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1. Introduction. Let R be an associative ring with identity. Denote

by Ro, the anti-isomorphic ring to R, obtained by defining a new

composition a o b = b-a, in R. For any matrix A over R, we denote by

T(A), the transpose of A regarded as a matrix over R0. One checks

easily that T(AB) = T(B)T(A) for any two matrices A, B over R

suitably sized for multiplication. From here it is easy to conclude that

a matrix A over R is invertible iff T(A) is invertible over R0. (An

mXn matrix A is said to be invertible if 3 a matrix B such that

AB = Im, BA=In.)
For a square matrix A over R, T(A") = (T(A))a, where 5 is any

positive integer. From this last relation we conclude that A is nil-

potent of index k iff T(A) is nilpotent of index k. If R is commutative

then Ro = R. A is invertible over R iff 7(^4) is invertible over R.

A matrix A over R is nilpotent of index k iff T(A) is nilpotent of

index k, over R.

We return to the case when R is arbitrary. Since we shall have no

further occasion to refer to RB, we shall denote the transpose of A

by A1. The mapping t which takes a matrix over R to its transpose

over R does not even possess the property (A2)' = (A')2. Therefore

one can easily construct matrices A such that ^42 = 0 and (At)2yi0

(see Example 2.3). In fact (^42)' = (A1)2 implies the commutativity of

R. This fact is clear by putting

Lo  oj

Also it is well known that the transpose of an invertible matrix over a

division ring is not necessarily invertible [2, p. 24, Exercise 3].

We show here that over a division ring D, which is not commuta-

tive, there exists a 2 X2 matrix A which is nilpotent and whose trans-

pose is invertible. This is equivalent to the existence of a 2X2

invertible matrix over D whose transpose is nilpotent. The following

two results, which have some independent interest are observed as a

part of the proof. A division ring in the multiplicative group of which

any two conjugate elements commute is commutative. A division

ring satisfying the polynomial identity xy2x=yx2y is commutative.
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I wish to acknowledge my gratitude to my colleagues Professors

W. E. Clark and R. L. Tangeman with whom I had several useful

discussions on these results.

2.1 Lemma. A is a 2X2 nilpotent matrix over a division ring D if and

only if

A,\° "1   „   A = \~y "1La   Oj L—zyz   zyj

for some a, y, z in D.

Proof. Assume 4 is a 2X2 nilpotent matrix. Let

V = l(dudi)\di,dtED}.

Either 4 = 0 or the properly descending chain VZj VA 3 VA2 of sub-

spaces of DV, gives F42 = 0, therefore 42 = 0. Now if (1, 0)4 =(0, 0).

Suppose (0, 1)4 = (a, b), then (0, 0) = (0, 1)42=(0, 1)4-4 = (a, b)A
= (a(l, 0)+b(0, l))A=b(a, b) = (ba, b2)=*b2 = 0=>b = 0. So that

RMM-iro  on

L(0,1)4 J      La    0j

If (1, 0)4 = (x, y)^(0, 0), then (0,1)4 = (zx,zy) asD(VA) is of dimen-

sion one. Now

(0,0) = (1,0)42= (1,0)4-4 = fay) A = (x(l,0) + y(0,l))A

= x(x, y) + y(zx, zy) = (x + yz)(x, y),

which implies x-t-yz = 0, therefore x= — yz. Therefore

A = r(l, 0)41 = r x, y "I ^ r -yz, y "1

L (0, 1) 4 J      Lzx, zy J      L—zyz, zy]

Converse is trivial.

2.2 Lemma. //

[— vz    y~\
\y^0,       z?*0,   y,zE D

—zyz   zyJ

then A' is singular (noninvertible) if and only if (y~lzy)z=z(y~lzy).

Proof.

At = r-yz   -zyz-}

L   y        zy J
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is singular iff its rows are left linearly dependent over D. Now

(—yz, —zyz), (y, zy) are left linearly dependent iff ( — yz, —zyz),

(1, y~lzy) are linearly dependent iff —zyz = (—yz)(y~xzy) iff (y~*zy)z

= z(y_1zy).

2.3 Example. D be a division ring of quaternions over any field F,

in which a2-\-b2-\-c2-\-d2 = 0 implies a = 0, b = 0, c = 0, d = 0. Let y — i,

0= (1 -\-i-\-j-r-k) then one checks that

(y~hy)z = 2(1 + i - j + k)

and

z(y~izy) = 2(1 + i + j — k).

Therefore (y~1zy)zy^z(y~1zy). Consequently

r-ya   y"i    ri-t+y-* i

' l-zyz   zy\ ~ L2(l -i+j+k)    -1 + * +j - ij

is such that A2 = 0 and A1 is invertible.

2.4 Lemma. In a group G (y~lzy)z = z(y~lzy) Vy, z in G if and only if

xy2x = yx2y Vx, y in G.

Proof. Assume (y~hy)z = z(y~hy). Let a, bEG. Putting y = a,

z = ab, we get a~1abaab = aba~1aba. Therefore ba2b = ab2a. Assume

ab2a = ba2bVa, b in G. Putting a = y, b=y~1z, we get yy~1zy~1zy

= y~1zy2y~1z. Therefore z(y~lzy) = (y~lzy)z.

2.5 Theorem. If D is a division ring such that the transpose of every

2X2 nilpotent matrix over D is singular (noninvertible) then D is

commutative.

Proof. In view of Lemmas 2.1 and 2.2 it follows that D satisfies the

hypothesis if and only if (y~1zy)z = z(y~1zy)Vy, z, yy^O, zy±0, in D.

In view of Lemma 2.4 this condition is satisfied iff ab2a = ba2bVa, b

in D. Therefore D satisfies a polynomial identity of degree 4 over its

center. Let C be the center of D. (D: C) ^4 [l, Theorem 1 p. 226],

If Dy±C, then (T>:C)=4 [l, Proposition 1, p. 180]. Let a be an ele-

ment of D outside the center C. Then C(a), the subfield generated by

C and a does not coincide with D because C(a) is commutative. Also

(D;C) = (D:C(a))L-(C(a):C) fl, Proposition 1, p. 157]. Conse-

quently (C(a):C) = 2. Therefore C(a) = C®Ca. By Cartan-Brauer-

Hua Theorem [l, p. 186, Corollary], there exists xED such that

x~lax$C(a). Letb = x~lax. Clearlyab = ba. LetDi = C®Ca®Cb. Now

ab(£Di because if abEDi, then the additive subgroup Di is closed
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under multiplication and therefore Di is a division subring [l, p. 158,

Proposition 2] of D such that (Di'.C) =3. This is impossible because

(D:C) = (D:Di)L-(Di:C) [l, Proposition 1, p. 157]. Therefore

abEDi and hence D = C© Ca@ Cb@ Cab. But now in view of ab = ba,

we note any two element of the basis {l, a, b, ab\ of D over Ccom-

mute. Therefore D is commutative.

2.6 Corollary. // D is a division ring such that the transpose of

every 2X2 nilpotent matrix over D is nilpotent, then D is commutative.

2.7 Corollary. // the transpose of every 2X2 invertible matrix over

D is nonnilpotent, then D is commutative.

I am grateful to Professor E. G. Straus for pointing out to me the

following result which in conjunction with Lemmas 2.1 and 2.2 pro-

vides an explicit construction for the matrices mentioned in the title,

and therefore an alternative proof of 2.5.

Theorem (E. G. Straus). If x, y be two noncommuting elements of a

division ring D, then 3 at most one element z in the coset y-\-Cx such that

z~1xzECx, where Cx= [cED: cx = xc\.

Proof. Let if possible z, z' be distinct elements of y-\-Cx such that

z~xxz and z'~lxz'ECx, z' = z+c, Oj±cECx. Set z_1xz = x2. Clearly xi^x,

xz = zxi. Now

Xz' = X(c + z)   = XC + XZ = CX + ZX\

= c(x — xi) + (c + z)xi = c(x — xi) + z'xi.

Consequently z'-1xz'=z'_,c(x—xj)+xi. As z'~lxz', c(x—xi) and

XiECx, and c(x—xi)^0, it follows that z'~lECx. Therefore z'ECx,

which is impossible.
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