of features available to learn the appearance of a
vehicle pattern [6]. However, it is difficult to reach detection distances beyond
150 m. Fortunately, this is a sufficient detection range for many driver assistance
systems like stop–and–go or automatic cruise control. At nighttime, however,
there are not as many features as at daytime, in fact, vehicles are not seen as a
whole object since only their head and tail lights are perceived (Fig. 3). This lack
of features is a challenge to distinguish mid to far distant vehicle lights from the
own emitted light that is reflected in different infrastructure elements such as
close traffic signs, fences, poles, etc. On the other hand, the fact of detecting the
light emitted by the vehicles rather than the vehicles themselves makes possible
to detect the presence of such targets at distances over 600 m for headlights
and over 400 m for taillights. That detection range is mandatory for engineering
intelligent headlight controllers. The reason is that, for instance, with our high
beams on we could dazzle drivers that are closer than such distances.

Having stated the problem of nighttime vehicle detection, it is also worth to
mention some realistic simplifications we assume:

– Under 70 km/h a lighting distribution similar to low beams is sufficient,
which happens at many urban areas, approaching sharp curves, stops, etc.

– If we find streetlamps at the upper part of the image1 we assume there is a
good illumination and set low beams.

– Near the horizon it is difficult to discern between streetlamps and vehicle
lights. This can be a problem for automatically switching on and off the
high beams. However, our aim is to use an intelligent headlight controller
as the one based on LEDs (Sect. 2). Thus, treating streetlamps near the
horizon as vehicles would only prevent to illuminate a world region that is
too far away but not the area needed with a good visibility for safe driving.

1 The method to detect streetlamps is out of the scope of this paper.
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Fig. 3. Left: oncoming (top) and preceding (bottom) vehicles at a distance over 600 m
and 400 m resp. At such distances the vehicles are near the horizon. Right: typical
scene with oncoming and preceding vehicles as well as reflections from traffic signs.
Oncoming vehicles are closer than 400 m and preceding ones are closer than 200 m.

Fig. 4. Proposed vehicle detection method for nighttime images

Now we focus in the main difficulty, i.e., to distinguish light emitted by other
vehicles from reflections coming from infrastructure elements. Our proposal is
based on both appearance and motion analysis. In this paper, however, we only
focus on appearance, taking into account the following observations:

– The light spots captured by the camera are quite different for close vehicles
than for far away ones.

– The same happens comparing head and tail lights, the former are supposed
to be more intense and white while the latter are dim and reddish.

– For close vehicles the system must react faster than for far away ones.

With all these considerations in mind we have designed the processing method
of Fig. 4. The details of each module are provided in the following.
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4.1 Candidate Selection and Basic Classification

Thresholding and connected component analysis is used to obtain a set of blobs,
the candidates, which must be later classified as vehicles or non–vehicles. It is
worth to mention that the simplicity of this step is crucial for reaching real–time.

We term as blob feature to a single–valued measure that can be obtained by
using image information from only the pixels that form the blob. Early work on
this problem reveals that no single feature is sufficient for distinguishing vehicle
blobs from others. There are some features expected to be especially useful
like the maximum grey level, or some measure of reddishness, but they are not
sufficient. Thus, our approach has been to define a set of potentially useful blob
features and using a learning machine to obtain different classifiers.

Currently we use a set of features of different types: (1) binary (area, cen-
troid, elongation, bounding box covering, main axes, etc.); (2) intensity from
only monochrome pixels (maximum, mean, standard deviation, position of the
maximum inside the blob, histogram skewness, mean gradient magnitude, etc.);
(3) the same from only red pixels; and (4) features that try to provide color
information by different comparisons between monochrome and red pixels (e.g.,
the ratio between the mean of monochrome level and the mean of red level).

In [6] we successfully used a Real–AdaBoost learning machine for daytime
vehicle detection, thus, it has been also our choice for nighttime. Briefly, given
a set of labelled examples and counter–examples, each one described by a set
of features, the Real–Adaboost algorithm provides a discriminative linear rule
for classification. Given the features of a new sample, the rule yields a number
whose sign indicates whether the sample is of the modelled class (+) or not (-),
and whose absolute value acts as a degree of confidence on the classification.

We take into account evident differences in the vehicles’ light class to split its
variability beforehand by building different classifiers: small and non–small blobs
look different, as well as head and tail lights. We denote by Ph,s the small blobs
labelled as headlights, Ph,ns the non–small blobs labelled as headlights. Pt,s

and Pt,ns are the analogous for taillights. Thus, assuming those sets of examples
and being Nh,s,Nh,ns,Nt,s and Nt,ns the corresponding sets of labelled counter–
examples, four classifiers are learned: Ch,s, Ch,ns, Ct,s and Ct,ns.

Now, let’s denote by N the set of all the labelled counter–examples. Since
discriminative machines like Real–Adaboost generalize better by using examples
and counter–examples around the discriminative frontier, for learning Ch,s we
only want to use those counter–examples in N that are actually similar to small
headlights, the set of such counter–examples is what we have previously denoted
as Nh,s. The same applies for Ch,ns with Nh,ns, and so on.

We have devised the following procedure to obtainNh,s,Nh,ns,Nt,s andNt,ns.
First, given the labelled examples, we learn the following classifiers:

– Ch,t,s: by using Ph,s as examples and Pt,s as counter–examples.
– Ch,t,ns: from Ph,ns and Pt,ns.

With Ch,t,s we classify the small blobs included in N as belonging to Nh,s if the
classifier yields a positive value or to Nt,s otherwise. For non–small blobs the
process is analogous, i.e., the classifier Ch,t,ns is used to build Nh,ns and Nt,ns.
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During execution only the four classifiers Ch,s, Ch,ns, Ct,s and Ct,ns are applied
according to the set of features of each blob, then, following a conservative ap-
proach (better a false vehicle than missing a true one) we take the maximum
value of the four outputs. Therefore, at the end of this process each blob has a
classification value assigned: positive values indicate that the blob resembles a
vehicle light and negative values just the opposite. However, since no classifica-
tion process is perfect for doubtful cases, we discretize the classification values
so that they are translated to pre–defined weights. Let c be the classification
value, then the corresponding weight w is assigned following:

ω =

⎧
⎪⎪⎨

⎪⎪⎩

ω+ if c ≥ t+
ω0 if t0 ≤ c < t+
ω− if t− ≤ c < t0
0 if c < t−

, (1)

where the t+, t0 and t− are thresholds that must be set for each classifier, while
the ω+, ω0 and ω− are the corresponding weights that must be also defined for
each classifier. Such weights will be posteriorly used to assign a confidence value
to each blob (Sect. 4.3). Over t+ we are confident about classifying a blob as
vehicle light, and below t− about classifying a blob as non–vehicle light. We
consider the range from t− to t+ as a non conclusive output of the classifier.
From t− to t0 the blob is assumed to be more similar to a non–vehicle light
while from t0 to t− it is assumed to be more similar to a vehicle light.

4.2 Candidate Additional Classification

For those candidates such that the basic classification process has not been
conclusive, i.e., t− ≤ c < t+, we propose the use of additional features such that
are not sufficiently generic as to be part of the basic feature set but that can help
when computable. One example we are currently using are what we call pairing
features. Given a blob, the pairing features provide cues about the presence of a
twin blob. The idea is that most vehicles have left and right head and tail lights,
thus, there are many chances of observing the corresponding two bright spots in
the image. Of course, this is true for vehicles like cars, but not for motorbikes.
Therefore, we can not use such features as part of the basic set.

More specifically, for each blob b a window of a size proportional to its bound-
ing box is placed to its left and to its right. Inside each window (left and right)
we search for other blobs whose centroid is included in the window. When such
a possible twin blob is found, namely bt, some of its basic features are compared
to the ones of b. Each comparison consists in computing a ratio, for instance, the
ratio of the maximum grey levels of b and bt. Such ratios form a set of features
that is appended with others like distance between centroids, absolute maximum
grey value, etc. Currently, all them form a set of features that is used for learning
a classifier with the Real–Adaboost machine. Again, we could define more than
one classifier of this type.

During execution the candidates for which the basic classification is not con-
clusive are submitted to the pairing classification. The new classification result
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is used to modify the weight ω that the blob obtained during the basic classifi-
cation. Currently, our approach consists in the following rule that we have found
quite useful: if the pairing classifier yields a negative value (no twin blob) we do
not modify ω, otherwise this weight is promoted to its upper possibility, i.e.,

ω− −→ ω0 or ω0 −→ ω+ . (2)

4.3 Confidence Assignment

At this stage we assign to each candidate a degree of resemblance to a vehicle
light that we call confidence or just υ. Let Mg be the maximum possible grey
level of the images, and g the maximum grey level reached by a candidate after
normalizing by Mg. Then as confidence for that candidate we propose:

υ = ω × g , (3)

where ω is the weight assigned to the candidate by the classification process,
i.e., following Eq. (1), perhaps rectified by Eq. (2). Thus, we follow the scheme
confidence = classification evidence × physical evidence. Close vehicles are ex-
pected to produce brighter blobs in the image than far away ones. Hence, blobs
classified as vehicle light and corresponding to close vehicles will have a very high
confidence. If the vehicle is further away, the confidence will be high but lower.
A bright blob coming from a reflection can have a not too high confidence if it
is properly classified, and such a confidence will be even lower if the reflection
comes from an infrastructure element which is far away.

4.4 Temporal Coherence Analysis

The current system version assumes no tracking of candidates. Thus, to deter-
mine if the confidence assignments are coherent in time, we propose to use an
accumulation array as well as a state array, namely A and S respectively. In [7]
there is a more detailed description of the algorithm, but here we outline the
main steps. A and S are updated so that we perform a kind of two–dimensional
hysteresis as temporal coherence criterion: A keeps the hysteresis value (ranging
from 0 to a given real number MA) and S the hysteresis states (true or false). At
each frame, the temporal coherence analysis only considers the set of blobs not
fully distrusted by classifiers, i.e., blobs with associated positive confidence. At
first frame we start with <A,S>←<0,False>. For a new frame the temporal
coherence analysis is done following these main ideas:

1. Clean A and S. Let C be the set of coordinates included in the bounding
boxes of the blobs classified as vehicle at previous frame. All the cells of A
out of C are set to 0 and, analogously, in S are set to false.

2. Decrease A. A decay of accumulation is done applying A← max(0,A−d),
where d is a fixed real number that controls the decay ratio: starting at MA,
MA/d steps are required to reach 0. In fact, at different cells of A, d can
take different values out of two possibilities, namely d = dt if the state in S
associated to the cell equals true and d = df otherwise.
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3. Spread A and S. With the aim of actually combining confidences coming
from the same target from frame to frame, the values of A and S are spread
following the expected motion of the targets.

4. Increase A. Let Cb be the set of coordinates that form the blob b, and υb > 0
the blob confidence. Then, we apply the update ACb

← min(ACb
+υb, MA),

where ACb
stands for the cells of A whose coordinates are in Cb.

5. Hysteresis on S. For each valid coordinate (i, j):
– if Ai,j = 0 then we set Si,j ← false ;
– if Ai,j ≥MA/2 then Si,j ← true ;
– if 0 < Ai,j < MA/2 then Si,j does not change its value.

After these steps, for each blob b with υb > 0 we compute the logic or at SCb
,

where SCb
stands for the cells of S whose coordinates are in Cb. If the logic or

yields true then b is classified as vehicle and as non–vehicle otherwise.
The most important step of this method is the spread operation. The basic

idea consists in performing a kind of dilation similar to the one of grey level
mathematical morphology, however, being the structuring element different at
each accumulation cell. The difference accounts for the expected motion of the
different targets in the image space: targets near the horizon stay quite static
from frame to frame while the position of close ones varies more; oncoming
vehicles move fast towards the image bottom while preceding vehicles do not. In
fact, we use a pair <A,S> for blobs that are more similar to headlights than
to taillights and a different pair for the rest, being the pair selected according
to the classifier that had the higher output during the basic classification stage.

4.5 System Settings

Candidate selection. In order not to miss far away targets a low threshold
must be used, but it must not be too low if we do not want to have many
irrelevant blobs that could slow down the processing. Currently we use 30%Mg.

Basic and additional classification. We drove through traffic ways close
to Barcelona recording images. Since we used a standard vehicle, we manually
switched on and off the high beams according to the traffic situation. We covered
highways, secondary roads and city streets, with scenarios of dense traffic, only
a few vehicles and no vehicles at all, and including many types of vehicles, traffic
signs, fences and poles. From such a huge amount of data we labelled about 12000
headlights, 31000 taillights, 18500 traffic signs and 14000 poles/fence reflectors.

Candidate basic classification. After testing several criteria we found suffi-
ciently useful to define small blobs as those with an area lower than 25 pixels.
Equation (1) is set according to the thresholds and weights of Fig. 5Right. These
thresholds have been set so that no samples are wrongly classified in the testing
set (see Sect. 5 for details about this set). For setting the weights we have taken
into account the performance of the classifiers using such thresholds. This per-
formance, shown also in Fig. 5Right, suggests we set the weights trusting a lot
the classifier for non–small headlights, i.e., Ch,ns, followed by Ct,ns, Ch,s and Ct,s,
which confirms that the most challenging targets are far away (small) taillights.
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Fig. 5. Left: classifiers performance according to the sign of their output. Right: set-
tings for Eq. (1) so that no samples of the testing set are wrongly classified. The
performance using these thresholds (t) is still over 90% for non–small blobs, thus, the
associated weights (w) employed for the temporal hysteresis are extreme: 0 for blobs
given as non–vehicle and ≥ 1 for the ones given as vehicle. Small blobs require more
conservative weights, i.e., confirming a blob as vehicle requires a few frames, which is
acceptable because they correspond most often to targets that are far away.

Candidate additional classification. Given the performance of the basic
classifiers (Fig. 5Left), we decided to use just one pairing classifier to reinforce the
classification decision regarding small taillights, i.e., the most difficult targets.

Temporal coherence analysis. We have set MA ← 2, thus, the hysteresis
associated to a cell of an accumulation array reaches the state of true over
MA/2 = 1 and it is not false until reaching the null value again. The decay
control is set as <dt, df >←<45, 15> frames, which means that when a vehicle
disappears our system illuminates the new free area in about 2 s.

5 Results

Currently we are using testing sequences to quantitatively evaluate the per-
formance of both the classifiers alone and the whole system. These sequences
were acquired around Wolfsburg, which implies that the testing set comes from
a different camera and vehicle than the training set. Besides, this vehicle was
progressively using preliminary versions of our vehicle detector to control a head-
light system with variable cut–off line. Thus, in the same images we have lights
from vehicles and reflections from infrastructure elements, something that is not
possible by only turning on the high beams when no other vehicles are present.

In order to evaluate the performance of the classifiers, we labelled a number
of samples from the testing sequences of the same order of magnitude than the
mentioned for training. Using the sign of each classifier output as threshold we
obtain the performance shown in Fig. 5Left. We think such a performance is
quite high since it is over the 90% for both vehicles and non–vehicles, except
for the case of far away (small) taillights where the performance is just slightly
below the 90%. This last case is compensated by the good performance obtained
using the pairing classifier, which we think will be often applicable.
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Regarding the performance of the whole system now we can only provide a
qualitative impression since we are still working in the quantitative analysis,
which requires the labelling of many full sequences. After visually examining
many testing sequences employing the settings explained in Sect. 4.5, the im-
pression we have is that oncoming vehicles are mostly detected in a single frame
if they are at distances under 300 m and in two or three frames otherwise. For
taillights two or three frames are needed at distances under 300 m and three to
five otherwise. Notice that when a vehicle appears the overall reaction time of
the headlight control should be less than half a second. This implies that the
vehicle detection should be within about 200 ms because of the slow actuators in
some headlamps. Then, for a case when five frames are required, we must process
each frame in less than 40 ms. This requirement is satisfied by our current C++
implementation since it takes less than 20 ms using a 2 GHz Pentium Mobile.

6 Conclusion

We have presented a novel proposal for real–time vehicle detection at nighttime,
fulfilling the requirements for an intelligent headlight controller as well as with-
out restricting the incorporation of additional driver assistance applications. The
main challenge is to discern between image spots actually due to vehicle lights
and those coming from reflections in different infrastructure elements. To con-
front that challenge we have used an image sensor with a novel clear–red pattern,
and we have proposed a new classifiers–based architecture and temporal coher-
ence analysis that are able to reach quite high detection rates for very low false
positives ones, in a way that the intelligent headlight controller could react from
one single frame for targets that are clear vehicle lights, or from only a few
frames for targets whose type is more difficult to discern most often because
they are small dim spots. Future work will focus on increasing the classification
performance for such difficult targets investigating the use of new features.
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