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Abstract

We propose an efficient approach for the grouping of local orientations (points on vessels) via nilpotent approximations of

sub-Riemannian distances in the 2D and 3D roto-translation groups SE(2) and SE(3). In our distance approximations we

consider homogeneous norms on nilpotent groups that locally approximate SE(n), and which are obtained via the exponential

and logarithmic map on SE(n). In a qualitative validation we show that the norms provide accurate approximations of the

true sub-Riemannian distances, and we discuss their relations to the fundamental solution of the sub-Laplacian on SE(n). The

quantitative experiments further confirm the accuracy of the approximations. Quantitative results are obtained by evaluating

perceptual grouping performance of retinal blood vessels in 2D images and curves in challenging 3D synthetic volumes. The

results show that (1) sub-Riemannian geometry is essential in achieving top performance and (2) grouping via the fast analytic

approximations performs almost equally, or better, than data-adaptive fast marching approaches on R
n and SE(n).

Keywords Sub-Riemannian geometry · Roto-translation group · SE(2) · SE(3) · Nilpotent approximation · Geodesic vessel

tracking · Perceptual grouping

1 Introduction

In this paper we derive analytic formulas for approximations

of sub-Riemannian distances on the 2D and 3D rotation trans-

lation groups, denoted, respectively, with SE(2) and SE(3).

Additionally, we extend the perceptual grouping algorithm

[13] for clustering of local orientations (points on blood

vessels). Here clustering is based on alignment of local orien-

tations, which is quantified using sub-Riemannian distances

on SE(n); see Fig. 1 for an illustration.

B Erik J. Bekkers
e.j.bekkers@tue.nl

Da Chen
chenda@ceremade.dauphine.fr

Jorg M. Portegies
j.m.portegies@tue.nl

1 Centre for Analysis, Scientific computing and Applications
(CASA), Eindhoven University of Technology, Eindhoven,
The Netherlands

2 CNRS, UMR 7534, CEREMADE, University Paris
Dauphine, PSL Research University, 75016 Paris, France

1.1 Nilpotent Approximation

The sub-Riemannian distances on SE(n) are approximated

via norms on the vectors obtained from the logarithmic map

(from group elements to the Lie algebra). This approach is

motivated by problems from sub-Riemannian geometry in

nilpotent Lie groups, in which such homogenous norms pro-

vide exact fundamental solutions to sub-Laplacians.

The vectors obtained by the logarithmic map, expressed

in a left-invariant basis, are the so-called exponential coordi-

nates of the first kind. For a nilpotent group of step two, like

the Heisenberg group, these coordinates define [together with

a group product defined via the Baker–Campbell–Hausdorf

(BCH) formula] a global isomorphism to the group. In our

SE(n) setting we have to truncate the commutator series

in the BCH formula due to non-vanishing (higher-order)

commutators, yielding a corresponding Heisenberg type

approximation which we denote with (SE(n))0. The obtained

Taylor development of the group product and associated left-

invariant vector fields gives rise to a local approximation of

the (sub-Riemannian) flows on SE(2) in the sense of Roth-

schild and Stein [50].

We then define a norm on (SE(n))0 based on the Folland–

Kaplan–Korányi gauge, which is known for its relation
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Fig. 1 The red and green arrows have equal spatial and angular distance
to the origin (black arrow). In a flat geometry on R

2 × S1 the distance
between the red and green arrow and the source would be equal, and
the geodesics straight lines (see dashed lines). In sub-Riemannian
geometry on SE(2) the green arrow has a shorter distance to the source.
The left image shows 2D projections of the sub-Riemannian geodesics
in solid black, and the right image shows their paths in SE(2) (Color
figure online)

to the fundamental solution of the sub-Laplacian on the

Heisenberg group [29,33,35]. We reason that the Folland–

Kaplan–Korányi provides an accurate approximation to the

fundamental solution on SE(n) as well, as it provides the

exact fundamental solution on the Heisenberg type approx-

imation (SE(n))0. As such, we provide an approach to

approximating the heat kernel and fundamental solution of

the sub-Laplacian on SE(n), as an alternative to the works

[12,22,47].

The distance associated with the Folland–Kaplan–

Korányi-type norm on (SE(n))0 is locally equivalent to the

sub-Riemannian distance on SE(2), as was formally proved

in full generality in the seminal work by Nagel et al. [43]. In

this paper we show by qualitative and quantitative compari-

son that the norm on (SE(n))0 indeed provides a sharp local

approximation of the sub-Riemannian distances on SE(n).

1.2 Perceptual Grouping

The motivation for perceptual grouping of local orientations

comes from problems in medical image analysis in which

the topologically correct reconstruction of vessel (and pul-

monary) trees is of great importance in biomarker research

and surgery planning. Knowing the correct connectivity in

tree structures not only allows for local biomarker analysis

(e.g., studies on bifurcation and crossing properties [37]),

but also allows for higher level biomarker research via statis-

tics on tree structures [28]. Topological knowledge of vessel

trees is also essential in determining artery/vein classification

problems [15,25,26]. Finally, in many medical applications

involving vessel analysis, including topological tree recon-

struction, distances between local orientations play a crucial

role [1,16,27,39,55,57]. The approximate sub-Riemannian

distance in this paper is analytic, fast and easy to implement,

and as such may be a useful tool for algorithms that rely on

local orientation analysis.

Sub-Riemannian models are shown to be effective in

both image processing and in neuropsychological models

for line perception in the primary visual cortex [3,7,12,20,

27,40,45,48,51,53]. In this paper we indeed observe by quan-

titative validation of automatic connectivity analysis that

sub-Riemannian distances are preferred over their (full) Rie-

mannian counter parts.

The approach taken in this paper for doing connectivity

analysis is based on the perceptual grouping algorithm pro-

posed by Cohen [13]. This algorithm turns a set of key points

into a graph by iteratively adding edges between nodes based

on their geodesic distances while putting constraints on the

number of connections per node. The input set of key points

may be obtained via key point tracking algorithms [5,10,34],

as is done also in this paper; see Fig. 2.

In [13] an isotropic metric was used to define the geodesic

distances. Later, the perceptual grouping algorithm was

adapted for use with anisotropic Riemannian metrics by

Bougleux et al. [8]. In recent work [11] it was further

extended for the grouping of n closed contours for an a priori

n. There, a (sub-)Finsler metric on position orientation space

was used, similar to the sub-Riemannian metric used in this

paper. As in [8] and [11] we use the main algorithm of [13]

as a backbone, but we change the metric used for perceptual

Fig. 2 The pipeline for grouping vessel segments consists of 2 steps.
First, key points are generated (from a single source point) using
minimal path tracking with key points [5]. Second, the automatically
generated key points, with estimated orientations, are grouped based on

an adaption of the perceptual grouping algorithm [13] with the use of
sub-Riemannian distances on SE(2). The result on the right is obtained
with the nilpotent approximations of the sub-Riemannian distances in
SE(2)
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grouping and we impose an additional constraint to avoid

closed loops (which are physically not realistic in the vessel

networks of interest).

With quantitative experiments we show that perceptual

grouping with sub-Riemannian distances on SE(n) is pre-

ferred over the use of (full) Riemannian distances on SE(n),

which is in turn preferred over grouping with distances on R
n .

Furthermore, the analytic approximations allow for fast per-

ceptual grouping with competitive performance compared to

data-adaptive sub-Riemannian distances computed via fast

marching.

1.3 Paper Outline

In Sects. 2 and 3 we derive approximations for sub-

Riemannian distances in, respectively, SE(2) and SE(3).

There, for each Lie group we first provide the preliminaries,

then define the sub-Riemannian distance and then describe

the proposed approximations. In Sect. 4 the algorithms (per-

ceptual grouping, fast marching and key point tracking) are

described, including an overview of the different distances

used in this paper. In Sect. 5 we then compare the perfor-

mance of the perceptual grouping algorithm using different

distances, first on R
2 and SE(2) in Sect. 5.1, and then on R

3

and SE(3) in Sect. 5.2. General conclusions are provided in

Sect. 6.

2 Sub-Riemannian Distance and its
Approximation in SE(2)

2.1 The Lie Group SE(2)

2.1.1 SE(2)

In order to measure distances between local orientations we

will consider the Lie group SE(2) as our base manifold. The

group SE(2) = R
2
⋊ SO(2) is the semi-direct product of the

group of planar translations R
2 and rotations SO(2), and its

group product and inverse are, respectively, defined via:

g · g′ = (x, Rθ ) · (x′, Rθ ′) = (Rθ x′ + x, Rθ+θ ′),

g−1 =
(

−R−1
θ x, R−1

θ

)

, (1)

with group elements g, g′ ∈ SE(2). The group acts on the

(coupled) space of positions and orientations R
2

⋊ S1 via

g · (x′, θ ′) = (Rθx′ + x, θ + θ ′).

Since (x, Rθ ) · (0, 0) = (x, θ), we can uniquely identify the

roto-translation group SE(2) with the space of positions and

orientations R
2

⋊ S1.

2.1.2 The Lie Algebra, Exponential Map and Commutators

The Lie algebra associated with SE(2) is the real vector space

se(2) = span{A1, A2, A3} together with a bilinear operator

[·, ·] : se(2) × se(2) → se(2) called the Lie bracket (which

we define in Eq. (4)). The generators of the Lie algebra are

given by the differential frame {∂θ , ∂x , ∂y}
∣

∣

(0,0,0)
at the origin

A1 = ∂θ |(0,0,0) , A2 = ∂x |(0,0,0) , A3 = ∂y

∣

∣

(0,0,0)
, (2)

which define corresponding left-invariant vector fields

A1|g = (Lg)∗ A1 = ∂θ |g ,

A2|g = (Lg)∗ A2 = cos θ ∂x |g + sin θ ∂y

∣

∣

g
,

A3|g = (Lg)∗ A3 = − sin θ ∂x |g + cos θ ∂y

∣

∣

g

(3)

via the push forward of left multiplication, denoted by (Lg)∗,

and with g = (x, y, θ) ∈ SE(2).

The exponential map Exp : se(2) → SE(2) defines a

mapping from a vector X ∈ se(2) in the tangent space at

g = (0, 0, 0) to an element in the group SE(2) by following

an integral curve along the left-invariant vector field (Lg)∗ X .

The logarithmic map Log : SE(2) → se(2) defines the map-

ping from group element to tangent vector at g = (0, 0, 0).

The Lie bracket for vector fields is defined as follows

[X , Y ] := lim
t→0

γ (t) − e

t2
, with

γ (t) = Exp(−tY ) Exp(−t X) Exp(tY ) Exp(t X).

(4)

That is, it describes the infinitesimal displacement by follow-

ing a path moving forth and back in X and Y directions. The

Lie bracket of two vectors defines a new vector (the commu-

tator) and the Lie bracket of two vector fields defines a new

vector field. The nonzero commutators of se(2) are

[A1, A2] = −[A2, A1] = A3,

[A1, A3] = −[A3, A1] = −A2.
(5)

2.2 Sub-Riemannian Geometry in SE(2)

We consider a sub-Riemannian geometry on SE(2) by mea-

suring distances between two points in SE(2) via the lengths

of shortest horizontal paths. A horizontal path is a curve γ :

[t0, t1] ⊂ R → SE(2) with tangent vectors γ̇ (t) ∈ Δ|γ (t) :=

span{A1|γ (t) , A2|γ (t)}, where Δ denotes the sub-bundle of

the full tangent bundle T (SE(2)) := span{A1,A2,A3}.

Lengths of horizontal curves with γ̇ (t) = u1(t) A1|γ (t) +

u2(t) A2|γ (t) are measured by the sub-Riemannian metric
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tensor1

Gξ,C
∣

∣

∣

γ (t)
(γ̇ (t), γ̇ (t)) := C(γ (t))2(|u1(t)|2 + ξ |u2(t)|2),

(6)

in which C : SE(2) → R
+ is an external cost which penal-

izes the curves to move through certain regions in SE(2), ξ

is a parameter which balances the penalty of motion in the

angular and spatial directions and has dimensions [1/length],

and u1 and u2 are the control parameters of the curve γ .

The sub-Riemannian distances between two points g1, g2

∈ SE(2) is then given by

d0(g1, g2) := inf

{∫ 1

0

√

Gξ,C
∣

∣

γ (t)
(γ̇ (t), γ̇ (t))dt

}

, (7)

where the infimum is taken over by Lipschitz continuous

curves γ ∈ Lip([0, T ], SE(2)) with γ (0) = g1, γ (1) = g2

and γ̇ (t) = u1(t) A1|γ (t) + u2(t) A2|γ (t). Note that due to

the inclusion of an external cost function C the distance d is

not strictly left-invariant; however, when substituting C by

Cg := C(g−1h) in (7) we do have left invariance (i.e., then

d(g · g1, g · g2) = d(g1, g2)).

2.3 A Nilpotent Approximation (SE(2))0 of SE(2)

2.3.1 A Local Approximation via the

Baker–Campbell–Hausdorff Formula

Consider the exponential map from Lie algebra se(2) to the

group SE(2)

(c1, c2, c3) �→ (x, y, θ) = Exp(c1 A1 + c2 A2 + c3 A3), (8)

with {Ai }
3
i=1 the basis vectors of se(2) given in (2), and with

(c1, c2, c3) the canonical coordinates of the first kind given

by

c1 = θ, c2 =

{

1
2θ

(

y + x cot θ
2

)

if θ �= 0

x if θ = 0
,

c3 =

{

1
2θ

(

−x + y cot θ
2

)

if θ �= 0

y if θ = 0
.

(9)

For two left-invariant vector fields X =
∑3

i=1 x iAi and Y =
∑3

i=1 yiAi the Baker–Campbell–Hausdorff (BCH) formula

(see, e.g., [49]) gives:

1 Due to the fact the metric tensor is degenerate in the A3 direction
(tangent vectors are always contained within Δ) it is not possible to
represent the metric tensor in a standard form as an invertible symmet-
ric 3×3 matrix. This is, however, possible when including an additional
term ǫ−2ξ2|u3|2(t) after which the tensor becomes (anisotropic) Rie-
mannian [12,52]. This Riemannian approximation converges to the
sub-Riemannian tensor when ǫ → 0 [9, App. A] and [24, Thm. 2].

Log(Exp(X) Exp(Y )) = X + Y +
1

2
[X , Y ]

+
1

12
([X , [X , Y ]] + [Y , [Y , X ]])

+O([·, [·, [·, ·]]]), (10)

where O([·, [·, [·, ·]]]) denotes higher-order nested brackets.

Since the Lie algebra se(2) is not nilpotent it has non-

vanishing Lie brackets of order ≥ 2 [cf. the commutator

relations in (5)] the BCH formula gives an infinite series of

nested Lie brackets.

Here, we approximate the BCH formula SE(2) as2

Log(Exp(X) Exp(Y )) ≈ X + Y +
1

2
[X , Y ], (11)

by omitting the Lie brackets of order 2 (once nested brackets)

and higher, as if our Lie algebra se(2) is nilpotent of step 2.

Then, together with the commutator relations [Ai , Ai ] = 0,

A3 = [A1, A2], and again omitting Lie brackets of order

2 (i.e., setting [A1, A3] = [A1, [A1, A2]] = 0), the BCH

formula defines a group product on the vector space R
3 of

the canonical coordinates of the first kind via

(x1, x2, x3) · (y1, y2, y3)

=

(

x1 + y1, x2 + y2, x3 + y3 +
1

2
(x1 y2 − x2 y1)

)

.

(12)

The new group product (12), where the elements are

expressed in coordinates of the first kind [cf. Eq. (8)], gives

rise to a nilpotent Heisenberg group. It is a local3 approxi-

mation of the true group product g1 ·g2 = Exp(
∑3

i=1 x i Ai ) ·

Exp(
∑3

i=1 yi Ai ) given by (1). We denote this group by

(SE(2))0 = H(3), with H(3) the three-dimensional (nilpo-

tent) Heisenberg group. Note that if (x1, x2, x3) and

(y1, y2, y3) were coordinates of the first kind for a group

with a step 2 nilpotent algebra, then this new group would be

globally isomorphic to that group. The new group (SE(2))0

defines a homogeneous Carnot group with respect to the dila-

tions

δs(c) = (s c1, s c2, s2 c3). (13)

2.3.2 Homogeneous Norms on (SE(2))0 and the

Fundamental Solution of the Sub-Laplacian

In our approximation of the sub-Riemannian distance d0 of

Eq. (7) we make use of the following homogenous norm on

2 Note that such approximations of the BCH formula were already
introduced in [43, Thm. 2.22] in the general setting by Nagel et al. [43].
3 With g1, g2 ∈ SE(2) chosen close enough such that higher-order
terms in (10) can be neglected.
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(SE(2))0:

‖c‖ζ :=
4
√

(|c1|2 + |c2|2)2 + ζ |c3|2, (14)

with constant ζ > 0 a relative penalty for the non-horizontal

part. For ζ = 16 this norm coincides with the well-known

Folland–Kaplan–Korányi gauge, which is a widely studied

norm on Carnot groups due to its relation to fundamental

solutions of sub-Laplacians [6]: Folland found that ‖c‖
2−Q
16 ,

with homogeneous dimensions Q, is (a constant multiple of)

the fundamental solution of the canonical sub-Laplacian on

the Heisenberg group [29]; Kaplan showed that this rela-

tion more generally holds for H-type (Carnot) groups [33];

Korányi derived many more of its properties in relation to

harmonic analysis and potential theory [35].

In relation to sub-Riemannian geometry on SE(2) and its

sub-Laplacian L := A2
1 + A2

2, we find that the fundamental

solution Γ of L can be approximated by the (explicit) funda-

mental solution of the canonical sub-Laplacian L0 := X 2
1 +

X 2
2 , with Jacobian basis X1 = ∂c1 + c2

2 ∂c3 , X2 = ∂c2 − c1

2 ∂c3

on (SE(2))0. This solution in fact coincides with one of

the approximations of Γ found by Duits and Franken [22].

There, the fundamental solution of L was first approximated

by relying on a contraction of SE(2) to a three-dimensional

Heisenberg group (via dilations on the group SE(2)) and then

derived the Gaussian estimates based on the homogeneous

norm ‖·‖1, i.e., ζ = 1, with exponential coordinates derived

from the contraction.

In our study on the sub-Riemannian distance approxima-

tions we found that even sharper estimates could be obtained

by relying on the explicit formula for the fundamental solu-

tion of the (Kohn) sub-Laplacian on H(3) (which is up to a

constant given by ‖c‖−2
16 ). In this context we thus obtain an

estimate of the fundamental solution of L by estimating it

with ‖c‖−2
16 , which is proportional to the exact fundamental

solution of L0 on our approximated group (SE(2))0.

2.3.3 Approximation of the Sub-Riemannian Distance

Finally we arrive at the sub-Riemannian distance approx-

imations. By the Ball–Box theorem (see, e.g., [4]) and

equivalence of homogeneous norms, there exists a constant

c such that

c
−1‖Log(g)‖ζ ≤ d0(e, g) ≤ c‖Log(g)‖ζ ,

with Log(g) defined by Eq. (9). The logarithmic norm is

locally equivalent to the sub-Riemannian distance, which was

proved in full generality in [43, Thm. 2 and 4]. Via a scaling

of the generators Ã2 = ξ−1 A2 and Ã3 = ξ−1 A3 we define

the ξ -isotropic norm

‖c‖ξ,ζ :=
4
√

(|c1|2 + |c̃2|2)2 + ζ |c̃3|2

=
4
√

(|c1|2 + ξ2|c2|2)2 + ζ ξ2|c3|2, (15)

with c̃2 = ξc2 and c̃3 = ξc3, and the ci given in (9). The

norm ‖·‖ξ,ζ closely approximates the sub-Riemannian dis-

tance d0(e, ·) for C = 1 (no data adaptivity) via

d0(g, h) ≈ | Log(g−1h)|ξ,ζ , | Log(g)|ξ,ζ := ‖c‖ξ,ζ (16)

with c the coordinates of the first kind obtained via (9). In

view of the Folland–Kaplan–Korányi gauge setting ζ = 16

in ‖·‖ξ,ζ would be a sensible choice. We do observe, however,

that ζ = 44 gives an even sharper approximation; see Fig. 3

for a visual comparison to the sub-Riemannian distance d0

and “Appendix A” for a quantitative comparison. The setting

ζ = 44 is used in all experiments on SE(2).

3 Sub-Riemannian Distance and Its
Approximation in SE(3)

In this section we extend the concepts of the previous section

to the group SE(3) of 3D translations and rotations. In the end

we again obtain an approximation for the sub-Riemannian

distance, which allows us to do perceptual grouping in 3D

images as well.

3.1 The Lie Group SE(3)

3.1.1 SE(3)

The Lie group SE(3) = R
3
⋊ SO(3) is the semi-direct prod-

uct of the group of 3D translations R
3 and the group of 3D

rotations SO(3). The group product and inverse for elements

g = (x, R), g′ = (x′, R′) ∈ SE(3) are defined by

g · g′ = (x, R) · (x′, R′) = (x + Rx′, RR′),

g−1 = (−R−1x, R−1). (17)

In the 3D case, we define the space of coupled positions and

orientations as a Lie group quotient of SE(3):

R
3

⋊ S2 := SE(3)/(0 × SO(2)).

The group action of g ∈ SE(3) onto (y, n) ∈ R
3 × S2 is

defined by

g · (y, n) = (x, R) · (y, n) = (x + Ry, Rn).

We can identify the element (x, n) ∈ R
3 × S2 with group

elements (x, Rn) ∈ SE(3)/(0 × SO(2)), where Rn is any

rotation matrix such that Rnez = n.
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Fig. 3 Distances on SE(2) for ξ = 1, C = 1. Top row: level sets of the
distance volumes on SE(2). Bottom row: minimum intensity projec-
tions of the distances to the plane R

2 with level set contours. From left
to right: the sub-Riemannian distance d0(e, ·), see Eq. (7); Homogenous

norms ‖·‖ξ,ζ , see Eq. (15), of the nilpotent approximation (SE(2))0 for,
respectively, ζ = 44, ζ = 16 (Folland–Kaplan–Korányi gauge) and
c = ζ ; The (ξ -isotropic) Riemannian distance d1(e, ·) on SE(2), see
Table 1 for an overview of the different distances

3.1.2 The Lie Algebra, Exponential Map and Commutators

Analogously as in the SE(2) case, we associate with the group

SE(3) the Lie algebra se(3) using the exponential and loga-

rithmic maps. This is most easily done using an isomorphism

with the corresponding matrix group:

(x, Rγ,β,α) ↔

(

Rγ,β,α xT

0 1

)

.

A basis for the corresponding matrix Lie algebra is given by

X1 =

⎛

⎜

⎜

⎝

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

⎞

⎟

⎟

⎠

, X2 =

⎛

⎜

⎜

⎝

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

⎞

⎟

⎟

⎠

,

X3 =

⎛

⎜

⎜

⎝

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

⎞

⎟

⎟

⎠

, X4 =

⎛

⎜

⎜

⎝

0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

⎞

⎟

⎟

⎠

,

X5 =

⎛

⎜

⎜

⎝

0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

⎞

⎟

⎟

⎠

, X6 =

⎛

⎜

⎜

⎝

0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

⎞

⎟

⎟

⎠

,

(18)

and their equivalents Ai in the tangent space of SE(3) span

the Lie algebra se(3). Since it will be clear from the context if

we are in the SE(2) or SE(3) case, we use the same notation

for the generators of the Lie algebra as previously. Now the

left-invariant vector fields are again obtained using the push

forward of the left multiplication (Lg)
∗, but they depend on

the choice of coordinates. In this paper we mostly rely on

ZYZ Euler angles in the parameterization of SO(3), i.e.,

Rγ,β,α = Rez ,γ Rey ,βRez ,α, (19)

with Rn,α a rotation with angle α around n. Then, the left-

invariant vector fields are given by

A1|g = (cos α cos β cos γ − sin α sin γ )∂x

+ (sin α cos γ + cos α cos β sin γ )∂y − cos α sin β∂z

A2|g = (− sin α cos β cos γ − cos α sin γ )∂x

+ (cos α cos γ − sin α cos β sin γ )∂y + sin α sin β∂z,

A3|g = sin β cos γ ∂x + sin β sin γ ∂y + cos β∂z

A4|g = cos α cot β∂α + sin α∂β −
cos α

sin β
∂γ ,

A5|g = − sin α cot β∂α + cos α∂β +
sin α

sin β
∂γ

A6|g = ∂α, (20)

for β �= 0, π .
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Remark 1 A second coordinate chart is needed to cover the

entire SO(3), for which, for example, ZYX angles can be

used, as is done in, e.g., [23], where also the expressions for

the vector fields in this alternative coordinate chart are given.

In fact, the basis elements Ai of the Lie algebra correspond

to partial derivatives with respect to the ZYX angles, similar

to the SE(2)-case.

We can express each element se(3) in terms of the basis

with coefficients c = (c1, . . . , c6)T . Furthermore, we define

c(1) := (c1, c2, c3)T and c(2) := (c4, c5, c6)T , the spatial and

rotational coefficients, respectively. We can make the expo-

nential map ExpSE(3) : se(3) → SE(3) and logarithmic map

LogSE(3) : SE(3) → se(3) explicit using these coefficients.

For a 3 × 3 matrix � of the form

� :=

⎛

⎝

0 −c6 c5

c6 0 −c4

−c5 c4 0

⎞

⎠ , (21)

we obtain a rotation using the exponential map of matrices,

i.e., R = exp(�). The relation between the spatial coeffi-

cients c(1) and (x, R) is given by

c(1) =

(

I −
1

2
� + q−2

(

1 −
q

2
cot

(q

2

))

(�)2

)

x, (22)

where q = ||c(2)|| and � such that R = exp(�). Now

LogSE(3)(g) =

6
∑

i=1

ci (g)Ai , and

ExpSE(3)

(

6
∑

i=1

ci (g)Ai

)

= g,

(23)

using the relations above.

3.2 Sub-Riemannian Geometry in SE(3)

In the SE(3) case, a horizontal path is a curve γ :

R → SE(3) with tangent vectors γ̇ (t) ∈ Δ|γ (t) :=

span{A3|γ (t) , A4|γ (t) , A5|γ (t)}, where Δ is now the sub-

bundle of full tangent bundle spanned by {Ai }
6
i=1. In this

case we have one spatial control u3 and two “angular” con-

trols u4 and u5, so that the sub-Riemannian metric tensor

becomes:

Gξ,C
∣

∣

γ (t)
(γ̇ (t), γ̇ (t)) := C(γ (t))2

(

ξ |u3(t)|2

+ |u4(t)|2 + |u5(t)|2
)

,
(24)

The sub-Riemannian distance between two elements

g1, g2 ∈ SE(3) is still defined as in (7), but now the

infimum is taken over Lipschitz continuous curves γ ∈

Lip([0, T ], SE(3)) with γ (0) = g1, γ (1) = g2 and γ̇ (t) =

u3(t) A3|γ (t) + u4(t) A4|γ (t) + u5(t) A5|γ (t).

3.3 A Nilpotent Approximation (SE(3))0 of SE(3) and
the Approximated Sub-Riemannian Distance

It is important to realize that the logarithmic map is only

well defined on the group SE(3) and not on the quotient

R
3
⋊S2, i.e., different choices forα in the rotational part result

in different values for the coefficients ci . Here, we choose

the approach of [46] and set α = −γ such that expected

symmetries are preserved. With that choice the logarithm

(23) gives for each (x, n) ∈ R ⋊ S2 a unique vector c, on

which we can put a norm:

| LogSE(3)(g)|ξ,ζ := ||c||ξ,ζ

:=
4

√

(ξ2|c3|2 + |c4|2 + |c5|2)2 + ζ (ξ2(|c1|2 + |c2|2) + |c6|2),

(25)

where c = c(g) according to (23).

Also here, the Folland–Kaplan–Korányi-type norm can be

used to approximate the fundamental solutions of the sub-

Laplacian on SE(3). The norm ||c||ξ,ζ with ζ = 1 was, for

example, used in [23] approximations of the heat kernel and

the fundamental solution on SE(3), of which only recently

exact solutions were found in [47]. In the context of this paper

we can approximate the exact solutions of the sub-Laplacian

on SE(3) by ‖c‖
2−Q
1,16 , with homogeneous dimensions Q = 9,

as the exact solution of the sub-Laplacian on the approx-

imation group (SE(3))0. The group (SE(3))0 that locally

approximates SE(3) is again obtained via a nilpotent step

2 approximation of the BCH formula and is defined by the

group product

(x1, x2, x3, x4, x5, x6) · (y1, y2, y3, y4, y5, y6)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1 + y1 + 1
2 (x5 y3 − x3 y5)

x2 + y2 + 1
2 (x3 y4 − x4 y3)

x3 + y3

x4 + y4

x5 + y5

x6 + y6 + 1
2 (x4 y5 − x5 y4)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

T

, (26)

with x i , yi coordinates of the first kind given by the logarith-

mic map (22). This new group is a free-nilpotent group of

rank 3 and step 2.

We approximate the sub-Riemannian distance d0 on SE(3)

via the norm (25). That is,

d0(g, h) ≈ | LogSE(3)(g
−1h)|ξ,ζ , (27)
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Fig. 4 Distances on SE(3) for ξ = .1, C = 1, with the origin placed
at e = (0, ex ). Top row: Level sets of the spatial projections (minimum
intensity projections over S2) of the distance volumes on SE(3). Rows
two to four: glyph visualizations in which each distance volume d is

visualized with a “Gaussian” density U (g) = e−d(e,g)2
. For an inter-

pretation of the glyphs see Remark 2. Row two: glyph visualizations of
sub-volume. Row three: glyph visualization of slice at z = 0. Row four:

zoomed in glyph visualization of the slice a z = 0. From left to right:
the sub-Riemannian distance d0(e, ·) on SE(3); see Eqs. (7) and (24);
homogenous norms ‖·‖ξ,ζ , see Eq. (25), of the nilpotent approximation
(SE(3))0 for, respectively, ζ = 100, ζ = 16 (Folland–Kaplan–Korányi
gauge) and ζ = 1; the (ξ -isotropic) Riemannian distance d1(e, ·) on
SE(3); see Table 1 for an overview of the different distances

and as such again obtain an approximation of the distance in

the sense of Rothschild and Stein [50]. Based on the quan-

titative comparison to the sub-Riemannian distances d0 in

“Appendix A” and the visualizations in Fig. 4 of the level

sets we conclude that the approximated sub-Riemannian

distance of (27) quite accurately approximates the true sub-

Riemannian distance on SE(3). In our analysis we found that

the logarithmic norm with ζ = 100 gave the best approxima-

tion, and as such we used this norm in the perceptual grouping

experiments of Sec. 5.2.

Remark 2 The glyph at each grid point y in Fig. 4 is given

by the surface {y + νU (y, n)n|n ∈ S2}, for a specific choice

ν > 0, and with density U : R
3 × S2 → R

+. The color

of each orientation n = (n1, n2, n3) ∈ S2 on the glyph is

defined by the RGB color (n1, n2, n3).

4 Perceptual Grouping, Fast Marching and
Key Point Tracking

In this section the algorithms used in this paper are explained.

Our main application of interest is that of grouping/clustering

of points on blood vessels via the perceptual grouping

algorithm, which is explained in Sect. 4.1. The perceptual

grouping algorithm takes as input a set of key points that are

obtained via the minimal path tracking with key points algo-

rithm [5], explained in Sect. 4.3, which is an adaptation of

the fast marching algorithm, explained in Sect. 4.2. Finally

since different metrics are used throughout the experiments

(both for generating key points and for perceptual grouping)

we end this section with an overview of the used metrics in

this paper in Sect. 4.4.
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4.1 The Perceptual Grouping Algorithm

The perceptual grouping algorithm presented in this paper is

a modification of the original algorithm proposed by Cohen

[13], and which was later adapted for perceptual grouping

based on anisotropic distances [8]. In recent work [11], the

perceptual grouping algorithm was extended for the grouping

of n closed contours for an a priori specified n. Like in [8]

and [11], we use the main algorithm of [13] as a backbone,

but we change the metric used for perceptual grouping and

we impose an additional constraint to avoid closed loops

(which are physically not realistic in the vessel networks of

interest). Our adapted perceptual grouping algorithm is given

in pseudo-code in Algorithm 1.

input : S: a set of key points;
d(gi , g j ): distances between gi , g j ∈ S;
smax : max spatial length of geodesics;

variables: D̃S : set of possible edges;
δi : node degree of xi ;

output : DS : final set of edges;

Initialization:
Compute the distances d(gi , g j ) (and corresponding geodesics)
between all key points gi , g j ∈ S.

Initialize D̃S with the set of all edges between each gi , g j ∈ S

whose connecting geodesic has spatial arc length smaller then
smax , and set DS = Ø.

Main algorithm:
while D̃S �= Ø do

1. Select edge and remove it from D̃S :
(gi , g j ) ← argmin

(g,h)∈D̃S

d(g, h);

D̃S = D̃S − (xi , x j );
2. Check topology and update network:

if δi < 2 and δ j < 2 and gi , gi are not
already in the same subgraph in DS

then DS = DS + (gi , g j );
δi = δi + 1;

end

Algorithm 1: Perceptual grouping.

The goal of the perceptual grouping algorithm is to con-

struct a graph out of a set S of points of interest in which the

edges DS are true connections (represented by geodesics)

between points. Following the terminology of [5,10,17] we

will refer to the points of interest as key points. Each key

point is only linked to at most 2 other key points (i.e., node

degree δi is 2 at most). The final graph thus only contains

sets of non-bifurcating vessel segments. The graph is build

up by inserting one by one the edges which have the short-

est geodesic distance (if the node degree allows). As such,

only the strongest connections (shortest geodesics) appear

in the final graph network. Since the original algorithm in

[13] (and also [8]) does not include a mechanism to avoid

closed loops we include an additional check in the main algo-

rithm to prevent this. Finally, in order to avoid connecting key

points which are too far apart from each other we only con-

sider edges of which the spatial arc length of the connecting

geodesic does not exceed a certain a priori threshold smax .

In summary our changes relative to the works [8,11,13]

are that we

– keep the choice for distance d(xi , x j ) open. In our

experiments the distances d will be mainly based on sub-

Riemannian geometry in SE(n).

– explicitly avoid making long distance connections by fil-

tering out such possible connections in an initialization

step.

– avoid closed loops by not making connections between

nodes that belong to the same subgraph.

– group crossing lines without pre-specifying the number

of groups.

In particular, it is the use of a sub-Riemannian metric on

SE(n) that allows for the grouping of crossing lines. A first

(successful) feasibility study on the possibility of percep-

tual grouping of crossing lines was performed by Chen et al.

[11] using a (sub-)Finsler metric (based on the Euler elastica

model) on position orientation space. There it was success-

fully demonstrated on phantom images that their algorithm

is able to deal with crossing closed contours; however, it

required specification of the number of contours (which is not

always a priori known). Furthermore, their metric relies on

a notion of directionality (instead of just orientations) which

is useful in grouping closed contours, but may be disadvan-

tages for grouping non-closed contours. Here, we focus on

the grouping of non-closed crossing contours without speci-

fying the number of contours. Furthermore, we quantify the

performance of perceptual grouping of crossing lines on a

large set of both retinal images in 2D, and phantom images

in 3D.

4.2 Fast Marching

Most of the distances (except for the fast analytic approxima-

tions) and the geodesics used in this paper are computed via

the fast marching algorithm, which is an efficient numerical

solver of the eikonal equation and which can be used to obtain

globally optimal geodesics [14]. Let g0 be an arbitrary source

point in a domain M of interest, let G|g : Tg(M)×Tg(M) →

R
+ be a metric tensor defined on the tangent space Tg(M) at

g ∈ M, and let

U (g) := d(g0, g) = inf
γ∈S(g0,g)

∫ 1

0

√

G|γ (t) (γ̇ (t), γ̇ (t))dt

(28)
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its associated distance map, where the infimum is taken over

the set S(g0, g) of Lipschitz continuous curves with γ (0) =

g0, γ (1) = g, and with γ̇ (t) ∈ Tγ (t)(M). Then the distance

map U is the unique viscosity solution of the eikonal equation

{√

G
(

∇GU (g),∇GU (g)
)

= 1,

U (g0) = 0,
↔

{

‖∇GU (g)‖G = 1,

U (g0) = 0,

(29)

with ∇G := G−1dU the intrinsic gradient with inverse

metric G−1 and dU the differential of U , and ‖·‖G the

norm with respect to the metric tensor. In the standard

(data-adaptive) Euclidean case with M = R
2, g0 = 0,

g = x, γ̇ (t) = u1(t)∂x + u2(t)∂y ∈ Tγ (t)(R
2), and

with G|γ (t)(γ̇ (t), γ̇ (t)) = C(γ (t))2(|u1(t)|2 + |u2(t)|2) the

eikonal equation is given by ‖∇U (x)‖ = C(x).

The fast marching algorithm efficiently solves the eikonal

equation in a one pass algorithm. It computes the values of

U in increasing order [starting with U (g0) = 0] based on the

Bellman principle of optimality, in a manner very similar to

the Dijkstra algorithm for shortest paths on graphs [18]. The

minimal geodesic connecting g0 with g is then obtained via

a gradient descent on U from g back to the origin g0, i.e.,

solving the ODE

{

γ̇ (t) ∝ −G−1dU (γ (t)),

γ (0) = g0.

For details on the fast marching algorithm on isotropic man-

ifolds we refer to [54,56], to [32,41] for anisotropic fast

marching, and to [52] and [24] for fast marching in sub-

Riemannian manifolds in SE(2) and SE(3), respectively.

4.3 Generating Key Points

The key point method is based on keeping track of a spa-

tial arc length map Ul (in which the spatial lengths of the

minimizing geodesics γ defining U are stored) and stops as

soon as a certain distance threshold is passed [17]. The ratio-

nale behind this algorithm is that among all points with equal

geodesic distance values U , the points reached by geodesics

γ that best follow the data (paths along which C is low)

have maximum spatial distance l(γ ). Such a point maximiz-

ing spatial distance in a given level set in U is called a key

point. The fast marching algorithm is highly suited for keep-

ing track of a spatial arc length map Ul , in addition to U ,

due to the local updating approach (wavefront propagation).

Moreover, the algorithm can stop early if one is only inter-

ested in finding the first key point with length larger than lmax

[17].

In summary a key point is detected as follows. The spatial

arc length map is defined as

Ul(g) := l(γg0,g), (30)

with γg0,g = argmin
γ∈S(g0,g)

∫ 1
0

√

G|γ (t) (γ̇ (t), γ̇ (t))dt the mini-

mizing geodesic in (28), and with

l(γ ) =

∫ 1

0
‖ẋ(t)‖dt (31)

the spatial arc length of γ , with ẋ(t) = PRn γ̇ (t) ∈ R
n the

spatial components of the tangents γ̇ (t).4 The fast marching

algorithm stops as soon as there is a g for which Ul(g) ≥

lmax , and g will be called a key point.

With the above criteria one can iteratively detect new key

points based on geodesic distances to previously found key

points, a method known as minimal path tracking with key

point detection [5]. One can make several choice on when to

stop the key point tracking algorithm [5,10,34]. In this work

we rely on the approach by Chen et al. [10], where we only

add key points on locations which lie in a masked region (we

use a binary vessel centerline mask m : M → {0, 1}), i.e., we

only add a key point when both Ul(g) ≥ lmax and m(g) = 1.

The algorithm is stopped as soon Ul(g) ≥ 3 lmax .

4.4 Overview of Distances Used in this Paper

Table 1 gives an overview of the different distances discussed

in this paper and used in the experiments. The isotropic

Euclidean metrics are used the generate key points in R
2

and R
3 using the algorithm of Subsec. 4.3. The isotropic

Euclidean distances are also used in comparison to the other

distances on SE(n) in the perceptual grouping experiments.

The sub-Riemannian distances on SE(2) and SE(3) are

explained, respectively, in Sects. 2.2 and 3.2. In the Rieman-

nian distances the full tangent bundle on SE(n) is considered.

This means that now also non-horizontal curves in SE(n)

are considered, i.e., points on the curves γ are allowed to

move sideways by the non-horizontal controls u3(t) in the

SE(n) case, and u1(t), u2(t) in the SE(3) case. Recall that

in this case the blue and red oriented particles in Fig. 1 do

have the same distance to the source (black arrow). Finally,

the sub-Riemannian distance approximations, denoted by

| LogSE(n)(g
−1h)|ξ,ζ , are discussed and defined in, respec-

tively, Sect. 2.3 and Eq. (16) for SE(2) and Sect. 3.3 and

Eq. (25) for SE(3).

4.4.1 The Cost C

The cost functions C are constructed from functions U f :

R
n × Sn−1 → R on the orientation-lifted space. These func-

4 In the lifted problem SE(2) the spatial components are, for example,
given by ẋ(t) = u2(t)A2|γ (t) + u3(t)A3|γ (t), and in the SE(3) case

ẋ(t) = u1(t)A1|γ (t) + u2(t)A2|γ (t) + u3(t)A3|γ (t).
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Table 1 Overview of the metrics used in this paper

Distance notation Manifold M Tangent b. T (M) Tangent vectors γ̇ Metric tensor G

Isotropic Euclideana

‖g − h‖ R
2 T (R2) γ̇ (t) = u1(t)∂x + u2(t)∂y G|γ (t) = C(γ (t))2(|u1(t)|2 + |u2(t)|2)

‖g − h‖ R
3 T (R3) γ̇ (t) =

u1(t)∂x + u2(t)∂y

+ u3(t)∂z
G|γ (t) = C(γ (t))2

(

|u1(t)|2 + |u2(t)|2

+|u3(t)|2

)

(Full) Riemannian SE(n)

d1(g, h) SE(2) T (SE(2)) γ̇ (t) =
3
∑

i=1

ui (t)Ai |γ (t) G|γ (t) = C(γ (t))2

(

3
∑

i=1

ξ2
i |ui (t)|2

)

, with

ξ2 = ξ3 = ξ and ξ1 = 1

d1(g, h) SE(3) T (SE(3)) γ̇ (t) =
5
∑

i=1

ui (t)Ai |γ (t) G|γ (t) = C(γ (t))2

(

5
∑

i=1

ξ2
i |ui (t)|2

)

, with

ξ1 = ξ2 = ξ3 = ξ and ξ4 = ξ5 = ξ6 = 1

Sub-Riemannian SE(n)

d0(g, h) SE(2) Δ γ̇ (t) = u1(t)A1|γ (t) + u2(t)A2|γ (t) G|γ (t) = C(γ (t))2(|u1(t)|2 + ξ2|u2(t)|2)

d0(g, h) SE(3) Δ γ̇ (t) =
u3(t)A3|γ (t) + u4(t)A4|γ (t)

+ u5(t)A5|γ (t)
G|γ (t) = C(γ (t))2

(

ξ2|u3(t)|2 + |u4(t)|2

+|u5(t)|2

)

Sub-Riemannian approximation

| LogSE(2)(g
−1h)|ξ,ζ Approximation of the sub-Riemannian distance on SE(2), cf. Eq. (16)

| LogSE(3)(g
−1h)|ξ,ζ Approximation of the sub-Riemannian distance on SE(3), cf. Eq. (25)

aThe isotropic Euclidean distances are used in key point generation and perceptual grouping. The other distances are only used in the perceptual
grouping algorithm

tions U f are obtained via an orientation score transform

[21,31] of image f : R
n → R by correlating the image

with a set of anisotropic wavelets ψ : R
n → R:

U f (g) = (Ugψ, f )L2(Rn), (32)

with ( f , g)L2(Rn) =
∫

Rn f (x)g(x)dx the standard inner

product on L2(R
n), with the overline denoting complex con-

jugation, and where Ug denotes the left regular representation

of the Lie group on images f . For the group SE(2) acting on

images f ∈ L2(R
2) it is defined as

(Ug f )(y) := f (R−1
θ (y − x))

with g = (x, θ) ∈ SE(2) (recall the group definitions in

Sect. 2.1.1). For the group SE(3) acting on images f ∈

L2(R
3) it is defined as

(Ug f )(y) := f (R−1
n (y − x))

with g = (x, Rn) ∈ SE(3) (recall the group definition in

Sect. 3.1.1).

The wavelets used in the orientation score transform [21,

31] are designed in such a way that all rotated version together

cover the full Fourier spectrum. With this design no data are

lost in the transformation and a stable invertible transform

(from orientation score) back to image exists. For details on

this wavelet-type transform for lifting 2D images to functions

on SE(2) we refer to [21], and for lifting 3D images to 3D

orientation scores we refer to [31]. In all experiments we

define the cost in the following form

C(g) =
1

1 + λV(g)p
, (33)

with V a vessel (or centerline) enhancement obtained by pro-

cessing of the orientation score U f , and which is normalized

between 0 and 1. Parameters λ and p then control, respec-

tively, the influence of the cost (data adaptivity) and p the

contrast.

Good choices for V for tracking of vessels in 2D position

orientation space may be via the vessel enhancements of [58]

or [30], similar to the SE(2) tracking experiments in [3]. For

tracking in 3D orientation scores V may be obtained via the

crossing preserving vessel enhancements of [19]. In related

tracking problems in lifted spaces the lifts are obtained via

tubularity measures [11,36,38], or by correlating the image

with a set of rotated templates [44].

4.4.2 Projective Line Bundle

Finally, we remark that when dealing with geodesic dis-

tances in SE(n) we have to take into account that these are

defined for positions and orientations on the full sphere Sn−1.

The distances discussed in this paper thus make a distinc-
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Table 2 Perceptual grouping performance for the 2D retinal image
experiments in terms of percentage of correct key point connections (#
of false connections in parentheses)

Distance C = 1 C �= 1

‖x − y‖ (R2 |Eucl.) 89.99% (362) 95.96% (146)

d1(g, h) (SE(2)|Riem.) 97.51% (90) 99.64% (13)

d0(g, h) (SE(2)|Sub-Riem.) 99.75% (9) 99.83% (6)

| Log(g−1h)|ξ,ζ (SE(2)| ≈ Sub-Riem.) 99.72% (10) –

tion between forward and backward arrival directions, i.e.,

d(e, (x, θ)) �= d(e, (x, θ + π)).

In practice, and in particular in our perceptual grouping

problem, we often do not know the direction of the vessel, but

we only have orientations. As such, we would actually want

to compute distances on the projective line bundle R
n×Pn−1,

with Pn−1 := Sn−1/ ∼ with identification of antipodal

points n1 ∼ n2 ↔ n1 = ±n2. We define the distances d̃

on the projective line bundle by distances d on SE(n) via

d̃(g, (x, n)) = min {d(g, (x, n)), d(g, (x,−n))} , (34)

with n ∈ Sn−1, and g, (x,±n) ∈ SE(n). Note that in the

SE(2) case we have with n(θ) = (cos θ, sin θ) ↔ θ and

−n(θ) = n(θ + π). For a more detailed analysis on data-

adaptive sub-Riemannian geodesics on the 2D projective line

bundle we refer [2].

5 Experiments

In the experiments we aim to quantify the performance

of perceptual grouping with different distances. For a fair

comparison we therefore generate automatically the most

reasonable key points by using a vessel centerline mask

m : R
n → [0, 1] (see Sect. 4.3) based on the ground-truth

data. Moreover, this guarantees that the key points are always

located on the ground-truth centerlines, which allows us to

quantify performance using the ground-truth data. In both

the 2D and 3D case the key points are then generated using

the isotropic Euclidean metric tensor, and with V(x) = m(x)

(see Sect. 4.4.1). In all experiments we set p = 1, λ = 100

to compute the cost [cf. Eq. (33)].

In the perceptual grouping experiments the cost functions

are constructed from orientation score transforms U f of the

mask m on R
n . The costs on SE(n) are then constructed via

the modulus of the score:

V(g) = VSE(n)(g) := |U f (g)|. (35)

For equal comparison the costs on R
n are then constructed

via V (x) = max
n∈Sn−1

VSE(n)(x, n), i.e., via a maximum intensity

projection over orientations n.

5.1 Perceptual Grouping in SE(2)

5.1.1 Experimental Setup

The data for the 2D retinal vessel grouping experiments

consist of 52 retinal image patches in which the vessels

have complicated topologies (each patch contains at least

1 crossing, and at least 1 bifurcation). For each retina patch

the centerlines were semiautomatically traced, after which

the connectivity (bifurcation relations) between the vessel

segments were manually determined. The set of images con-

tained in total 313 separate vessel segments. A connection

between two nodes was determined to be a true positive if

both nodes lie on the same vessel tree.

The minimum distance between key points in the retina

experiments (with patch sizes of ≈ 400 × 400 pixels) was

set to lmax = 30 pixels. The maximum geodesic arc length

distance in the perceptual grouping algorithm was set to

smax = 80 pixels. The orientations θ at each key point x was

estimated by the orientation that gave maximum response

in the orientation score, i.e., θ = argmax
θ∈S1

VSE(2)(x, θ). The

circle S1 was sampled with Nθ = 32. All distances were

computing via the fast marching algorithm of [41,42] except

for the sub-Riemannian approximations, which were com-

puted directly using (9) and (15). The position orientation

balancing parameter was set to ξ = 0.01.

5.1.2 Results

Table 2 gives a quantitative overview of the results, and

Figs. 5 and 6 show the results on two of the 52 retina patches.

From Table 2 we make the following observations and con-

clusions:

1. Perceptual grouping is preferred in the lifted domain

SE(2) instead of in the based domain R
2. This suggest

that taking orientation into account in the grouping is

essential.

2. A sub-Riemannian geometry on SE(2) is preferred over

a (ξ -isotropic) Riemannian geometry. This suggests that

a sub-Riemannian geometry is necessary to deal with the

complex geometry at crossings and parallel tracks (cf.

Figs. 5 and 6).

3. The results obtained with the sub-Riemannian distances

on SE(2) for C = 1 are almost equal. This suggests

that the approximations are quite accurate, and that for
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Fig. 5 Example 1 of the retinal vessel grouping experiments. Each
connected component has its own color (note that the colors might not
match between experiments as the number of recovered components
may differ), and false connections are indicated in red. Top row: experi-

ments with data-adaptive distances (C �= 1), and the ground-truth vessel
components including the automatically generated key points. Bottom
row: experiments without data-adaptive distance (C = 1) (Color figure
online)

Fig. 6 Example 2 of the retinal vessel grouping experiments. Each
connected component has its own color (note that the colors might not
match between experiments as the number of recovered components
may differ), and false connections are indicated in red. Top row: experi-

ments with data-adaptive distances (C �= 1), and the ground-truth vessel
components including the automatically generated key points. Bottom
row: experiments without data-adaptive distance (C = 1) (Color figure
online)
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C = 1 the analytic approximations may be preferred due

to speed and algorithm complexity considerations.

4. Overall, results for C �= 1 are better than for C = 1. Note,

however, that the sub-Riemannian distances on SE(2) for

C = 1 are still better then the Euclidean distance on R
2

and Riemannian distance on SE(2) for C �= 1, and only

slightly under performs relative to the sub-Riemannian

C �= 1 case. This again shows that sub-Riemannian

geometry is preferred, whether data are included in the

metric tensors or not.

We conclude that in perceptual grouping of 2D vessels

a sub-Riemannian geometry in SE(2) is preferred over a

Euclidean geometry in R
2, or a Riemannian geometry in

SE(2). When accurate vesselness maps are available, it is

preferable to use these in the distances. Furthermore, if one

aims to design a easy to implement and efficient perceptual

grouping pipeline, approximate sub-Riemannian distances

should be used. With only a 2D key point tracking algo-

rithm, a method for estimating orientations and the analytic

approximate distances (15) one obtains very accurate group-

ing results.

Table 3 Perceptual grouping performance for the 3D synthetic volume
experiments in terms of percentage of correct key point connections (#
of false connections in parentheses)

Distance C = 1 C �= 1

‖x − y‖ (R3 |Eucl.) 89.99% (78) 97.97% (16)

d1(g, h) (SE(3)|Riem.) 93.02% (54) 98.32% (13)

d0(g, h) (SE(3)|Sub-Riem.) 96.79% (25) 98.32% (13)

| Log(g−1h)|ξ,ζ (SE(3)| ≈ Sub-Riem.) 97.17% (22) –

5.2 Perceptual Grouping in SE(3)

5.2.1 Experimental Setup

To quantify and study the influence of different distances in

perceptual grouping algorithms for 3D vessels we make use

of synthetic 3D images. For these experiments 10 volumes

were generated, each with 6 random paths. Each path was

generated with a Monte Carlo simulation of a random walk

in SE(3) (see, e.g., [59, Ch. 3.5]). Due to the random con-

Fig. 7 Example 1 of the 3D synthetic vessel grouping experiments.
Each connected component has its own color (note that the colors might
not match between experiments as the number of recovered components
may differ), and false connections are indicated in red. Top row: experi-

ments with data-adaptive distances (C �= 1), and the ground-truth vessel
components including the automatically generated key points. Bottom
row: experiments without data-adaptive distance (C = 1) (Color figure
online)
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Fig. 8 Mean squared errors between the sub-Riemannian distance on
SE(2) [see Eq. (7)] and its approximation [see Eq. (16)]. The errors is
computed for varying choices of ζ and on a varying grid size (from
x, y ∈ [−0.5, 0.5] to x, y ∈ [−4, 4])

60 80 100 120 140

0.00

0.05

0.10

0.15

0.20

M
e
a
n
s
q
u
a
re
d
e
rr
o
r

range 0.5

range 1.

range 2.

range 4.

Fig. 9 Mean squared errors between the sub-Riemannian distance on
SE(3) [see Eqs. (7), (24)] and its approximation [see Eq. (27)]. The
errors is computed for varying choices of ζ and on a varying grid size
(from x, y, z ∈ [−0.5, 0.5] to x, y, z ∈ [−4, 4])

struction it might occur that 2 paths cross each other. This is

physiologically unrealistic (vessels in 3D might bifurcate or

touch, but never grow through each other), but it does make

the experiments more challenging.

For each volume a binary centerline mask was constructed

using the generated ground-truth paths. The volumes were of

size 51×51×51 voxels. The distance between key points was

set to lmax = 5 voxels. The maximum geodesic arc length

distance in the perceptual grouping algorithm was set to

smax = 15 voxels. The orientation at each key point was again

estimated as the orientation that gave maximum response in

VSE(n) [Eq. (35)]. The sphere S2 was sampled with 200 ori-

entations using Euler angles with n(β, γ ) = Rγ,β,α .ez , with

β ∈ { π
2Nβ

, 2 π
2Nβ

, . . . , π − π
2Nβ

}, γ ∈ {0, π
Nβ

, . . . , 2π − π
Nβ

},

with Nβ = 10, and with Rγ,β,α given by (19). In the lifted

metric tensor we set ξ = 1.

5.2.2 Results

Table 3 gives a quantitative overview of the results, and Fig. 7

shows the results on one of the ten synthetic volumes. From

Table 3 we can draw the same conclusions as for the SE(2)

case (using a sub-Riemannian geometry and including data

adaptivity improves results). Here, however, we make two

additional observations

1. Data-adaptive fast marching seems less sensitive to the

choice of metric, but tracking in the lifted domain SE(3)

still improves results. This can be explained by the fact

that the volume is relatively sparse, and by the fact that

the cost function C is constructed from ground-truth data

(the best possible cost). If the cost function dominates the

metric, then the intrinsic energy/geometry has a smaller

influence.

2. Out of all C = 1 distances (no data adaptivity) the group-

ing via the nilpotent distance approximations on SE(3)

give best performance, even better then for the true sub-

Riemannian distance. This can be explained by the fact

that for long distances from the origin, the approximation

gradually looses their sub-Riemannian nature and allows

more non-horizontal behavior, as in the Riemannian case.

It could be that, due to the discrete sampling of the

sphere, not all orientations are accurately estimated. The

grouping based on the sub-Riemannian distance approx-

imations seems less sensitive to such errors.

6 Conclusion

In this paper we have proposed an efficient approach for per-

ceptual grouping of local orientations via nilpotent approxi-

mations of sub-Riemannian distances in the roto-translation

group SE(n). The quantitative experiments on grouping of

retinal blood vessels in 2D images, and perceptual group-

ing in challenging 3D synthetic volumes, showed that (1)

sub-Riemannian geometry is essential in achieving top per-

formance and (2) that the grouping approach via the fast

analytic approximations performs almost equally, or better,

than the data-adaptive fast marching approaches.

The sub-Riemannian distances on SE(2) and SE(3) were

approximated via norms on exponential coordinates of the

first kind (obtained via the logarithmic map). In both quanti-

tative and visual comparison it was found that the approxima-

tions accurately follow the true sub-Riemannian distances, a

conclusion which was further supported by the equal per-

formance in quantitative perceptual grouping experiments.

We also numerically showed that the weighted logarithmic

norms used in this paper provide a more accurate approach

for approximating the heat kernel and fundamental solu-

tion of the sub-Laplacian on SE(n), compared to previous

approaches [12,22,47].

Since the sub-Riemannian distance approximations are

analytic, they are easy to implement and fast to compute.

An interesting line of further research would be to embed the

sub-Riemannian distances in other algorithms that rely on the

quantification of the distance between local orientations. The
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results of this paper could be further improved by augmenting

the sub-Riemannian distances with additional features (like

cross-sectional profile descriptors) and use a global graph

optimization approach as in [26,57]. The potential of using

sub-Riemannian distances in such problems is demonstrated

by the experiments of this paper.
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A Optimization of the Folland–Kaplan–
Korányi Gauge Parameter ζ

In Figs. 3 and 4 we visually compared the nilpotent approxi-

mations of the sub-Riemannian distance on SE(2) and SE(3),

respectively. In this appendix we support by means of a quan-

titative comparison our choices for ζ = 44 and ζ = 100

which appear in the logarithmic approximations (Folland–

Kaplan–Korányi gauge) of | Log(g−1h)|ξ,ζ as defined in (16)

and (27) on, respectively, SE(2) and SE(3).

A.1 Optimization of ζ for the SE(2) Approximations

In the quantitative comparison on SE(2) we computed

the L2 error between d0(g, h) and the approximation

| Log(g−1h)|ξ,ζ with ξ = 1 on a grid with a varying spa-

tial domain size (from x, y ∈ [−0.5, 0.5] to x, y ∈ [−4, 4]),

and with varying choices of ζ . The results are shown in Fig. 8

and are computed as follows.

The reference sub-Riemannian distance d0 on SE(2) was

computed once via an anisotropic fast marching algorithm

[41,42] on a grid which sampled x, y ∈ [−4, 4] at a sub-pixel

resolution of 0.01 with 128 orientations. The numerically

computed sub-Riemannian distance volume was thus of

dimensions 801 × 801 × 128.

In each experiment (with fixed spatial range and ζ ) the

squared error between d0 and its approximation was sampled

on a regular grid that covered the specified domain with 41×

41 × 128 points. The averaged errors are plotted in Fig. 8.

Here we see that the approximation becomes more accu-

rate toward the origin (x, y ∈ [−0.5, 0.5]) and that parameter

ζ has to be chosen larger in order to keep the anisotropy for

longer distances from the origin. The choice ζ = 44 gener-

ally gave the best approximations and we rely on this setting

in the experiments on SE(2).

A.2 Optimization of ζ for the SE(3) Approximations

In the quantitative comparison on SE(3) we computed

the L2 error between d0(g, h) and the approximation

| Log(g−1h)|ξ,ζ with ξ = 1 on a grid with a varying spatial

domain size (from x, y, z ∈ [−0.5, 0.5] to x, y, z ∈ [−4, 4]),

and with varying choices of ζ . The results are shown in Fig. 9

and are computed as follows.

The reference sub-Riemannian distance d0 on SE(3) was

also computed once via an anisotropic fast marching algo-

rithm [41,42] on a grid which sampled x, y, z ∈ [−4, 4] at

a sub-pixel resolution of 0.1 with 31 × 62 Euler angles (cf.

Sect. 5.2). The numerically computed sub-Riemannian dis-

tance volume was thus of dimensions 201 × 201 × 201 ×

31 × 62.

In each experiment (with fixed spatial range and ζ ) the

squared error between d0 and its approximation was sampled

on a regular grid that covered the specified domain with 21×

21 × 21 × 31 × 62 points. The averaged errors are plotted in

Fig. 9.

Here we see that the approximation becomes more accu-

rate toward the origin (x, y, z ∈ [−0.5, 0.5]). However,

compared to the SE(2) experiments we do see a less stable

localization of the optimal parameter ζ with varying spa-

tial resolutions. This behavior can be explaind by (1) the

sub-Riemannian distances are numerically computed via a

fast marching algorithm using Euler angles (which do not

uniformly sample the sphere) and (2) the spatial resolution

of the computed reference sub-Riemannian distance vol-

ume was only 0.1 (due to computer memory constraints).

Although very accurate from an application point of view,

the sub-Riemannian distances on SE(3) are not exact, and the

numerical errors induced by the algorithm may explain the

variation in optimal ζ (in particular for the region close to the

origin). Overall, the choice ζ = 100 seems to be reasonable

in all ranges, and this was confirmed by visual comparison

of the distance maps in Fig. 4.
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